1
|
Li J, Shuai S. CocoVax: a web server for codon-based deoptimization of viral genes in live attenuated vaccine design. Nucleic Acids Res 2025:gkaf358. [PMID: 40297995 DOI: 10.1093/nar/gkaf358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Viral infections pose major economic and public health challenges worldwide, with vaccines as a critical tool for prevention. Synonymous recoding of viral genes through codon and codon-pair deoptimization offers a promising approach to design live attenuated vaccines (LAVs) by reducing viral fitness without altering protein sequences. This strategy has been successfully applied to develop vaccines for a range of pathogens affecting human and livestock. To support this approach, we developed CocoVax, the first web server dedicated to codon and codon-pair deoptimization for LAV design. CocoVax features four modules, Virus Database, Gene Recoder, Sequence Evaluator, and Reference Library, guiding users through the entire vaccine development process. With its intuitive interface, CocoVax enables rapid generation of vaccine candidates using only a pathogen's gene sequence, providing a valuable resource for researchers in virology and vaccine development. CocoVax is freely accessible at https://comics.med.sustech.edu.cn/cocovax with no login required.
Collapse
Affiliation(s)
- Jiaxuan Li
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Lee MA, You SH, Jayaramaiah U, Shin EG, Song SM, Ju L, Kang SJ, Cho SH, Hyun BH, Lee HS. Evaluation and Determination of a Suitable Passage Number of Codon Pair Deoptimized PRRSV-1 Vaccine Candidate in Pigs. Viruses 2023; 15:v15051071. [PMID: 37243157 DOI: 10.3390/v15051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is major economic problem given its effects on swine health and productivity. Therefore, we evaluated the genetic stability of a codon pair de-optimized (CPD) PRRSV, E38-ORF7 CPD, as well as the master seed passage threshold that elicited an effective immune response in pigs against heterologous virus challenge. The genetic stability and immune response of every 10th passage (out of 40) of E38-ORF7 CPD was analyzed through whole genome sequencing and inoculation in 3-week-old pigs. E38-ORF7 CPD passages were limited to 20 based on the full-length mutation analysis and animal test results. After 20 passages, the virus could not induce antibodies to provide effective immunity and mutations accumulated in the gene, which differed from the CPD gene, presenting a reason for low infectivity. Conclusively, the optimal passage number of E38-ORF7 CPD is 20. As a vaccine, this may help overcome the highly diverse PRRSV infection with substantially enhanced genetic stability.
Collapse
Affiliation(s)
- Min-A Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Su-Hwa You
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Usharani Jayaramaiah
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Eun-Gyeong Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Seung-Min Song
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Lanjeong Ju
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Seok-Jin Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Sun-Hee Cho
- Department of Animal Veterinary Development, BioPOA, Hwaseong-si 18469, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Hyang-Sim Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
3
|
Lee MA, You SH, Jayaramaiah U, Shin EG, Song SM, Ju L, Kang SJ, Cho SH, Hyun BH, Lee HS. Codon Pair Deoptimization (CPD)-Attenuated PRRSV-1 Vaccination Exhibit Immunity to Virulent PRRSV Challenge in Pigs. Vaccines (Basel) 2023; 11:vaccines11040777. [PMID: 37112689 PMCID: PMC10144691 DOI: 10.3390/vaccines11040777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Commercially used porcine respiratory and reproductive syndrome (PRRS) modified live virus (MLV) vaccines provide limited protection with heterologous viruses, can revert back to a virulent form and they tend to recombine with circulating wild-type strains. Codon pair deoptimization (CPD) is an advanced method to attenuate a virus that overcomes the disadvantages of MLV vaccines and is effective in various virus vaccine models. The CPD vaccine against PRRSV-2 was successfully tested in our previous study. The co-existence of PRRSV-1 and -2 in the same herd demands protective immunity against both viruses. In this study, live attenuated PRRSV-1 was constructed by recoding 22 base pairs in the ORF7 gene of the E38 strain. The efficacy and safety of the CPD live attenuated vaccine E38-ORF7 CPD to protect against virulent PRRSV-1 were evaluated. Viral load, and respiratory and lung lesion scores were significantly reduced in animals vaccinated with E38-ORF7 CPD. Vaccinated animals were seropositive by 14 days post-vaccination with an increased level of interferon-γ secreting cells. In conclusion, the codon-pair-deoptimized vaccine was easily attenuated and displayed protective immunity against virulent heterologous PRRSV-1.
Collapse
|
4
|
Kick AR, Grete AF, Crisci E, Almond GW, Käser T. Testable Candidate Immune Correlates of Protection for Porcine Reproductive and Respiratory Syndrome Virus Vaccination. Vaccines (Basel) 2023; 11:vaccines11030594. [PMID: 36992179 DOI: 10.3390/vaccines11030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an on-going problem for the worldwide pig industry. Commercial and experimental vaccinations often demonstrate reduced pathology and improved growth performance; however, specific immune correlates of protection (CoP) for PRRSV vaccination have not been quantified or even definitively postulated: proposing CoP for evaluation during vaccination and challenge studies will benefit our collective efforts towards achieving protective immunity. Applying the breadth of work on human diseases and CoP to PRRSV research, we advocate four hypotheses for peer review and evaluation as appropriate testable CoP: (i) effective class-switching to systemic IgG and mucosal IgA neutralizing antibodies is required for protective immunity; (ii) vaccination should induce virus-specific peripheral blood CD4+ T-cell proliferation and IFN-γ production with central memory and effector memory phenotypes; cytotoxic T-lymphocytes (CTL) proliferation and IFN-γ production with a CCR7- phenotype that should migrate to the lung; (iii) nursery, finishing, and adult pigs will have different CoP; (iv) neutralizing antibodies provide protection and are rather strain specific; T cells confer disease prevention/reduction and possess greater heterologous recognition. We believe proposing these four CoP for PRRSV can direct future vaccine design and improve vaccine candidate evaluation.
Collapse
Affiliation(s)
- Andrew R Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Alicyn F Grete
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Glen W Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
5
|
Cha SH, You SH, Lee MA, Baek JH, Cho SH, Jeong J, Park CJ, Lee MS, Park C. Application of codon pair deoptimization for ORF7-induced attenuation of type I porcine reproductive and respiratory syndrome virus without reduced immune responses. Virology 2023; 579:119-127. [PMID: 36669328 DOI: 10.1016/j.virol.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 01/11/2023] [Indexed: 01/16/2023]
Abstract
Codon pair deoptimization (CPD) attenuated type I porcine reproductive and respiratory syndrome virus (PRRSV). Infectious clones covering the full genome of a Korean type I PRRSV (E38) were synthesized, and CPD induced nine synonymous mutants of NSP1 (n = 1) and ORF7 (n = 8). In a trial to rescue live viruses from infectious clones, only four clones with mutations at nt 177 downstream of ORF7 were rescued, which showed a substantial decrease in cellular replication ability. The rescue-failed clones had two common mutation sites with a high minimum free energy and significantly modified RNA secondary structure relative to the original virus. In infected pigs, CPD viruses demonstrated significantly lower replication ability and pathogenicity than the original virus. However, immune response level induced by the attenuated viruses and the original virus was similar. This is the first study to demonstrate that type I PRRSV virulence can be attenuated through CPD application to ORF7.
Collapse
Affiliation(s)
- Sang-Ho Cha
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Su-Hwa You
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Min-A Lee
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Jong-Hyuk Baek
- Department of Animal Vaccine Development, BioPOA, 593-26 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Sun-Hee Cho
- Department of Animal Vaccine Development, BioPOA, 593-26 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jiwoon Jeong
- Division of Animal Care, Yonam College, 313, Yeonam-ro, Seonghwan-eup, Seobuk-gu, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Chang-Joo Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Yongdu-dong, Jung-gu, Daejeon, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Yongdu-dong, Jung-gu, Daejeon, Republic of Korea
| | - Changhoon Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Yongdu-dong, Jung-gu, Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Sarli G, D’Annunzio G, Gobbo F, Benazzi C, Ostanello F. The Role of Pathology in the Diagnosis of Swine Respiratory Disease. Vet Sci 2021; 8:vetsci8110256. [PMID: 34822629 PMCID: PMC8618091 DOI: 10.3390/vetsci8110256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022] Open
Abstract
The definition “porcine respiratory disease complex” (PRDC) is used to indicate the current approach for presenting respiratory pathology in modern pig farming. PRDC includes pneumonias with variable pictures, mixed with both aerogenous and hematogenous forms with variable etiology, often multimicrobial, and influenced by environmental and management factors. The notion that many etiological agents of swine respiratory pathology are ubiquitous in the airways is commonly understood; however, their isolation or identification is not always associable with the current pathology. In this complex context, lung lesions registered at slaughterhouse or during necropsy, and supplemented by histological investigations, must be considered as powerful tools for assigning a prominent role to etiologic agents. In recent years, the goal of colocalizing causative agents with the lesions they produce has been frequently applied, and valid examples in routine diagnostics are those that indicate pulmonary involvement during porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) infections.
Collapse
|
7
|
Porcine Reproductive and Respiratory Syndrome Virus: Immune Escape and Application of Reverse Genetics in Attenuated Live Vaccine Development. Vaccines (Basel) 2021; 9:vaccines9050480. [PMID: 34068505 PMCID: PMC8150910 DOI: 10.3390/vaccines9050480] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/16/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus widely prevalent in pigs, results in significant economic losses worldwide. PRRSV can escape from the host immune response in several processes. Vaccines, including modified live vaccines and inactivated vaccines, are the best available countermeasures against PRRSV infection. However, challenges still exist as the vaccines are not able to induce broad protection. The reason lies in several facts, mainly the variability of PRRSV and the complexity of the interaction between PRRSV and host immune responses, and overcoming these obstacles will require more exploration. Many novel strategies have been proposed to construct more effective vaccines against this evolving and smart virus. In this review, we will describe the mechanisms of how PRRSV induces weak and delayed immune responses, the current vaccines of PRRSV, and the strategies to develop modified live vaccines using reverse genetics systems.
Collapse
|
8
|
Future perspectives on swine viral vaccines: where are we headed? Porcine Health Manag 2021; 7:1. [PMID: 33397477 PMCID: PMC7780603 DOI: 10.1186/s40813-020-00179-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Deliberate infection of humans with smallpox, also known as variolation, was a common practice in Asia and dates back to the fifteenth century. The world's first human vaccination was administered in 1796 by Edward Jenner, a British physician. One of the first pig vaccines, which targeted the bacterium Erysipelothrix rhusiopathiae, was introduced in 1883 in France by Louis Pasteur. Since then vaccination has become an essential part of pig production, and viral vaccines in particular are essential tools for pig producers and veterinarians to manage pig herd health. Traditionally, viral vaccines for pigs are either based on attenuated-live virus strains or inactivated viral antigens. With the advent of genomic sequencing and molecular engineering, novel vaccine strategies and tools, including subunit and nucleic acid vaccines, became available and are being increasingly used in pigs. This review aims to summarize recent trends and technologies available for the production and use of vaccines targeting pig viruses.
Collapse
|
9
|
Chen-Fei L, Chou-Min C, Jiun-Yan L. Feasibility of vaccination against Macrobrachium rosenbergii nodavirus infection in giant freshwater prawn. FISH & SHELLFISH IMMUNOLOGY 2020; 104:431-438. [PMID: 32580003 DOI: 10.1016/j.fsi.2020.06.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The giant freshwater prawn/giant river prawn, Macrobrachium rosenbergii is one of the high market value crustaceans cultured worldwide. The intensified aquaculture of the species has led to the outbreak of infectious diseases, prominently, the white tail disease (WTD). It is caused by the infection of Macrobrachium rosenbergii nodavirus (MrNV), which was classified in the family of Nodaviridae. To-date, there are no effective prophylactic and therapeutic agents available against MrNV infection. Vaccination is known to be the most effective prophylactic agent in disease prevention. However, vaccine development against virus infection in crustaceans is equivocal. The feasibility of vaccination in conferring immune protection in crustaceans against infectious diseases is disputable. The argument lies in the fact that crustaceans do not possess adaptive immunity, which is the main immune component that functions to establish immunological memory upon vaccination. Nevertheless, an increasing number of literatures has been documented, which concerns the development of vaccines against infectious diseases in crustaceans. The current review deliberates different approaches in vaccine development against MrNV, which were documented in the past years. It is noteworthy that the live-attenuated MrNV vaccine has not been experimented by far. Thus, the potential of live-attenuated MrNV vaccine in conferring long-term immune protection through the establishment of innate immune memory is currently being discussed.
Collapse
Affiliation(s)
- Low Chen-Fei
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Chong Chou-Min
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Loh Jiun-Yan
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Park C, Baek JH, Cho SH, Jeong J, Chae C, You SH, Cha SH. Field porcine reproductive and respiratory syndrome viruses (PRRSV) attenuated by codon pair deoptimization (CPD) in NSP1 protected pigs from heterologous challenge. Virology 2019; 540:172-183. [PMID: 31928999 DOI: 10.1016/j.virol.2019.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/01/2022]
Abstract
Two type 2 field porcine reproductive and respiratory syndrome viruses (PRRSV) isolated from PRRS-affected swine farms were attenuated by de-optimization of codon pair bias in NSP1. In 3-week-old pigs infection, the attenuated viruses showed significantly lower replication ability than the original viruses without distinct clinical sign and pathological lesions, which were observed in pig infected with the original viruses. Regarding induction of PRRSV specific immunity, the level of the neutralizing antibodies as well as secretion of IFN-γ-SCs in PBMCs was not different between the attenuated viruses and the original viruses. More importantly, pigs infected with the attenuated viruses exhibited significant reduction in respiratory scores, viremia, macroscopic and microscopic lung lesion scores, and PRRSV-antigen with interstitial pneumonia against a heterologous challenge with a type 2 virulent strain. Conclusively, the viruses attenuated by CPD in this study demonstrated potential usefulness as vaccine strains to provide protective immunity against diverse virulent PRRSVs.
Collapse
Affiliation(s)
- Changhoon Park
- Department of Animal Vaccine Development, BioPOA, 593-26 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jong Hyuk Baek
- Department of Animal Vaccine Development, BioPOA, 593-26 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Sun Hee Cho
- Department of Animal Vaccine Development, BioPOA, 593-26 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jiwoon Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Su-Hwa You
- PRRS research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Sang-Ho Cha
- PRRS research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| |
Collapse
|
11
|
Codon and Codon-Pair Usage Tables (CoCoPUTs): Facilitating Genetic Variation Analyses and Recombinant Gene Design. J Mol Biol 2019; 431:2434-2441. [PMID: 31029701 DOI: 10.1016/j.jmb.2019.04.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
Usage of sequential codon-pairs is non-random and unique to each species. Codon-pair bias is related to but clearly distinct from individual codon usage bias. Codon-pair bias is thought to affect translational fidelity and efficiency and is presumed to be under the selective pressure. It was suggested that changes in codon-pair utilization may affect human disease more significantly than changes in single codons. Although recombinant gene technologies often take codon-pair usage bias into account, codon-pair usage data/tables are not readily available, thus potentially impeding research efforts. The present computational resource (https://hive.biochemistry.gwu.edu/review/codon2) systematically addresses this issue. Building on our recent HIVE-Codon Usage Tables, we constructed a new database to include genomic codon-pair and dinucleotide statistics of all organisms with sequenced genome, available in the GenBank. We believe that the growing understanding of the importance of codon-pair usage will make this resource an invaluable tool to many researchers in academia and pharmaceutical industry.
Collapse
|
12
|
Low CF, Md Yusoff MR, Kuppusamy G, Ahmad Nadzri NF. Molecular biology of Macrobrachium rosenbergii nodavirus infection in giant freshwater prawn. JOURNAL OF FISH DISEASES 2018; 41:1771-1781. [PMID: 30270534 DOI: 10.1111/jfd.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Macrobrachium rosenbergii nodavirus (MrNV) has been threatening the giant freshwater prawn aquaculture since 1997, causing white tail disease in the prawn species that leads to 100% lethality of the infected postlarvae. Comprehension of the viral infectivity and pathogenesis at molecular biology level has recently resolved the viral capsid protein and evidenced the significant difference in the viral structural protein compared to other nodaviruses that infect fish and insect. Cumulative researches have remarked the proposal to assert MrNV as a member of new genus, gammanodavirus to the Nodaviridae family. The significance of molecular biology in MrNV infection is being highlighted in this current review, revolving the viral life cycle from virus binding and entry into host, virus replication in host cell, to virus assembly and release. The current review also highlights the emerging aptamers technology that is also known as synthetic antibody, its application in disease diagnosis, and its prophylactic and therapeutic properties. The future perspective of synthetic virology technology in understanding viral pathogenesis, as well as its potential in viral vaccine development, is also discussed.
Collapse
Affiliation(s)
- Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, Malaysia
| | | | | | | |
Collapse
|
13
|
Xia L, Yang Y, Wang J, Jing Y, Yang Q. Impact of TGEV infection on the pig small intestine. Virol J 2018; 15:102. [PMID: 29914507 PMCID: PMC6006930 DOI: 10.1186/s12985-018-1012-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/03/2018] [Indexed: 02/07/2023] Open
Abstract
Background Pig diarrhea causes high mortality and large economic losses in the swine industry. Transmissible gastroenteritis virus (TGEV) causes pig diarrhea, with 100% mortality in piglets less than 2 weeks old. No investigation has yet been made of the small intestine of piglets that survived infection by TGEV. Methods In this study, we evaluated the impact of TGEV infection on the small intestine of recovered pigs. Results Histological analyses showed that TGEV infection led to villi atrophy, and reduced villous height and crypt depth. The number of SIgA positive cells, CD3+T cells, and dendritic cells (DCs) in jejunum decreased after TGEV infection in vivo. In contrast, microfold cell (M cell) numbers and cell proliferation increased in infected pigs. TGEV infection also significantly enhanced the mRNA expression levels of cytokine IL-1β, IL-6, TNF-α, IL-10, and TGF-β. Additionally, lower gene copy numbers of Lactobacillus, and higher numbers of Enterobacteriaceae, were detected in mucosal scraping samples from TGEV-infected pigs. Conclusions TGEV infection damages the small intestine, impairs immune functions, and increases pathogenic bacterial loading, all of which may facilitate secondary infections by other pathogens. These findings help quantify the impact of TGEV infection and clarify the pathogenic mechanisms underlying its effects in pigs.
Collapse
Affiliation(s)
- Lu Xia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yunhan Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Jialu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yuchao Jing
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
14
|
Kim JJ, Lee JA, Choi HY, Han JH, Huh W, Pi JH, Lee JK, Park S, Cho KH, Lee JB. In vitro and in vivo studies of deglycosylated chimeric porcine reproductive and respiratory syndrome virus as a vaccine candidate and its realistic revenue impact at commercial pig production level. Vaccine 2017; 35:4966-4973. [PMID: 28802752 DOI: 10.1016/j.vaccine.2017.07.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/04/2017] [Accepted: 07/23/2017] [Indexed: 02/03/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes major economic losses in the swine industry worldwide. Vaccination is the most effective method to control the disease. In a previous study, a chimeric PRRSV named as K418 which had a genome composed of ORF 1 from the FL12 strain and ORF 2-7 from the Korean representative LMY strain was created. We constructed K418DM, K418 with deglycosylated glycoprotein 5 (GP5), to improve its humoral immunity. In the follow-up on in vivo and in vitro virological and serological tests, no back mutation in amino acids of GP5 associated with deglycosylation was shown after 9 passages on MARC-145 cells, whereas only one case of back mutation was detected after single passage in pig. In serological study, K418DM induced higher serum neutralization (SN) antibody and more limited viremia compared with those of K418 virus. In clinical trial and economic analysis, the K418DM elicited SN antibody titers and PRRSV-specific IgG over protection limit. From the economic viewpoint, there was statistically significant reduction in percentage of weak pigs. These results indicated that vaccination with the K418DM may provide enhanced protection for pigs in PRRS endemic situation and increase growth performance in commercial pig farms.
Collapse
Affiliation(s)
- Jung-Ju Kim
- Animal Health Management Division, Ministry of Agriculture, Food and Rural Affairs, 94 Dasom2-ro, Government Complex-Sejong, Sejong-si 30110, Republic of Korea; Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Ah Lee
- Division of Vaccine Research, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Osong Health Technology Administration Complex, Osongsaengmueong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Hwi-Yeon Choi
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jang-Hyuck Han
- KBNP, INC., 254-18, Dugok-ri, Sinam, Yesan-si, Chungchungnam-do 32417, Republic of Korea
| | - Won Huh
- Daesung Microbiological Labs. Co., Ltd., 5F, Soam Building, 208, Bangbae-ro, Seocho-gu, Seoul 06585, Republic of Korea
| | - Jae-Ho Pi
- Sungwoo Agricultural Co., 40-3 Hongnamseo-ro, 843 beon-gil, Gyeolseong-myeon, Hongseong-gun, Chungcheongnam-do 32210, Republic of Korea
| | - Jung-Keun Lee
- College of Veterinary Medicine, Midwestern University, 19555, North 59th Avenue, Glendale, AZ 85308, USA
| | - Sangshin Park
- The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ki-Hyun Cho
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, 177 Hyeoksin8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea.
| | - Joong-Bok Lee
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|