1
|
Tang P, Cui E, Cheng J, Li B, Tao J, Shi Y, Jiao J, Du E, Wang J, Liu H. A ferritin nanoparticle vaccine based on the hemagglutinin extracellular domain of swine influenza A (H1N1) virus elicits protective immune responses in mice and pigs. Front Immunol 2024; 15:1361323. [PMID: 38835763 PMCID: PMC11148206 DOI: 10.3389/fimmu.2024.1361323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Swine influenza viruses (SIVs) pose significant economic losses to the pig industry and are a burden on global public health systems. The increasing complexity of the distribution and evolution of different serotypes of influenza strains in swine herds escalates the potential for the emergence of novel pandemic viruses, so it is essential to develop new vaccines based on swine influenza. Methods Here, we constructed a self-assembling ferritin nanoparticle vaccine based on the hemagglutinin (HA) extracellular domain of swine influenza A (H1N1) virus using insect baculovirus expression vector system (IBEVS), and after two immunizations, the immunogenicities and protective efficacies of the HA-Ferritin nanoparticle vaccine against the swine influenza virus H1N1 strain in mice and piglets were evaluated. Results Our results demonstrated that HA-Ferritin nanoparticle vaccine induced more efficient immunity than traditional swine influenza vaccines. Vaccination with the HA-Ferritin nanoparticle vaccine elicited robust hemagglutinin inhibition titers and antigen-specific IgG antibodies and increased cytokine levels in serum. MF59 adjuvant can significantly promote the humoral immunity of HA-Ferritin nanoparticle vaccine. Furthermore, challenge tests showed that HA-Ferritin nanoparticle vaccine conferred full protection against lethal challenge with H1N1 virus and significantly decreased the severity of virus-associated lung lesions after challenge in both BALB/c mice and piglets. Conclusion Taken together, these results indicate that the hemagglutinin extracellular-based ferritin nanoparticle vaccine may be a promising vaccine candidate against SIVs infection.
Collapse
Affiliation(s)
- Pan Tang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Enhui Cui
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jie Tao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jiajie Jiao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
2
|
Liu S, Hu M, Liu X, Liu X, Chen T, Zhu Y, Liang T, Xiao S, Li P, Ma X. Nanoparticles and Antiviral Vaccines. Vaccines (Basel) 2023; 12:30. [PMID: 38250843 PMCID: PMC10819235 DOI: 10.3390/vaccines12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Viruses have threatened human lives for decades, causing both chronic and acute infections accompanied by mild to severe symptoms. During the long journey of confrontation, humans have developed intricate immune systems to combat viral infections. In parallel, vaccines are invented and administrated to induce strong protective immunity while generating few adverse effects. With advancements in biochemistry and biophysics, different kinds of vaccines in versatile forms have been utilized to prevent virus infections, although the safety and effectiveness of these vaccines are diverse from each other. In this review, we first listed and described major pathogenic viruses and their pandemics that emerged in the past two centuries. Furthermore, we summarized the distinctive characteristics of different antiviral vaccines and adjuvants. Subsequently, in the main body, we reviewed recent advances of nanoparticles in the development of next-generation vaccines against influenza viruses, coronaviruses, HIV, hepatitis viruses, and many others. Specifically, we described applications of self-assembling protein polymers, virus-like particles, nano-carriers, and nano-adjuvants in antiviral vaccines. We also discussed the therapeutic potential of nanoparticles in developing safe and effective mucosal vaccines. Nanoparticle techniques could be promising platforms for developing broad-spectrum, preventive, or therapeutic antiviral vaccines.
Collapse
Affiliation(s)
- Sen Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Meilin Hu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Xiaoqing Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xingyu Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Tao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Yiqiang Zhu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Taizhen Liang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Shiqi Xiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Peiwen Li
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Chowdhury N, Kundu A. Nanotechnology Platform for Advancing Vaccine Development against the COVID-19 Virus. Diseases 2023; 11:177. [PMID: 38131983 PMCID: PMC10742622 DOI: 10.3390/diseases11040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact on societies, public health, healthcare systems, and the world economy. With over 771 million people infected worldwide and a staggering death toll exceeding 6,960,783 as of 4 October 2023 (according to the World Health Organization), the urgency for a solution was paramount. Since the outbreak, the demand for immediate treatment for COVID-19 viral infection, as well as for effective vaccination against this virus, was soaring, which led scientists, pharmaceutical/biotech companies, government health agencies, etc., to think about a treatment strategy that could control and minimize this outbreak as soon as possible. Vaccination emerged as the most effective strategy to combat this infectious disease. For vaccination strategies, any conventional vaccine approach using attenuated live or inactivated/engineered virus, as well as other approaches, typically requires years of research and assessment. However, the urgency of the situation promoted a faster and more effective approach to vaccine development against COVID-19. The role of nanotechnology in designing, manufacturing, boosting, and delivering vaccines to the host to counter this virus was unquestionably valued and assessed. Several nanoformulations are discussed here in terms of their composition, physical properties, credibility, and applications in past vaccine development (as well as the possibility of using those used in previous applications for the generation of the COVID-19 vaccine). Controlling and eliminating the spread of the virus and preventing future recurrence requires a safe, tolerable, and effective vaccine strategy. In this review, we discuss the potential of nanoformulations as the basis for an effective vaccine strategy against COVID-19.
Collapse
Affiliation(s)
| | - Anup Kundu
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
4
|
Goudarzi T, Abkar M, Zamanzadeh Z, Fasihi-Ramandi M. Immunization of mice with chimeric protein-loaded aluminum hydroxide and selenium nanoparticles induces reduction of Brucella melitensis infection in mice. Clin Exp Vaccine Res 2023; 12:304-312. [PMID: 38025913 PMCID: PMC10655149 DOI: 10.7774/cevr.2023.12.4.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Due to the many problems with commercially available vaccines, the production of effective vaccines against brucellosis is a necessity. The aim of this study was to evaluate the immune responses caused by the chimeric protein consisting of trigger factor, Bp26, and Omp31 (TBO) along with aluminum hydroxide (AH/TBO) and selenium (Se/TBO) nanoparticles (NPs) as adjuvants in mouse model. Materials and Methods Recombinant antigen expression was induced in Escherichia coli BL21 (DE3) bacteria using IPTG (isopropyl-d-1-thiogalactopyranoside). Purification and characterization of recombinant protein was conducted through NiFe3O4 NPs, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blot. NP characteristics, including morphology and particle size, were measured in vitro. The recombinant TBO was loaded on to AH and Se NPs and were administered subcutaneously. After mice immunization, measurement of antibody titter and protection assay was performed. Results The average sizes of AH and Se NPs were about 60 nm and 150 nm, respectively. The enzyme-linked immunosorbent assay results showed that the serum of mice immunized by subcutaneous injection with both nanovaccines produced significant immunoglobulin G (IgG) responses against the chimeric antigen. The results of TBO-specific IgG isotype (IgG2a/IgG1) analysis showed that both AH and Se NPs induced a type to T-helper immune response. In addition, the results of the challenge with the pathogenic strain of Brucella melitensis 16M showed that vaccinated mice with AH/TBO NPs indicated a higher reduction of bacterial culture than immunized mice with Se/TBO NPs and TBO alone. Conclusion The results showed that AH NPs carrying chimeric antigen can be a promising vaccine candidate against brucellosis by producing protective immunity.
Collapse
Affiliation(s)
- Tahereh Goudarzi
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Morteza Abkar
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Zahra Zamanzadeh
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Tang P, Cui EH, Chang WC, Yu C, Wang H, Du EQ, Wang JY. Nanoparticle-Based Bivalent Swine Influenza Virus Vaccine Induces Enhanced Immunity and Effective Protection against Drifted H1N1 and H3N2 Viruses in Mice. Viruses 2022; 14:v14112443. [PMID: 36366541 PMCID: PMC9693272 DOI: 10.3390/v14112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Swine influenza virus (SIV) circulates worldwide, posing substantial economic loss and disease burden to humans and animals. Vaccination remains the most effective way to prevent SIV infection and transmission. In this study, we evaluated the protective efficacy of a recombinant, baculovirus-insect cell system-expressed bivalent nanoparticle SIV vaccine in mice challenged with drifted swine influenza H1N1 and H3N2 viruses. After a prime-boost immunization, the bivalent nanoparticle vaccine (BNV) induced high levels of hemagglutination inhibition (HAI) antibodies, virus-neutralization (VN) antibodies, and antigen-specific IgG antibodies in mice, as well as more efficient cytokine levels. The MF59 and CPG1 adjuvant could significantly promote both humoral and cellular immunity of BNV. The MF59 adjuvant showed a balanced Th1/Th2 immune response, and the CPG1 adjuvant tended to show a Th1-favored response. The BALB/c challenge test showed that BNV could significantly reduce lung viral loads and feces viral shedding, and showed fewer lung pathological lesions than those in PBS and inactivated vaccine groups. These results suggest that this novel bivalent nanoparticle swine influenza vaccine can be used as an efficacious vaccine candidate to induce robust immunity and provide broad protection against drifted subtypes in mice. Immune efficacy in pigs needs to be further evaluated.
Collapse
Affiliation(s)
- Pan Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - En-hui Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wen-chi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chen Yu
- Yangling Carey Biotechnology Co., Ltd., Yangling, Xianyang 712100, China
| | - Hao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Yangling Carey Biotechnology Co., Ltd., Yangling, Xianyang 712100, China
| | - En-qi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Yangling Carey Biotechnology Co., Ltd., Yangling, Xianyang 712100, China
- Correspondence: (E.-q.D.); (J.-y.W.)
| | - Jing-yu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (E.-q.D.); (J.-y.W.)
| |
Collapse
|
6
|
Mao L, Chen Z, Wang Y, Chen C. Design and application of nanoparticles as vaccine adjuvants against human corona virus infection. J Inorg Biochem 2021; 219:111454. [PMID: 33878530 PMCID: PMC8007196 DOI: 10.1016/j.jinorgbio.2021.111454] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
In recent years, some viruses have caused a grave crisis to global public health, especially the human coronavirus. A truly effective vaccine is therefore urgently needed. Vaccines should generally have two features: delivering antigens and modulating immunity. Adjuvants have an unshakable position in the battle against the virus. In addition to the perennial use of aluminium adjuvant, nanoparticles have become the developing adjuvant candidates due to their unique properties. Here we introduce several typical nanoparticles and their antivirus vaccine adjuvant applications. Finally, for the combating of the coronavirus, we propose several design points, hoping to provide ideas for the development of personalized vaccines and adjuvants and accelerate the clinical application of adjuvants.
Collapse
Affiliation(s)
- Lichun Mao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ziwei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangdong 510700, PR China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; GBA National Institute for Nanotechnology Innovation, Guangdong 510700, PR China; Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, PR China.
| |
Collapse
|
7
|
An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery. Pharmaceutics 2021; 13:pharmaceutics13040455. [PMID: 33801614 PMCID: PMC8066039 DOI: 10.3390/pharmaceutics13040455] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines is one of the most significant medical accomplishments which has helped to eradicate a large number of diseases. It has undergone an evolutionary process from live attenuated pathogen vaccine to killed whole organisms or inactivated toxins (toxoids), each of them having its own advantages and disadvantages. The crucial parameters in vaccination are the generation of memory response and protection against infection, while an important aspect is the effective delivery of antigen in an intelligent manner to evoke a robust immune response. In this regard, nanotechnology is greatly contributing to developing efficient vaccine adjuvants and delivery systems. These can protect the encapsulated antigen from the host’s in-vivo environment and releasing it in a sustained manner to induce a long-lasting immunostimulatory effect. In view of this, the present review article summarizes nanoscale-based adjuvants and delivery vehicles such as viral vectors, virus-like particles and virosomes; non-viral vectors namely nanoemulsions, lipid nanocarriers, biodegradable and non-degradable nanoparticles, calcium phosphate nanoparticles, colloidally stable nanoparticles, proteosomes; and pattern recognition receptors covering c-type lectin receptors and toll-like receptors.
Collapse
|
8
|
Tortella GR, Rubilar O, Diez MC, Padrão J, Zille A, Pieretti JC, Seabra AB. Advanced Material Against Human (Including Covid-19) and Plant Viruses: Nanoparticles As a Feasible Strategy. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000049. [PMID: 33614127 PMCID: PMC7883180 DOI: 10.1002/gch2.202000049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Indexed: 05/03/2023]
Abstract
The SARS-CoV-2 virus outbreak revealed that these nano-pathogens have the ability to rapidly change lives. Undoubtedly, SARS-CoV-2 as well as other viruses can cause important global impacts, affecting public health, as well as, socioeconomic development. But viruses are not only a public health concern, they are also a problem in agriculture. The current treatments are often ineffective, are prone to develop resistance, or cause considerable adverse side effects. The use of nanotechnology has played an important role to combat viral diseases. In this review three main aspects are in focus: first, the potential use of nanoparticles as carriers for drug delivery. Second, its use for treatments of some human viral diseases, and third, its application as antivirals in plants. With these three themes, the aim is to give to readers an overview of the progress in this promising area of biotechnology during the 2017-2020 period, and to provide a glance at how tangible is the effectiveness of nanotechnology against viruses. Future prospects are also discussed. It is hoped that this review can be a contribution to general knowledge for both specialized and non-specialized readers, allowing a better knowledge of this interesting topic.
Collapse
Affiliation(s)
- Gonzalo R. Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio AmbienteCIBAMA‐BIORENUniversidad de La FronteraTemuco4811230Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio AmbienteCIBAMA‐BIORENUniversidad de La FronteraTemuco4811230Chile
- Chemical Engineering DepartmentUniversidad de La FronteraTemuco4811230Chile
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio AmbienteCIBAMA‐BIORENUniversidad de La FronteraTemuco4811230Chile
- Chemical Engineering DepartmentUniversidad de La FronteraTemuco4811230Chile
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T)University of MinhoGuimarães4800‐058Portugal
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T)University of MinhoGuimarães4800‐058Portugal
| | - Joana C. Pieretti
- Center for Natural and Human SciencesUniversidade Federal d ABC (UFABC)Santo André09210‐580Brazil
| | - Amedea B. Seabra
- Center for Natural and Human SciencesUniversidade Federal d ABC (UFABC)Santo André09210‐580Brazil
| |
Collapse
|
9
|
Wieczorek K, Szutkowska B, Kierzek E. Anti-Influenza Strategies Based on Nanoparticle Applications. Pathogens 2020; 9:E1020. [PMID: 33287259 PMCID: PMC7761763 DOI: 10.3390/pathogens9121020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Influenza virus has the potential for being one of the deadliest viruses, as we know from the pandemic's history. The influenza virus, with a constantly mutating genome, is becoming resistant to existing antiviral drugs and vaccines. For that reason, there is an urgent need for developing new therapeutics and therapies. Despite the fact that a new generation of universal vaccines or anti-influenza drugs are being developed, the perfect remedy has still not been found. In this review, various strategies for using nanoparticles (NPs) to defeat influenza virus infections are presented. Several categories of NP applications are highlighted: NPs as immuno-inducing vaccines, NPs used in gene silencing approaches, bare NPs influencing influenza virus life cycle and the use of NPs for drug delivery. This rapidly growing field of anti-influenza methods based on nanotechnology is very promising. Although profound research must be conducted to fully understand and control the potential side effects of the new generation of antivirals, the presented and discussed studies show that nanotechnology methods can effectively induce the immune responses or inhibit influenza virus activity both in vitro and in vivo. Moreover, with its variety of modification possibilities, nanotechnology has great potential for applications and may be helpful not only in anti-influenza but also in the general antiviral approaches.
Collapse
Affiliation(s)
- Klaudia Wieczorek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (K.W.); (B.S.)
- NanoBioMedical Centre, Adam Mickiewicz University, 61-704 Poznan, Poland
| | - Barbara Szutkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (K.W.); (B.S.)
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (K.W.); (B.S.)
| |
Collapse
|
10
|
Liu Z, Yu L, Gu P, Bo R, Wusiman A, Liu J, Hu Y, Wang D. Preparation of lentinan-calcium carbonate microspheres and their application as vaccine adjuvants. Carbohydr Polym 2020; 245:116520. [PMID: 32718625 DOI: 10.1016/j.carbpol.2020.116520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 11/19/2022]
Abstract
Adjuvants improve vaccine potency by enhancing immunogenicity and sustaining long-term immune responses. Lentinan (LNT), a β-1,3-glucohexaose with β-1,6-branches, is extracted from the mushroom Lentinus edodes and functions as an effective immunostimulatory drug. Previous studies have demonstrated the adjuvant activity of calcium carbonate (CaCO3) microspheres as well as their use as antigen delivery systems. In this study, we successfully loaded CaCO3 microspheres with LNT and evaluated their physicochemical characteristics prior to the adsorption of ovalbumin. Our experimental results demonstrated that LNT-CaCO3 significantly enhanced lymphocyte proliferation, and boosted the frequency of CD69 + B cells and the ratio of CD4+ to CD8 + T cells in spleen lymphocytes. Moreover, LNT-CaCO3 unexpectedly induced the secretion of IgG and Th-associated cytokines (IL-2, IL-4, IFN-γ, and TNF-α) in immunized mice. Therefore, LNT-CaCO3 microspheres induce robust cellular and humoral immune responses and have potential utility as vaccine delivery systems.
Collapse
Affiliation(s)
- Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruonan Bo
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Adelijiang Wusiman
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
11
|
Sadeghi Z, Fasihi-Ramandi M, Bouzari S. Nanoparticle-Based Vaccines for Brucellosis: Calcium Phosphate Nanoparticles-Adsorbed Antigens Induce Cross Protective Response in Mice. Int J Nanomedicine 2020; 15:3877-3886. [PMID: 32581535 PMCID: PMC7269176 DOI: 10.2147/ijn.s249942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction Vaccine formulation with appropriate adjuvants is an attractive approach to develop protective immunity against pathogens. Calcium phosphate nanoparticles (CaPNs) are considered as ideal adjuvants and delivery systems because of their great potential for enhancing immune responses. In the current study, we have designed nanoparticle-based vaccine candidates to induce immune responses and protection against B. melitensis and B. abortus. Materials and Methods For this purpose, we used three Brucella antigens (FliC, 7α-HSDH, BhuA) and two multi-epitopes (poly B and poly T) absorbed by CaPNs. The efficacy of each formulation was evaluated by measuring humoral, cellular and protective responses in immunized mice. Results The CaPNs showed an average size of about 90 nm with spherical shape and smooth surface. The CaPNs-adsorbed proteins displayed significant increase in cellular and humoral immune responses compared to the control groups. In addition, our results showed increased ratio of specific IgG2a (associated with Th1) to specific IgG1 (associated with Th2). Also, immunized mice with different vaccine candidate formulations were protected against B. melitensis 16M and B. abortus 544, and showed same levels of protection as commercial vaccines (B. melitensis Rev.1 and B. abortus RB51) except for BhuA-CaPNs. Discussion Our data support the hypothesis that these antigens absorbed with CaPNs could be effective vaccine candidates against B. melitensis and B. abortus.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci 2020; 279:102157. [PMID: 32330734 PMCID: PMC7261203 DOI: 10.1016/j.cis.2020.102157] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Calcium phosphate is the inorganic mineral of hard tissues such as bone and teeth. Due to their similarities to the natural bone, calcium phosphates are highly biocompatible and biodegradable materials that have found numerous applications in dental and orthopedic implants and bone tissue engineering. In the form of nanoparticles, calcium phosphate nanoparticles (CaP's) can also be used as effective delivery vehicles to transfer therapeutic agents such as nucleic acids, drugs, proteins and enzymes into tumor cells. In addition, facile preparation and functionalization of CaP's, together with their inherent properties such as pH-dependent solubility provide advantages in delivery and release of these bioactive agents using CaP's as nanocarriers. In this review, the challenges and achievements in the intracellular delivery of these agents to tumor cells are discussed. Also, the most important issues in the design and potential applications of CaP-based biominerals are addressed with more focus on their biodegradability in tumor microenvironment.
Collapse
Affiliation(s)
- Razieh Khalifehzadeh
- Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States; Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States
| | - Hamed Arami
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States; Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States.
| |
Collapse
|
13
|
Morcol T, Nagappan P, Bell SJD, Cawthon AG. Influenza A(H5N1) Virus Subunit Vaccine Administered with CaPNP Adjuvant Induce High Virus Neutralization Antibody Titers in Mice. AAPS PharmSciTech 2019; 20:315. [PMID: 31591662 DOI: 10.1208/s12249-019-1530-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
The highly pathogenic avian influenza H5N1 virus continues to spread globally in domestic poultry with sporadic transmission to humans. The possibility for its rapid transmission to humans raised global fears for the virus to gain capacity for human-to-human transmission to start a future pandemic. Through direct contact with infected poultry, it caused the largest number of reported cases of severe disease and death in humans of any avian influenza strains. For pandemic preparedness, use of safe and effective vaccine adjuvants and delivery systems to improve vaccine efficacy are considered imperative. We previously demonstrated CaPtivate's proprietary CaP nanoparticles (CaPNP) as a potent vaccine adjuvant/delivery system with ability to induce both humoral and cell-mediated immune responses against many viral or bacterial infections. In this study, we investigated the delivery of insect cell culture-derived recombinant hemagglutinin protein (HA) of A/H5N1/Vietnam/1203/2004 virus using CaPNP. We evaluated the vaccine immunogenicity in mice following two intramuscular doses of 3 μg antigen combined with escalating doses of CaPNP. Our data showed CaPNP-adjuvanted HA(H5N1) vaccines eliciting significantly higher IgG, hemagglutination inhibition, and virus neutralization titers compared to non-adjuvanted vaccine. Among the four adjuvant doses that were tested, CaPNP at 0.24% final concentration elicited the highest IgG and neutralizing antibody titers. We also evaluated the inflammatory response to CaPNP following a single intramuscular injection in guinea pigs and showed that CaPNP does not induce any systemic reaction or adverse effects. Current data further support our earlier studies demonstrating CaPNP as a safe and an effective adjuvant for influenza vaccines.
Collapse
|
14
|
Rai M, Jamil B. Nanoformulations: A Valuable Tool in the Therapy of Viral Diseases Attacking Humans and Animals. Nanotheranostics 2019. [PMCID: PMC7121811 DOI: 10.1007/978-3-030-29768-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various viruses can be considered as one of the most frequent causes of human diseases, from mild illnesses to really serious sicknesses that end fatally. Numerous viruses are also pathogenic to animals and plants, and many of them, mutating, become pathogenic also to humans. Several cases of affecting humans by originally animal viruses have been confirmed. Viral infections cause significant morbidity and mortality in humans, the increase of which is caused by general immunosuppression of the world population, changes in climate, and overall globalization. In spite of the fact that the pharmaceutical industry pays great attention to human viral infections, many of clinically used antivirals demonstrate also increased toxicity against human cells, limited bioavailability, and thus, not entirely suitable therapeutic profile. In addition, due to resistance, a combination of antivirals is needed for life-threatening infections. Thus, the development of new antiviral agents is of great importance for the control of virus spread. On the other hand, the discovery and development of structurally new antivirals represent risks. Therefore, another strategy is being developed, namely the reformulation of existing antivirals into nanoformulations and investigation of various metal and metalloid nanoparticles with respect to their diagnostic, prophylactic, and therapeutic antiviral applications. This chapter is focused on nanoscale materials/formulations with the potential to be used for the treatment or inhibition of the spread of viral diseases caused by human immunodeficiency virus, influenza A viruses (subtypes H3N2 and H1N1), avian influenza and swine influenza viruses, respiratory syncytial virus, herpes simplex virus, hepatitis B and C viruses, Ebola and Marburg viruses, Newcastle disease virus, dengue and Zika viruses, and pseudorabies virus. Effective antiviral long-lasting and target-selective nanoformulations developed for oral, intravenous, intramuscular, intranasal, intrarectal, intravaginal, and intradermal applications are discussed. Benefits of nanoparticle-based vaccination formulations with the potential to secure cross protection against divergent viruses are outlined as well.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra, India, Department of Chemistry, Federal University of Piauí, Teresina, Piauí Brazil
| | - Bushra Jamil
- Department of DMLS, University of Lahore, Islamabad, Pakistan
| |
Collapse
|
15
|
Huang X, Karabudak A, Comber JD, Philip M, Morcol T, Philip R. A novel immunization approach for dengue infection based on conserved T cell epitopes formulated in calcium phosphate nanoparticles. Hum Vaccin Immunother 2017; 13:2612-2625. [PMID: 28933657 DOI: 10.1080/21645515.2017.1369639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dengue virus (DV) is the etiologic agent of dengue fever, the most significant mosquito-borne viral disease in humans. Most DV vaccine approaches are focused on generating antibody mediated responses; one such DV vaccine is approved for use in humans but its efficacy is limited. While it is clear that T cell responses play important role in DV infection and subsequent disease manifestations, fewer studies are aimed at developing vaccines that induce robust T cells responses. Potent T cell based vaccines require 2 critical components: the identification of specific T cell stimulating MHC associated peptides, and an optimized vaccine delivery vehicle capable of simultaneously delivering the antigens and any required adjuvants. We have previously identified and characterized DV specific HLA-A2 and -A24 binding DV serotypes conserved epitopes, and the feasibility of an epitope based vaccine for DV infection. In this study, we build on those previous studies and describe an investigational DV vaccine using T cell epitopes incorporated into a calcium phosphate nanoparticle (CaPNP) delivery system. This study presents a comprehensive analysis of functional immunogenicity of DV CaPNP/multipeptide formulations in vitro and in vivo and demonstrates the CaPNP/multipeptide vaccine is capable of inducing T cell responses against all 4 serotypes of DV. This synthetic vaccine is also cost effective, straightforward to manufacture, and stable at room temperature in a lyophilized form. This formulation may serve as an effective candidate DV vaccine that protects against all 4 serotypes as either a prophylactic or therapeutic vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Tulin Morcol
- b Captivate Pharmaceuticals , Doylestown , PA , USA
| | | |
Collapse
|