1
|
Amoah S, Cao W, Sayedahmed EE, Wang Y, Kumar A, Mishina M, Eddins DJ, Wang WC, Burroughs M, Sheth M, Lee J, Shieh WJ, Ray SD, Bohannon CD, Ranjan P, Sharma SD, Hoehner J, Arthur RA, Gangappa S, Wakamatsu N, Johnston HR, Pohl J, Mittal SK, Sambhara S. The frequency and function of nucleoprotein-specific CD8 + T cells are critical for heterosubtypic immunity against influenza virus infection. J Virol 2024; 98:e0071124. [PMID: 39082839 PMCID: PMC11334528 DOI: 10.1128/jvi.00711-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Cytotoxic T lymphocytes (CTLs) mediate host defense against viral and intracellular bacterial infections and tumors. However, the magnitude of CTL response and their function needed to confer heterosubtypic immunity against influenza virus infection are unknown. We addressed the role of CD8+ T cells in the absence of any cross-reactive antibody responses to influenza viral proteins using an adenoviral vector expressing a 9mer amino acid sequence recognized by CD8+ T cells. Our results indicate that both CD8+ T cell frequency and function are crucial for heterosubtypic immunity. Low morbidity, lower viral lung titers, low to minimal lung pathology, and better survival upon heterosubtypic virus challenge correlated with the increased frequency of NP-specific CTLs. NP-CD8+ T cells induced by differential infection doses displayed distinct RNA transcriptome profiles and functional properties. CD8+ T cells induced by a high dose of influenza virus secreted significantly higher levels of IFN-γ and exhibited higher levels of cytotoxic function. The mice that received NP-CD8+ T cells from the high-dose virus recipients through adoptive transfer had lower viral titers following viral challenge than those induced by the low dose of virus, suggesting differential cellular programming by antigen dose. Enhanced NP-CD8+ T-cell functions induced by a higher dose of influenza virus strongly correlated with the increased expression of cellular and metabolic genes, indicating a shift to a more glycolytic metabolic phenotype. These findings have implications for developing effective T cell vaccines against infectious diseases and cancer. IMPORTANCE Cytotoxic T lymphocytes (CTLs) are an important component of the adaptive immune system that clears virus-infected cells or tumor cells. Hence, developing next-generation vaccines that induce or recall CTL responses against cancer and infectious diseases is crucial. However, it is not clear if the frequency, function, or both are essential in conferring protection, as in the case of influenza. In this study, we demonstrate that both CTL frequency and function are crucial for providing heterosubtypic immunity to influenza by utilizing an Ad-viral vector expressing a CD8 epitope only to rule out the role of antibodies, single-cell RNA-seq analysis, as well as adoptive transfer experiments. Our findings have implications for developing T cell vaccines against infectious diseases and cancer.
Collapse
Affiliation(s)
- Samuel Amoah
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Weiping Cao
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margarita Mishina
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Devon J. Eddins
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wen-Chien Wang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Mark Burroughs
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Justin Lee
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wun-Ju Shieh
- Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sean D. Ray
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Caitlin D. Bohannon
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Priya Ranjan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Suresh D. Sharma
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica Hoehner
- Emory Integrated Computational Core, Emory Integrated Core Facilities, Emory University, Atlanta, Georgia, USA
| | - Robert A. Arthur
- Emory Integrated Computational Core, Emory Integrated Core Facilities, Emory University, Atlanta, Georgia, USA
| | - Shivaprakash Gangappa
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nobuko Wakamatsu
- Indiana Animal Disease Diagnostic Laboratory, Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - H. Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Mao T, Kim J, Peña-Hernández MA, Valle G, Moriyama M, Luyten S, Ott IM, Gomez-Calvo ML, Gehlhausen JR, Baker E, Israelow B, Slade M, Sharma L, Liu W, Ryu C, Korde A, Lee CJ, Silva Monteiro V, Lucas C, Dong H, Yang Y, Yale SARS-CoV-2 Genomic Surveillance Initiative, Gopinath S, Wilen CB, Palm N, Dela Cruz CS, Iwasaki A. Intranasal neomycin evokes broad-spectrum antiviral immunity in the upper respiratory tract. Proc Natl Acad Sci U S A 2024; 121:e2319566121. [PMID: 38648490 PMCID: PMC11067057 DOI: 10.1073/pnas.2319566121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Respiratory virus infections in humans cause a broad-spectrum of diseases that result in substantial morbidity and mortality annually worldwide. To reduce the global burden of respiratory viral diseases, preventative and therapeutic interventions that are accessible and effective are urgently needed, especially in countries that are disproportionately affected. Repurposing generic medicine has the potential to bring new treatments for infectious diseases to patients efficiently and equitably. In this study, we found that intranasal delivery of neomycin, a generic aminoglycoside antibiotic, induces the expression of interferon-stimulated genes (ISGs) in the nasal mucosa that is independent of the commensal microbiota. Prophylactic or therapeutic administration of neomycin provided significant protection against upper respiratory infection and lethal disease in a mouse model of COVID-19. Furthermore, neomycin treatment protected Mx1 congenic mice from upper and lower respiratory infections with a highly virulent strain of influenza A virus. In Syrian hamsters, neomycin treatment potently mitigated contact transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In healthy humans, intranasal application of neomycin-containing Neosporin ointment was well tolerated and effective at inducing ISG expression in the nose in a subset of participants. These findings suggest that neomycin has the potential to be harnessed as a host-directed antiviral strategy for the prevention and treatment of respiratory viral infections.
Collapse
Affiliation(s)
- Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06510
| | - Jooyoung Kim
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT06510
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, PittsburghPA15213
| | - Mario A. Peña-Hernández
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06510
- Department of Microbial Pathogenesis, Yale University School of Medicine, New HavenCT06510
| | - Gabrielee Valle
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT06510
| | - Miyu Moriyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06510
| | - Sophia Luyten
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06510
| | - Isabel M. Ott
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06510
| | | | - Jeff R Gehlhausen
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06510
| | - Emily Baker
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06510
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06510
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT06510
| | - Martin Slade
- Department of Internal Medicine, Section of Occupational Medicine, Yale University School of Medicine, New Haven, CT06510
| | - Lokesh Sharma
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT06510
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, PittsburghPA15213
| | - Wei Liu
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT06510
| | - Changwan Ryu
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT06510
| | - Asawari Korde
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT06510
| | - Chris J. Lee
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT06510
| | | | - Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06510
| | - Huiping Dong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06510
| | - Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06510
| | | | - Smita Gopinath
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA02115
| | - Craig B. Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06510
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT06510
| | - Noah Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06510
| | - Charles S. Dela Cruz
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT06510
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, PittsburghPA15213
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA15240
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06510
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06510
- Center for Infection and Immunity, Yale University School of Medicine, New Haven, CT06510
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
3
|
Piva-Amaral R, Augusto Pires de Souza G, Carlos Vilela Vieira Júnior J, Fróes Goulart de Castro R, Permagnani Gozzi W, Pereira Lima Neto S, Cauvilla Dos Santos AL, Pavani Cassiano H, Christine Ferreira da Silva L, Dias Novaes R, Santos Abrahão J, Ervolino de Oliveira C, de Mello Silva B, de Paula Costa G, Cosme Cotta Malaquias L, Felipe Leomil Coelho L. Bovine serum albumin nanoparticles containing Poly (I:C) can enhance the neutralizing antibody response induced by envelope protein of Orthoflavivirus zikaense. Int Immunopharmacol 2024; 128:111523. [PMID: 38219440 DOI: 10.1016/j.intimp.2024.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Since the Orthoflavivirus zikaense (ZIKV) has been considered a risk for Zika congenital syndrome development, developing a safe and effective vaccine has become a high priority. Numerous research groups have developed strategies to prevent ZIKV infection and have identified the domain III of the ZIKV envelope protein (zEDIII) as a promising target. Subunit antigens are often poorly immunogenic, necessitating the use of adjuvants and/or delivery systems to induce optimal immune responses. The subject of nanotechnology has substantial expansion in recent years in terms of research and applications. Nanoparticles could be used as drug delivery systems and to increase the immunogenicity and stability of a given antigen. This work aims to characterize and validate the potential of a vaccine formulation composed of domain zEDIII and bovine serum albumin nanoparticles containing polyinosinic-polycytidylic acid (NPPI). NPPI were uptake in vitro by immature bone marrow dendritic cells and histological analysis of the skin of mice treated with NPPI showed an increase in cellularity. Immunization assay showed that mice immunized with zEDIII in the presence of NPPI produced neutralizing antibodies. Through the passive transfer of sera from immunized mice to ZIKV-infected neonatal mice, it was demonstrated that these antibodies provide protection, mitigating weight loss, clinical or neurological signs induced by infection, and significantly increased survival rates. Protection was further substantiated by the reduction in the number of viable infectious ZIKV, as well as a decrease in inflammatory cytokines and tissue alterations in the brains of infected mice. Taken together, data presented in this study shows that NPPI + zEDIII is a promising vaccine candidate for ZIKV.
Collapse
Affiliation(s)
- Raíne Piva-Amaral
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| | - Gabriel Augusto Pires de Souza
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil; Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - João Carlos Vilela Vieira Júnior
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Renato Fróes Goulart de Castro
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - William Permagnani Gozzi
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Sergio Pereira Lima Neto
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Ana Luisa Cauvilla Dos Santos
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Helena Pavani Cassiano
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | | | - Romulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - Carine Ervolino de Oliveira
- Instituto de Ciências Biomédicas, Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Breno de Mello Silva
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Guilherme de Paula Costa
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Luiz Cosme Cotta Malaquias
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| |
Collapse
|
4
|
Promotion of neutralizing antibody-independent immunity to wild-type and SARS-CoV-2 variants of concern using an RBD-Nucleocapsid fusion protein. Nat Commun 2022; 13:4831. [PMID: 35977933 PMCID: PMC9382605 DOI: 10.1038/s41467-022-32547-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Both T cells and B cells have been shown to be generated after infection with SARS-CoV-2 yet protocols or experimental models to study one or the other are less common. Here, we generate a chimeric protein (SpiN) that comprises the receptor binding domain (RBD) from Spike (S) and the nucleocapsid (N) antigens from SARS-CoV-2. Memory CD4+ and CD8+ T cells specific for SpiN could be detected in the blood of both individuals vaccinated with Coronavac SARS-CoV-2 vaccine and COVID-19 convalescent donors. In mice, SpiN elicited a strong IFN-γ response by T cells and high levels of antibodies to the inactivated virus, but not detectable neutralizing antibodies (nAbs). Importantly, immunization of Syrian hamsters and the human Angiotensin Convertase Enzyme-2-transgenic (K18-ACE-2) mice with Poly ICLC-adjuvanted SpiN promotes robust resistance to the wild type SARS-CoV-2, as indicated by viral load, lung inflammation, clinical outcome and reduction of lethality. The protection induced by SpiN was ablated by depletion of CD4+ and CD8+ T cells and not transferred by antibodies from vaccinated mice. Finally, vaccination with SpiN also protects the K18-ACE-2 mice against infection with Delta and Omicron SARS-CoV-2 isolates. Hence, vaccine formulations that elicit effector T cells specific for the N and RBD proteins may be used to improve COVID-19 vaccines and potentially circumvent the immune escape by variants of concern. Protection against SARS-CoV-2 infection involves T cell and B cell responses but only studying one or the other has proved difficult. Here the authors immunise with a fusion protein construct of N and RBD proteins from SARS-CoV-2 and find that this promotes protection in animal models preferentially via T cells.
Collapse
|
5
|
Nian X, Zhang J, Deng T, Liu J, Gong Z, Lv C, Yao L, Li J, Huang S, Yang X. AddaVax Formulated with PolyI:C as a Potential Adjuvant of MDCK-based Influenza Vaccine Enhances Local, Cellular, and Antibody Protective Immune Response in Mice. AAPS PharmSciTech 2021; 22:270. [PMID: 34766215 PMCID: PMC8584644 DOI: 10.1208/s12249-021-02145-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
Poor immune responses to inactivated influenza vaccine can be improved by effective and safe adjuvants to increase antibody titers and cellular protective response. In our study, AddaVax and PolyI:C combined adjuvant (AP adjuvant) were used for influenza vaccine development. After immunizing BALB/c mice and Wistar rats intramuscularly, Split inactivated H3N2 vaccine adjuvanted with AP elicited higher serum hemagglutination-inhibition antibodies and IgG titers. We demonstrated that AP induced a transient innate immune cytokines production at the injection site, induced H3N2 uptake by DCs, increased recruitment of monocytes and DCs in LNs, and promoted H3N2 vaccine migration; AP facilitated vaccines to induce a vigorous adaptive immune response. Besides, AP showed good safety as shown by lymph nodes (LNs) size, spleens index of BALB/c mice, and weight changes and C-reaction protein level of BALB/c mice and Wistar rats after repeated administration of high-dose vaccine with or without adjuvant. These findings indicate that AP is a potential novel adjuvant and can be used as a safe and effective adjuvant for MDCK-based influenza inactivated vaccine to induce cellular and antibody protective response.
Collapse
|
6
|
Sasaki E, Hamaguchi I, Mizukami T. Pharmacodynamic and safety considerations for influenza vaccine and adjuvant design. Expert Opin Drug Metab Toxicol 2020; 16:1051-1061. [PMID: 32772723 DOI: 10.1080/17425255.2020.1807936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION A novel adjuvant evaluation system for safety and immunogenicity is needed. Vaccination is important for infection prevention, for example, from influenza viruses. Adjuvants are considered critical for improving the effectiveness of influenza vaccines. Adjuvant development is an important issue in influenza vaccine design. AREAS COVERED A conventional in vivo evaluation method for vaccine safety has been limited in analyzing phenotypic and pathological changes. Therefore, it is difficult to obtain information on the changes at the molecular level. This review aims to explain the recently developed genomics analysis-based vaccine adjuvant safety evaluation tools verified by AddaVaxTM and polyinosinic-polycytidylic acid (poly I:C) using 18 biomarker genes and whole-virion inactivated influenza vaccine as a toxicity control. Genomics analyzes would help provide safety and efficacy information regarding influenza vaccine design by facilitating appropriate adjuvant selection. EXPERT OPINION The efficacy and safety profiles of influenza vaccines and adjuvants using genomics technologies provide useful information regarding immunogenicity, which is related to safety and efficacy. This approach provides important information to select appropriate inoculation routes, combinations of vaccine antigens and adjuvants, and dosing amounts. The efficacy of vaccine adjuvant evaluation by genomics analysis should be verified by various studies using various vaccines in the future.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases , Tokyo, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases , Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases , Tokyo, Japan
| |
Collapse
|
7
|
Sorgi S, Bonezi V, Dominguez MR, Gimenez AM, Dobrescu I, Boscardin S, Nakaya HI, Bargieri DY, Soares IS, Silveira ELV. São Paulo School of Advanced Sciences on Vaccines: an overview. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190061. [PMID: 32362926 PMCID: PMC7187638 DOI: 10.1590/1678-9199-jvatitd-2019-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
Two years ago, we held an exciting event entitled the São Paulo School of Advanced Sciences on Vaccines (SPSASV). Sixty-eight Ph.D. students, postdoctoral fellows and independent researchers from 37 different countries met at the Mendes Plaza Hotel located in the city of Santos, SP - Brazil to discuss the challenges and the new frontiers of vaccinology. The SPSASV provided a critical and comprehensive view of vaccine research from basics to the current state-of-the-art techniques performed worldwide. For 10 days, we discussed all the aspects of vaccine development in 36 lectures, 53 oral presentations and 2 poster sessions. At the end of the course, participants were further encouraged to present a model of a grant proposal related to vaccine development against individual pathogens. Among the targeted pathogens were viruses (Chikungunya, HIV, RSV, and Influenza), bacteria (Mycobacterium tuberculosis and Streptococcus pyogenes), parasites (Plasmodium falciparum or Plasmodium vivax), and the worm Strongyloides stercoralis. This report highlights some of the knowledge shared at the SPSASV.
Collapse
Affiliation(s)
- Sara Sorgi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Dipartimento di Biotecnologie Mediche, Universita’ degli Studi di Siena, Siena, Italia
| | - Vivian Bonezi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Mariana R. Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Alba Marina Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Irina Dobrescu
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Silvia Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Daniel Y. Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
8
|
Sasaki E, Momose H, Hiradate Y, Mizukami T, Hamaguchi I. Establishment of a novel safety assessment method for vaccine adjuvant development. Vaccine 2018; 36:7112-7118. [PMID: 30318166 DOI: 10.1016/j.vaccine.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/09/2018] [Accepted: 09/29/2018] [Indexed: 12/27/2022]
Abstract
Vaccines effectively prevent infectious diseases. Many types of vaccines against various pathogens that threaten humans are currently in widespread use. Recently, adjuvant adaptation has been attempted to activate innate immunity to enhance the effectiveness of vaccines. The effectiveness of adjuvants for vaccinations has been demonstrated in many animal models and clinical trials. Although a highly potent adjuvant tends to have high effectiveness, it also has the potential to increase the risk of side effects such as pain, edema, and fever. Indeed, highly effective adjuvants, such as poly(I:C), have not been clinically applied due to their high risks of toxicity in humans. Therefore, the task in the field of adjuvant development is to clinically apply highly effective and non- or low-toxic adjuvant-containing vaccines. To resolve this issue, it is essential to ensure a low risk of side effects and the high efficacy of an adjuvant in the early developmental phases. This review summarizes the theory and history of the current safety assessment methods for adjuvants, using the inactivated influenza vaccine as a model. Our novel method was developed as a system to judge the safety of a candidate compound using biomarkers identified by genomic technology and statistical tools. A systematic safety assessment tool for adjuvants would be of great use for predicting toxicity during novel adjuvant development, screening, and quality control.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| |
Collapse
|