1
|
Chai P, Shi Y, Yu J, Liu X, Yang M, Li D, Li K, Li S, Kong X, Zhang Q, Sun X, Li J, Li L, Li D, Duan Z. An oral vaccine based on the Ad5 vector with a double-stranded RNA adjuvant protects mice against respiratory syncytial virus. Int Immunopharmacol 2025; 146:113970. [PMID: 39736241 DOI: 10.1016/j.intimp.2024.113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
A safe and effective vaccine is urgently needed to prevent acute respiratory infections caused by respiratory syncytial virus (RSV). Oral administration offers several advantages, including ease of delivery, minimal stress for vaccine recipients, and greater safety than the systemic injection. In this study, we developed an oral vaccine candidate based on the human adenovirus serotype 5 (Ad5) vector, Ad5-PreF-DS2, encoding a prefusion protein of RSV with a dsRNA as an endogenous adjuvant. We evaluated the immunogenicity and protective efficacy of oral immunization against an RSV challenge in mice, comparing it with those of IM and IN immunizations. Subsequently, we performed an in-depth analysis of the B cell immune response to the oral vaccine. Our findings indicate that oral vaccines elicited a robust antibody response, T-cell response, and B-cell response, and provide effective protection against RSV infection in mice. Importantly, dsRNA adjuvants significantly enhanced T-cell immune responses and increased neutralizing antibody levels when administered via oral vaccination (P < 0.05). These preclinical data demonstrate the capacity of an oral vaccine to induce protective immunity against RSV and support further development of RSV vaccine.
Collapse
Affiliation(s)
- Pengdi Chai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yi Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junjie Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiafei Liu
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengyao Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dongwei Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ke Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shan Li
- Novac Beijing Biotech Co., LTD, Beijing 102206, China
| | - Xiangyu Kong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qin Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaoman Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jinsong Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - LiLi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dandi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhaojun Duan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
2
|
Chai P, Shi Y, Yu J, Liu X, Li D, Li J, Li L, Li D, Duan Z. The Central Conserved Peptides of Respiratory Syncytial Virus G Protein Enhance the Immune Response to the RSV F Protein in an Adenovirus Vector Vaccine Candidate. Vaccines (Basel) 2024; 12:807. [PMID: 39066445 PMCID: PMC11281717 DOI: 10.3390/vaccines12070807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a serious human respiratory pathogen that commonly affects children, older adults, and immunocompromised individuals. At present, the design of licensed vaccines focuses on the incorporation of the pre-fusion protein (PreF protein) of RSV, as this protein has the ability to induce antibodies that offer a high level of protection. Moreover, the G protein contains the CX3C motif that binds the chemokine receptor CX3CR1 in respiratory epithelial cells, which plays an essential role in viral infection. Therefore, incorporating the G antigen into vaccine design may prove more advantageous for RSV prevention. In this study, we developed a human adenoviral vector-based RSV vaccine containing highly neutralizing immunogens, a modified full-length PreF protein fused with the central conserved peptides of the G protein (Gcc) from both RSV subgroups trimerized via a C-terminal foldon, and evaluated its immune response in mice through intranasal (i.n.) immunization. Our results showed that immunization with Ad5-PreF-Qa-Gcc elicited a balanced Th1/Th2 immune response and robust mucosal immunity with higher neutralizing antibody titers against RSV Long and RSV B1. Importantly, immunization with Ad5-PreF-Qa-Gcc enhanced CD4+ CD25+ FoxP3+ Treg cell response and protected the mice against RSV infection. Our data demonstrate that the combination of Gcc and the PreF antigen is a viable strategy for developing effective RSV vaccines.
Collapse
Affiliation(s)
- Pengdi Chai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China (D.L.)
| | - Yi Shi
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730101, China; (Y.S.)
| | - Junjie Yu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730101, China; (Y.S.)
| | - Xiafei Liu
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Dongwei Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China (D.L.)
| | - Jinsong Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China (D.L.)
| | - Lili Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China (D.L.)
| | - Dandi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China (D.L.)
| | - Zhaojun Duan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China (D.L.)
| |
Collapse
|
3
|
Braun MR, Flitter BA, Sun W, Tucker SN. An easy pill to swallow: oral recombinant vaccines for the 21st century. Curr Opin Immunol 2023; 84:102374. [PMID: 37562075 DOI: 10.1016/j.coi.2023.102374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Oral vaccines have a distinctive advantage of stimulating immune responses in the mucosa, where numerous pathogens gain entry and cause disease. Although various efforts have been attempted to create recombinant mucosal vaccines that provoke strong immunogenicity, the outcomes in clinical trials have been weak or inconsistent. Therefore, next-generation mucosal vaccines are needed that are more immunogenic. Here, we discuss oral vaccines with an emphasis on a next-generation mucosal vaccine that utilizes a nonreplicating human recombinant adenovirus type-5 (rAd5) vector. Numerous positive clinical results investigating oral rAd5 vaccines are reviewed, with a summary of the immunogenicity and efficacy results for specific vaccine indications of influenza, norovirus, and SARS-CoV-2. The determination of correlates of protection for oral vaccination and the potential impact this novel vaccine formulation may have on disease transmission are also discussed. In summary, successful oral vaccination can be accomplished and would have major public health benefits if approved.
Collapse
Affiliation(s)
- Molly R Braun
- Vaxart, Inc., 170 Harbor Way STE 300, South San Francisco, CA 94080, USA
| | - Becca A Flitter
- Vaxart, Inc., 170 Harbor Way STE 300, South San Francisco, CA 94080, USA
| | - William Sun
- Vaxart, Inc., 170 Harbor Way STE 300, South San Francisco, CA 94080, USA
| | - Sean N Tucker
- Vaxart, Inc., 170 Harbor Way STE 300, South San Francisco, CA 94080, USA.
| |
Collapse
|
4
|
Storino GY, Petri FAM, Mechler-Dreibi ML, Aguiar GA, Toledo LT, Arruda LP, Malcher CS, Martins TS, Montassier HJ, Sant’Anna OA, Fantini MCA, de Oliveira LG. Use of Nanostructured Silica SBA-15 as an Oral Vaccine Adjuvant to Control Mycoplasma hyopneumoniae in Swine Production. Int J Mol Sci 2023; 24:ijms24076591. [PMID: 37047564 PMCID: PMC10095401 DOI: 10.3390/ijms24076591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/25/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Mycoplasma hyopneumoniae is a difficult-to-control bacterium since commercial vaccines do not prevent colonization and excretion. The present study aimed to evaluate the performance of an orally administered vaccine composed of antigens extracted from Mycoplasma hyopneumoniae and incorporated into mesoporous silica (SBA-15), which has an adjuvant-carrier function, aiming to potentiate the action of the commercial intramuscular vaccine. A total of 60 piglets were divided into four groups (n = 15) submitted to different vaccination protocols as follows, Group 1: oral SBA15 + commercial vaccine at 24 days after weaning, G2: oral vaccine on the third day of life + vaccine commercial vaccine at 24 days, G3: commercial vaccine at 24 days, and G4: commercial vaccine + oral vaccine at 24 days. On the first day, the piglets were weighed and, from the third day onwards, submitted to blood collections for the detection and quantification of anti-Mycoplasma hyopneumoniae IgG. Nasal swabs were collected to monitor IgA by ELISA, and oropharyngeal swabs were used to assess the bacterial load by qPCR. Biological samples were collected periodically from the third day of life until the 73rd day. At 41 days of life, 15 individuals of the same age, experimentally challenged with an inoculum containing M. hyopneumoniae, were co-housed with the animals from groups (1 to 4) in a single pen to increase the infection pressure during the nursery period. At 73 days, all piglets were euthanized, and lungs were evaluated by collecting samples for estimation of bacterial load by qPCR. Quantitative data obtained from physical parameters and laboratory investigation were analyzed by performing parametric or non-parametric statistical tests. Results indicate that animals from G2 showed smaller affected lung areas compared to G3. Animals from G2 and G4 had a low prevalence of animals shedding M. hyopneumoniae at 61 days of age. Additionally, no correlation was observed between lung lesions and M. hyopneumoniae load in lung and BALF samples in animals that received the oral vaccine, while a strong correlation was observed in other groups. In the present study, evidence points to the effectiveness of the oral vaccine developed for controlling M. hyopneumoniae in pig production under field conditions.
Collapse
Affiliation(s)
- Gabriel Y. Storino
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Fernando A. M. Petri
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Marina L. Mechler-Dreibi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Gabriel A. Aguiar
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Leonardo T. Toledo
- Laboratório de Virologia Animal (LVA), Departamento de Veterinária, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | - Laíza P. Arruda
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Clarisse S. Malcher
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Tereza S. Martins
- Department of Chemistry, Federal University of São Paulo (UNIFESP), Diadema 09913-030, SP, Brazil
| | - Hélio J. Montassier
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | | | - Márcia C. A. Fantini
- Physics Institute, University of São Paulo (USP), São Paulo 05508-090, SP, Brazil
| | - Luís Guilherme de Oliveira
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| |
Collapse
|
5
|
Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals (Basel) 2023; 13:ani13071223. [PMID: 37048478 PMCID: PMC10093480 DOI: 10.3390/ani13071223] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Animal research is considered a key element in advance of biomedical science. Although its use is controversial and raises ethical challenges, the contribution of animal models in medicine is essential for understanding the physiopathology and novel treatment alternatives for several animal and human diseases. Current pandemics’ pathology, such as the 2019 Coronavirus disease, has been studied in primate, rodent, and porcine models to recognize infection routes and develop therapeutic protocols. Worldwide issues such as diabetes, obesity, neurological disorders, pain, rehabilitation medicine, and surgical techniques require studying the process in different animal species before testing them on humans. Due to their relevance, this article aims to discuss the importance of animal models in diverse lines of biomedical research by analyzing the contributions of the various species utilized in science over the past five years about key topics concerning human and animal health.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master’s Program in Agricultural and Livestock Sciences [Maestría en Ciencias Agropecuarias], Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
6
|
Tsai CJY, Loh JMS, Fujihashi K, Kiyono H. Mucosal vaccination: onward and upward. Expert Rev Vaccines 2023; 22:885-899. [PMID: 37817433 DOI: 10.1080/14760584.2023.2268724] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION The unique mucosal immune system allows the generation of robust protective immune responses at the front line of pathogen encounters. The needle-free delivery route and cold chain-free logistic requirements also provide additional advantages in ease and economy. However, the development of mucosal vaccines faces several challenges, and only a handful of mucosal vaccines are currently licensed. These vaccines are all in the form of live attenuated or inactivated whole organisms, whereas no subunit-based mucosal vaccine is available. AREAS COVERED The selection of antigen, delivery vehicle, route and adjuvants for mucosal vaccination are highly important. This is particularly crucial for subunit vaccines, as they often fail to elicit strong immune responses. Emerging research is providing new insights into the biological and immunological uniqueness of mucosal tissues. However, many aspects of the mucosal immunology still await to be investigated. EXPERT OPINION This article provides an overview of the current understanding of mucosal vaccination and discusses the remaining knowledge gaps. We emphasize that because of the potential benefits mucosal vaccines can bring from the biomedical, social and economic standpoints, the unmet goal to achieve mucosal vaccine success is worth the effort.
Collapse
Affiliation(s)
- Catherine J Y Tsai
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand, Auckland
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand, Auckland
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Johnson S, Martinez CI, Tedjakusuma SN, Peinovich N, Dora EG, Birch SM, Kajon AE, Werts AD, Tucker SN. Oral vaccination protects against SARS-CoV-2 in a Syrian hamster challenge model. J Infect Dis 2021; 225:34-41. [PMID: 34758086 PMCID: PMC8689930 DOI: 10.1093/infdis/jiab561] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/05/2021] [Indexed: 11/12/2022] Open
Abstract
Background Vaccines that are shelf stable and easy to administer are crucial to improve vaccine access and reduce severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission around the world. Methods In this study, we demonstrate that an oral, adenovirus-based vaccine candidate protects against SARS-CoV-2 in a Syrian hamster challenge model. Results Hamsters administered 2 doses of VXA-CoV2-1 showed a reduction in weight loss and lung pathology and had completely eliminated infectious virus 5 days postchallenge. Oral immunization induced antispike immunoglobulin G, and neutralizing antibodies were induced upon oral immunization with the sera, demonstrating neutralizing activity. Conclusions Overall, these data demonstrate the ability of oral vaccine candidate VXA-CoV2-1 to provide protection against SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Susan Johnson
- Vaxart, 170 Harbor Way, South San Francisco, CA, USA
| | | | | | | | - Emery G Dora
- Vaxart, 170 Harbor Way, South San Francisco, CA, USA
| | - Sharla M Birch
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr, Albuquerque, NM USA
| | - Adriana E Kajon
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr, Albuquerque, NM USA
| | - Adam D Werts
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr, Albuquerque, NM USA
| | - Sean N Tucker
- Vaxart, 170 Harbor Way, South San Francisco, CA, USA
| |
Collapse
|
8
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
9
|
Abstract
Mucosal vaccines offer the potential to trigger robust protective immune responses at the predominant sites of pathogen infection. In principle, the induction of adaptive immunity at mucosal sites, involving secretory antibody responses and tissue-resident T cells, has the capacity to prevent an infection from becoming established in the first place, rather than only curtailing infection and protecting against the development of disease symptoms. Although numerous effective mucosal vaccines are in use, the major advances seen with injectable vaccines (including adjuvanted subunit antigens, RNA and DNA vaccines) have not yet been translated into licensed mucosal vaccines, which currently comprise solely live attenuated and inactivated whole-cell preparations. The identification of safe and effective mucosal adjuvants allied to innovative antigen discovery and delivery strategies is key to advancing mucosal vaccines. Significant progress has been made in resolving the mechanisms that regulate innate and adaptive mucosal immunity and in understanding the crosstalk between mucosal sites, and this provides valuable pointers to inform mucosal adjuvant design. In particular, increased knowledge on mucosal antigen-presenting cells, innate lymphoid cell populations and resident memory cells at mucosal sites highlights attractive targets for vaccine design. Exploiting these insights will allow new vaccine technologies to be leveraged to facilitate rational mucosal vaccine design for pathogens including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for cancer.
Collapse
|
10
|
Stephens LM, Varga SM. Considerations for a Respiratory Syncytial Virus Vaccine Targeting an Elderly Population. Vaccines (Basel) 2021; 9:vaccines9060624. [PMID: 34207770 PMCID: PMC8228432 DOI: 10.3390/vaccines9060624] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is most commonly associated with acute lower respiratory tract infections in infants and children. However, RSV also causes a high disease burden in the elderly that is often under recognized. Adults >65 years of age account for an estimated 80,000 RSV-associated hospitalizations and 14,000 deaths in the United States annually. RSV infection in aged individuals can result in more severe disease symptoms including pneumonia and bronchiolitis. Given the large disease burden caused by RSV in the aged, this population remains an important target for vaccine development. Aging results in lowered immune responsiveness characterized by impairments in both innate and adaptive immunity. This immune senescence poses a challenge when developing a vaccine targeting elderly individuals. An RSV vaccine tailored towards an elderly population will need to maximize the immune response elicited in order to overcome age-related defects in the immune system. In this article, we review the hurdles that must be overcome to successfully develop an RSV vaccine for use in the elderly, and discuss the vaccine candidates currently being tested in this highly susceptible population.
Collapse
Affiliation(s)
- Laura M. Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
11
|
Huang JM, Wang SY, Lai MR, Tseng YK, Chi YH, Huang LM. Development of a respiratory syncytial virus vaccine using human hepatitis B core-based virus-like particles to induce mucosal immunity. Vaccine 2021; 39:3259-3269. [PMID: 33972124 DOI: 10.1016/j.vaccine.2021.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/21/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is an important viral pathogen responsible for severe infection of the lower respiratory tract in children under the age of 5 years. No vaccines against RSV are currently in clinical use. Vaccine-associated enhanced respiratory disease (ERD) caused by excess Th2 type responses was observed in a clinical trial of formalin-inactivated RSV (FI-RSV) in antigen-naïve infants. Thus, inducing a balanced immune response is a crucial issue in the development of an RSV vaccine. METHODS In this study, we constructed, expressed, and purified a recombinant RSV vaccine candidate (i.e., HRØ24) containing the two heptad repeat regions and the antigenic sites Ø, II, and IV of the RSV F protein. The RSV vaccine candidate was intranasally administrated to BALB/c and C57BL/6 mice in combination with virus-like particles (VLPs) derived from the core protein of the hepatitis B virus (HBc). Mucosal immunity to HRØ24 was then assessed. RESULTS Intranasal administration of HBc VLPs in combination with HRØ24 induced serum IgGs against HRØ24 as well as lung HRØ24-specific sIgAs in both C57BL/6 and BALB/c mouse models. The secretion of IFN-γ from splenocyte re-stimulation and an elevated ratio of serum IgG2a to IgG1 indicated that the immune response induced by the HBc VLPs/HRØ24 mixture was Th1-biased. Weight loss of <5% and no to low eosinophil infiltration was observed in histological analysis of the lung following a challenge with the RSV A2 strain. These results suggest that the HBc VLPs/HRØ24 combination conferred substantial partial protection against RSV-induced illness in mice. CONCLUSIONS Long-term immunity to RSV-induced illness was achieved via intranasal vaccination using a mixture of HBc VLPs and HRØ24 in mouse models.
Collapse
Affiliation(s)
- Jen-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Yun Wang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mei-Ru Lai
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Kai Tseng
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
12
|
T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses 2021; 13:v13020199. [PMID: 33525620 PMCID: PMC7911237 DOI: 10.3390/v13020199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Current flu vaccines rely on the induction of strain-specific neutralizing antibodies, which leaves the population vulnerable to drifted seasonal or newly emerged pandemic strains. Therefore, universal flu vaccine approaches that induce broad immunity against conserved parts of influenza have top priority in research. Cross-reactive T cell responses, especially tissue-resident memory T cells in the respiratory tract, provide efficient heterologous immunity, and must therefore be a key component of universal flu vaccines. Here, we review recent findings about T cell-based flu immunity, with an emphasis on tissue-resident memory T cells in the respiratory tract of humans and different animal models. Furthermore, we provide an update on preclinical and clinical studies evaluating T cell-evoking flu vaccines, and discuss the implementation of T cell immunity in real-life vaccine policies.
Collapse
|
13
|
Van der Weken H, Cox E, Devriendt B. Advances in Oral Subunit Vaccine Design. Vaccines (Basel) 2020; 9:1. [PMID: 33375151 PMCID: PMC7822154 DOI: 10.3390/vaccines9010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens invade the host at the intestinal surface. To protect against these enteropathogens, the induction of intestinal secretory IgA (SIgA) responses is paramount. While systemic vaccination provides strong systemic immune responses, oral vaccination is the most efficient way to trigger protective SIgA responses. However, the development of oral vaccines, especially oral subunit vaccines, is challenging due to mechanisms inherent to the gut. Oral vaccines need to survive the harsh environment in the gastrointestinal tract, characterized by low pH and intestinal proteases and need to reach the gut-associated lymphoid tissues, which are protected by chemical and physical barriers that prevent efficient uptake. Furthermore, they need to surmount default tolerogenic responses present in the gut, resulting in suppression of immunity or tolerance. Several strategies have been developed to tackle these hurdles, such as delivery systems that protect vaccine antigens from degradation, strong mucosal adjuvants that induce robust immune responses and targeting approaches that aim to selectively deliver vaccine antigens towards specific immune cell populations. In this review, we discuss recent advances in oral vaccine design to enable the induction of robust gut immunity and highlight that the development of next generation oral subunit vaccines will require approaches that combines these solutions.
Collapse
Affiliation(s)
| | | | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (H.V.d.W.); (E.C.)
| |
Collapse
|
14
|
Current State and Challenges in Developing Respiratory Syncytial Virus Vaccines. Vaccines (Basel) 2020; 8:vaccines8040672. [PMID: 33187337 PMCID: PMC7711987 DOI: 10.3390/vaccines8040672] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/01/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of acute respiratory tract infections in infants and it also induces significant disease in the elderly. The clinical course may be severe, especially in high-risk populations (infants and elderly), with a large number of deaths in developing countries and of intensive care hospitalizations worldwide. To date, prevention strategies against RSV infection is based on hygienic measures and passive immunization with humanized monoclonal antibodies, limited to selected high-risk children due to their high costs. The development of a safe and effective vaccine is a global health need and an important objective of research in this field. A growing number of RSV vaccine candidates in different formats (particle-based vaccines, vector-based vaccines, subunit vaccines and live-attenuated vaccines) are being developed and are now at different stages, many of them already being in the clinical stage. While waiting for commercially available safe and effective vaccines, immune prophylaxis in selected groups of high-risk populations is still mandatory. This review summarizes the state-of-the-art of the RSV vaccine research and its implications for clinical practice, focusing on the characteristics of the vaccines that reached the clinical stage of development.
Collapse
|
15
|
Lanza JS, Vucen S, Flynn O, Donadei A, Cojean S, Loiseau PM, Fernandes APSM, Frézard F, Moore AC. A TLR9-adjuvanted vaccine formulated into dissolvable microneedle patches or cationic liposomes protects against leishmaniasis after skin or subcutaneous immunization. Int J Pharm 2020; 586:119390. [PMID: 32540349 DOI: 10.1016/j.ijpharm.2020.119390] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Re-emergence and geographic expansion of leishmaniasis is accelerating efforts to develop a safe and effective Leshmania vaccine. Vaccines using Leishmania recombinant antigens, such as LiHyp1, which is mostly present in the amastigote parasite form, are being developed as a next generation to crude killed parasite-based vaccines. The main objective of this work was to develop a LiHyp1-based vaccine and determine if it can induce protective immunity in BALB/c mice when administered using a dissolvable microneedle (DMN) patch by the skin route. The LiHyp1 antigen was incorporated into cationic liposomes (CL), with or without the TLR9 agonist, CpG. The LiHyp1-liposomal vaccines were characterized with respect to size, protein encapsulation rates and retention of their physical characteristics after incorporation into the DMN patch. DMN mechanical strength and skin penetration ability were tested. A vaccine composed of LiHyp1, CpG and liposomes and subcutaneously injected or a vaccine containing antigen and CpG in DMN patches, without liposomes, induced high antibody responses and significant levels of protection against L. donovani parasite infection. This study progresses the development of an efficacious leishmania vaccine by detailing promising vaccine formulations and skin delivery technologies and it addresses protective efficacy of a liposome-based dissolvable microneedle patch vaccine system.
Collapse
Affiliation(s)
- Juliane S Lanza
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Sonja Vucen
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Olivia Flynn
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Agnese Donadei
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sandrine Cojean
- Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Philippe M Loiseau
- Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Ana Paula S M Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anne C Moore
- School of Pharmacy, University College Cork, Cork, Ireland; School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
16
|
The Clinical Presentation and Immunology of Viral Pneumonia and Implications for Management of Coronavirus Disease 2019. Crit Care Explor 2020; 2:e0109. [PMID: 32426751 PMCID: PMC7188425 DOI: 10.1097/cce.0000000000000109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This review will briefly examine the clinical presentation and important immunology of viral pneumonia with a focus on severe acute respiratory syndrome coronavirus 2 (coronavirus disease 2019).
Collapse
|
17
|
Boyoglu-Barnum S, Tripp RA. Up-to-date role of biologics in the management of respiratory syncytial virus. Expert Opin Biol Ther 2020; 20:1073-1082. [PMID: 32264720 DOI: 10.1080/14712598.2020.1753696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in young children and a substantial contributor to respiratory tract disease throughout life. Despite RSV being a high priority for vaccine development, there is currently no safe and effective vaccine available. There are many challenges to developing an RSV vaccine and there are limited antiviral drugs or biologics available for the management of infection. In this article, we review the antiviral treatments, vaccination strategies along with alternative therapies for RSV. AREAS COVERED This review is a summary of the current antiviral and RSV vaccination approaches noting strategies and alternative therapies that may prevent or decrease the disease severity in RSV susceptible populations. EXPERT OPINION This review discusses anti-RSV strategies given that no safe and efficacious vaccines are available, and therapeutic treatments are limited. Various biologicals that target for RSV are considered for disease intervention, as it is likely that it may be necessary to develop separate vaccines or therapeutics for each at-risk population.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia , Athens, GA, USA
| |
Collapse
|
18
|
Rossey I, Saelens X. Vaccines against human respiratory syncytial virus in clinical trials, where are we now? Expert Rev Vaccines 2019; 18:1053-1067. [DOI: 10.1080/14760584.2019.1675520] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Iebe Rossey
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Harcourt SE, Morbey RA, Smith GE, Loveridge P, Green HK, Pebody R, Rutter J, Yeates FA, Stuttard G, Elliot AJ. Developing influenza and respiratory syncytial virus activity thresholds for syndromic surveillance in England. Epidemiol Infect 2019; 147:e163. [PMID: 31063101 PMCID: PMC6518470 DOI: 10.1017/s0950268819000542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/25/2019] [Accepted: 02/27/2019] [Indexed: 01/14/2023] Open
Abstract
Influenza and respiratory syncytial virus (RSV) are common causes of respiratory tract infections and place a burden on health services each winter. Systems to describe the timing and intensity of such activity will improve the public health response and deployment of interventions to these pressures. Here we develop early warning and activity intensity thresholds for monitoring influenza and RSV using two novel data sources: general practitioner out-of-hours consultations (GP OOH) and telehealth calls (NHS 111). Moving Epidemic Method (MEM) thresholds were developed for winter 2017-2018. The NHS 111 cold/flu threshold was breached several weeks in advance of other systems. The NHS 111 RSV epidemic threshold was breached in week 41, in advance of RSV laboratory reporting. Combining the use of MEM thresholds with daily monitoring of NHS 111 and GP OOH syndromic surveillance systems provides the potential to alert to threshold breaches in real-time. An advantage of using thresholds across different health systems is the ability to capture a range of healthcare-seeking behaviour, which may reflect differences in disease severity. This study also provides a quantifiable measure of seasonal RSV activity, which contributes to our understanding of RSV activity in advance of the potential introduction of new RSV vaccines.
Collapse
Affiliation(s)
- S. E. Harcourt
- Real-time Syndromic Surveillance Team, Field Service, National Infection Service, Public Health England, Birmingham, UK
| | - R. A. Morbey
- Real-time Syndromic Surveillance Team, Field Service, National Infection Service, Public Health England, Birmingham, UK
| | - G. E. Smith
- Real-time Syndromic Surveillance Team, Field Service, National Infection Service, Public Health England, Birmingham, UK
| | - P. Loveridge
- Real-time Syndromic Surveillance Team, Field Service, National Infection Service, Public Health England, Birmingham, UK
| | - H. K. Green
- Real-time Syndromic Surveillance Team, Field Service, National Infection Service, Public Health England, Birmingham, UK
| | - R. Pebody
- Respiratory Diseases Department, National Infection Service, Public Health England, London, UK
| | - J. Rutter
- NHS Pathways, NHS Digital, Leeds, UK
| | | | | | - A. J. Elliot
- Real-time Syndromic Surveillance Team, Field Service, National Infection Service, Public Health England, Birmingham, UK
| |
Collapse
|