1
|
Talbot A, de Koning-Ward TF, Layton D. Left out in the cold - inequity in infectious disease control due to cold chain disparity. Vaccine 2025; 45:126648. [PMID: 39708516 DOI: 10.1016/j.vaccine.2024.126648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Vaccines and diagnostic tools stand out as among the most influential advancements in public health, credited with averting an estimated 6 million deaths annually and substantially alleviating the burden of infectious disease. Despite this progress, the global imperative to prevent, detect, and combat infectious disease persists. Regrettably, hundreds of thousands of lives are still lost due to inadequate access to vaccines and diagnostics. A critical obstacle in accessibility lies in the requirement of reliable cold chain for their transportation and storage, a resource that remains inadequate in many regions, particularly in the developing world. Various factors, including socio-economic disparities, biological complexities, and manufacturing processes, exert significant influence on the availability and integrity of vaccines and diagnostic materials. This review aims to explore the multifaceted issue of inequality in access to disease control tools, examining the vulnerabilities of vaccines and diagnostics while also investigating recent advancements that offer promising solutions to improve thermal stability.
Collapse
Affiliation(s)
- Aimee Talbot
- CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia; School of Medicine, Deakin University, Geelong, Victoria, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Geelong, Victoria, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Daniel Layton
- CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia.
| |
Collapse
|
2
|
Zhang J, Wang K, Xu S, Chen L, Gu H, Yang Y, Zhao Q, Huo Y, Li B, Wang Y, Xie Y, Li N, Zhang J, Zhang J, Li Q. Silk Fibroin-Coated Nano-MOFs Enhance the Thermal Stability and Immunogenicity of HBsAg. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8346-8364. [PMID: 38323561 DOI: 10.1021/acsami.3c16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Vaccines are widely regarded as one of the most effective weapons in the fight against infectious diseases. Currently, vaccines must be stored and transported at low temperatures as high temperatures can lead to a loss of vaccine conformation and reduced therapeutic efficacy. Metal-organic frameworks (MOFs), such as zeolitic imidazole framework-8 (ZIF-8), are a new class of hybrid materials with large specific surface areas, high loading rates, and good biocompatibility and are successful systems for vaccine delivery and protection. Silk fibroin (SF) has a good biocompatibility and thermal stability. In this study, the hepatitis B surface antigen (HBsAg) was successfully encapsulated in ZIF-8 to form HBsAg@ZIF-8 (HZ) using a one-step shake and one-pot shake method. Subsequently, the SF coating modifies HZ through hydrophobic interactions to form HBsAg/SF@ZIF-8 (HSZ), which enhanced the thermal stability and immunogenicity of HBsAg. Compared to free HBsAg, HZ and HSZ improved the thermostability of HBsAg, promoted the antigen uptake and lysosomal escape, stimulated dendritic cell maturation and cytokine secretion, formed an antigen reservoir to promote antibody production, and activated CD4+ T and CD8+ T cells to enhance memory T-cell production. Importantly, HSZ induced a strong immune response even after 14 days of storage at 25 °C. Furthermore, the nanoparticles prepared by the one-step shake method exhibited superior properties compared to those prepared by the one-pot shake method. This study highlights the importance of SF-coated ZIF-8, which holds promise for investigating thermostable vaccines and breaking the vaccine cold chain.
Collapse
Affiliation(s)
- Jiabin Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Kai Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Shiyao Xu
- College of Life Sciences, Tonghua Normal University, Tonghua 134002, China
| | - Linlin Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Haiquan Gu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Yujie Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Qi Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Yurou Huo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Bo Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yufei Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yubiao Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Jiali Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| |
Collapse
|
3
|
Archer MC, McCollum J, Press C, Dutill TS, Liang H, Fedor D, Kapilow-Cohen L, Gerhardt A, Phan T, Trappler EH, Orr MT, Kramer RM, Fox CB. Stressed stability and protective efficacy of lead lyophilized formulations of ID93+GLA-SE tuberculosis vaccine. Heliyon 2023; 9:e17325. [PMID: 37366520 PMCID: PMC10278894 DOI: 10.1016/j.heliyon.2023.e17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
With the recent exception of coronavirus disease 2019 (COVID-19), tuberculosis (TB) causes more deaths globally than any other infectious disease, and approximately 1/3 of the world's population is infected with Mycobacterium tuberculosis (Mtb). However, encouraging progress in TB vaccine development has been reported, with approximately 50% efficacy achieved in Phase 2b clinical testing of an adjuvanted subunit TB vaccine candidate. Nevertheless, current lead vaccine candidates require cold-chain transportation and storage. In addition to temperature stress, vaccines may be subject to several other stresses during storage and transport, including mechanical, photochemical, and oxidative stresses. Optimal formulations should enable vaccine configurations with enhanced stability and decreased sensitivity to physical and chemical stresses, thus reducing reliance on the cold chain and facilitating easier worldwide distribution. In this report, we describe the physicochemical stability performance of three lead thermostable formulations of the ID93 + GLA-SE TB vaccine candidate under various stress conditions. Moreover, we evaluate the impact of thermal stress on the protective efficacy of the vaccine formulations. We find that formulation composition impacts stressed stability performance, and our comprehensive evaluation enables selection of a lead single-vial lyophilized candidate containing the excipient trehalose and Tris buffer for advanced development.
Collapse
Affiliation(s)
| | - Joseph McCollum
- Access to Advanced Health Institute (AAHI), Formerly IDRI, Seattle, WA, USA
| | - Christopher Press
- Access to Advanced Health Institute (AAHI), Formerly IDRI, Seattle, WA, USA
| | | | - Hong Liang
- Infectious Disease Research Institute (IDRI), Seattle, WA, USA
| | - Dawn Fedor
- Infectious Disease Research Institute (IDRI), Seattle, WA, USA
| | | | - Alana Gerhardt
- Access to Advanced Health Institute (AAHI), Formerly IDRI, Seattle, WA, USA
| | - Tony Phan
- Infectious Disease Research Institute (IDRI), Seattle, WA, USA
| | | | - Mark T. Orr
- Infectious Disease Research Institute (IDRI), Seattle, WA, USA
| | - Ryan M. Kramer
- Infectious Disease Research Institute (IDRI), Seattle, WA, USA
| | - Christopher B. Fox
- Access to Advanced Health Institute (AAHI), Formerly IDRI, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Sagawa ZK, Goman C, Frevol A, Blazevic A, Tennant J, Fisher B, Day T, Jackson S, Lemiale F, Toussaint L, Kalisz I, Jiang J, Ondrejcek L, Mohamath R, Vergara J, Lew A, Beckmann AM, Casper C, Hoft DF, Fox CB. Safety and immunogenicity of a thermostable ID93 + GLA-SE tuberculosis vaccine candidate in healthy adults. Nat Commun 2023; 14:1138. [PMID: 36878897 PMCID: PMC9988862 DOI: 10.1038/s41467-023-36789-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Adjuvant-containing subunit vaccines represent a promising approach for protection against tuberculosis (TB), but current candidates require refrigerated storage. Here we present results from a randomized, double-blinded Phase 1 clinical trial (NCT03722472) evaluating the safety, tolerability, and immunogenicity of a thermostable lyophilized single-vial presentation of the ID93 + GLA-SE vaccine candidate compared to the non-thermostable two-vial vaccine presentation in healthy adults. Participants were monitored for primary, secondary, and exploratory endpoints following intramuscular administration of two vaccine doses 56 days apart. Primary endpoints included local and systemic reactogenicity and adverse events. Secondary endpoints included antigen-specific antibody (IgG) and cellular immune responses (cytokine-producing peripheral blood mononuclear cells and T cells). Both vaccine presentations are safe and well tolerated and elicit robust antigen-specific serum antibody and Th1-type cellular immune responses. Compared to the non-thermostable presentation, the thermostable vaccine formulation generates greater serum antibody responses (p < 0.05) and more antibody-secreting cells (p < 0.05). In this work, we show the thermostable ID93 + GLA-SE vaccine candidate is safe and immunogenic in healthy adults.
Collapse
MESH Headings
- Adult
- Humans
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Antibodies/immunology
- Antibody-Producing Cells/immunology
- Leukocytes, Mononuclear/immunology
- Tuberculosis Vaccines/adverse effects
- Tuberculosis Vaccines/immunology
- Tuberculosis Vaccines/pharmacology
- Tuberculosis Vaccines/therapeutic use
- Immunogenicity, Vaccine/immunology
- Treatment Outcome
- Healthy Volunteers
- Temperature
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/immunology
- Vaccines, Subunit/pharmacology
- Vaccines, Subunit/therapeutic use
- Double-Blind Method
Collapse
Affiliation(s)
- Zachary K Sagawa
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA, USA
| | - Cristina Goman
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA, USA
| | - Aude Frevol
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA, USA
- HDT Bio, Seattle, WA, USA
| | - Azra Blazevic
- Saint Louis University Center for Vaccine Development, St. Louis, MO, USA
| | - Janice Tennant
- Saint Louis University Center for Vaccine Development, St. Louis, MO, USA
| | - Bridget Fisher
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA, USA
- Bristol-Myers Squibb, Seattle, WA, USA
| | - Tracey Day
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA, USA
- Janssen Vaccines, Leiden, The Netherlands
| | - Stephen Jackson
- Advanced Bioscience Laboratories (ABL), Inc., Rockville, MD, USA
| | - Franck Lemiale
- Advanced Bioscience Laboratories (ABL), Inc., Rockville, MD, USA
| | - Leon Toussaint
- Advanced Bioscience Laboratories (ABL), Inc., Rockville, MD, USA
| | - Irene Kalisz
- Advanced Bioscience Laboratories (ABL), Inc., Rockville, MD, USA
| | - Joe Jiang
- DF/Net Research, Inc., Seattle, WA, USA
| | | | - Raodoh Mohamath
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA, USA
| | - Julie Vergara
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA, USA
- Universal Cells, Seattle, WA, USA
| | - Alan Lew
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA, USA
| | - Anna Marie Beckmann
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA, USA
| | - Corey Casper
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Daniel F Hoft
- Saint Louis University Center for Vaccine Development, St. Louis, MO, USA
| | - Christopher B Fox
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Roy CJ, Ehrbar D, Van Slyke G, Doering J, Didier PJ, Doyle-Meyers L, Donini O, Vitetta ES, Mantis NJ. Serum antibody profiling identifies vaccine-induced correlates of protection against aerosolized ricin toxin in rhesus macaques. NPJ Vaccines 2022; 7:164. [PMID: 36526642 PMCID: PMC9755799 DOI: 10.1038/s41541-022-00582-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Inhalation of the biothreat agent, ricin toxin (RT), provokes a localized inflammatory response associated with pulmonary congestion, edema, neutrophil infiltration, and severe acute respiratory distress. The extreme toxicity of RT is the result of the toxin's B chain (RTB) promoting rapid uptake into alveolar macrophages and lung epithelial cells, coupled with the A chain's (RTA) potent ribosome-inactivating properties. We previously reported that intramuscular vaccination of rhesus macaques with a lyophilized, alum-adsorbed recombinant RTA subunit vaccine (RiVax®) was sufficient to confer protection against a lethal dose of aerosolized RT. That study implicated RT-specific serum IgG, toxin-neutralizing activity (TNA), and epitope-specific responses as being associated with immunity. However, it was not possible to define actual correlates of protection (COP) because all vaccinated animals survived the RT challenge. We addressed the issue of COP in the current study, by vaccinating groups of rhesus macaques with RiVax® following the previously determined protective regimen (100 µg on study days 0, 30 and 60) or one of two anticipated suboptimal regimens (100 µg on study days 30 and 60; 35 µg on study days 0, 30, and 60). Two unvaccinated animals served as controls. The animals were challenged with ~5 × LD50s of aerosolized RT on study day 110. We report that all vaccinated animals seroconverted prior to RT challenge, with the majority also having measurable TNA, although neither antibody levels nor TNA reached statistical significance with regard to a correlation with protection. By contrast, survival correlated with pre-challenge, epitope-specific serum IgG levels, derived from a competitive sandwich ELISA using a panel of toxin-neutralizing monoclonal antibodies directed against distinct epitopes on RiVax®. The identification of a species-neutral, competitive ELISA that correlates with vaccine-induced protection against RT in nonhuman represents an important advance in the development of medical countermeasures (MCM) against a persistent biothreat.
Collapse
Affiliation(s)
- Chad J Roy
- Tulane National Primate Research Center, Covington, LA, 70433, USA.
| | - Dylan Ehrbar
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Greta Van Slyke
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Jennifer Doering
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Peter J Didier
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | | | | | - Ellen S Vitetta
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA.
| |
Collapse
|
6
|
Doering J, Van Slyke G, Donini O, Mantis NJ. Estimating Vaccine Potency Using Antibody-Based Competition Assays. Methods Mol Biol 2022; 2410:693-705. [PMID: 34914076 DOI: 10.1007/978-1-0716-1884-4_37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The issues of vaccine potency and stability constitute formidable challenges associated with the development and readiness of vaccines for biodefense. In most instances, the vaccines will be stockpiled (at considerable cost) for years and used only in the rare event of a public health emergency. It is therefore imperative that there be means to readily monitor overall stability of the stockpiled vaccines, preferably using reliable in vitro assays, without the need for expensive and labor-intensive animal studies. In this chapter, we describe an in vitro monoclonal antibody-based competition ELISA known as RiCoE for assessing the potency of a ricin toxin subunit vaccine. RiCoE can be applied to drug substance and drug products adsorbed to aluminum salts adjuvant. While RiCoE is specific for ricin toxin, the general methodologies and protocols described herein are amenable to virtually any subunit or even virus-like particle-based vaccine. Ultimately, RiCoE-like assays may replace or at least reduce the need for animal studies in vaccine potency determinations.
Collapse
Affiliation(s)
- Jennifer Doering
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Greta Van Slyke
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
7
|
Novak H, Doering J, Ehrbar D, Donini O, Mantis NJ. Durable Immunity to Ricin Toxin Elicited by a Thermostable, Lyophilized Subunit Vaccine. mSphere 2021; 6:e0075021. [PMID: 34730377 PMCID: PMC8565519 DOI: 10.1128/msphere.00750-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
The development of vaccines against biothreat toxins like ricin (RT) is considered an integral component of the U.S. national security efforts. RiVax is a thermostable, lyophilized RT subunit vaccine adsorbed to aluminum salt adjuvant intended for use by military personnel and first responders. Phase 1 studies indicated that RiVax is safe and immunogenic, while a three-dose intramuscular vaccination regimen in nonhuman primates elicited protection against lethal dose RT challenge by aerosol. Here, we investigated, in a mouse model, the durability of RiVax-induced antibody responses and corresponding immunity to lethal dose RT challenge. Groups of mice were subcutaneously administered 3 or 1 μg of RiVax on days 0 and 21 and challenged with 10× 50% lethal dose (LD50) RT by injection at six different intervals over the course of 12 months. Serum antibody titers and epitope-specific competition assays were determined prior to each challenge. We report that the two-dose, 3-μg regimen conferred near-complete protection against RT challenge on day 35 and complete protection thereafter (challenge days 65, 95, 125, 245, and 365). The two-dose, 3-μg regimen was superior to the 1-μg regimen as revealed by slight differences in survival and morbidity scores (e.g., hypoglycemia, weight loss) on challenge days 35 and 365. In separate experiments, a single 3-μg RiVax vaccination proved only marginally effective at eliciting protective immunity to RT, underscoring the necessity of a prime-boost regimen to achieve full and long-lasting protection against RT. IMPORTANCE Ricin toxin (RT) is a notorious biothreat, as exposure to even trace amounts via injection or inhalation can induce organ failure and death within a matter of hours. In this study, we advance the preclinical testing of a candidate RT vaccine known as RiVax. RiVax is a recombinant nontoxic derivative of RT's enzymatic subunit that has been evaluated for safety in phase I clinical trials and efficacy in a variety of animal models. We demonstrate that two doses of RiVax are sufficient to protect mice from lethal dose RT challenge for up to 1 year. We describe kinetics and other immune parameters of the antibody response to RiVax and discuss how these immune factors may translate to humans.
Collapse
Affiliation(s)
- Hayley Novak
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Jennifer Doering
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Dylan Ehrbar
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | | | - Nicholas J. Mantis
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
8
|
Lai CY, To A, Wong TAS, Lieberman MM, Clements DE, Senda JT, Ball AH, Pessaint L, Andersen H, Furuyama W, Marzi A, Donini O, Lehrer AT. Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HT adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. Vaccine X 2021; 9:100126. [PMID: 34778744 PMCID: PMC8570651 DOI: 10.1016/j.jvacx.2021.100126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
The speed at which several COVID-19 vaccines went from conception to receiving FDA and EMA approval for emergency use is an achievement unrivaled in the history of vaccine development. Mass vaccination efforts using the highly effective vaccines are currently underway to generate sufficient herd immunity and reduce transmission of the SARS-CoV-2 virus. Despite the most advanced vaccine technology, global recipient coverage, especially in resource-poor areas remains a challenge as genetic drift in naïve population pockets threatens overall vaccine efficacy. In this study, we described the production of insect-cell expressed SARS-CoV-2 spike protein ectodomain constructs and examined their immunogenicity in mice. We demonstrated that, when formulated with CoVaccine HTTM adjuvant, an oil-in-water nanoemulsion compatible with lyophilization, our vaccine candidates elicit a broad-spectrum IgG response, high neutralizing antibody (NtAb) titers against SARS-CoV-2 prototype and variants of concern, specifically B.1.351 (Beta) and P.1. (Gamma), and an antigen-specific IFN-γ secreting response in outbred mice. Of note, different ectodomain constructs yielded variations in NtAb titers against the prototype strain and some VOC. Dose response experiments indicated that NtAb titers increased with antigen dose, but not adjuvant dose, and may be higher with a lower adjuvant dose. Our findings lay the immunological foundation for the development of a dry-thermostabilized vaccine that is deployable without refrigeration.
Collapse
Affiliation(s)
- Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
- Pacific Center for Emerging Infectious Disease Research, John A. Burns
School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | - Michael M. Lieberman
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | | | | | - Aquena H. Ball
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | | | | | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH,
Hamilton, Montana, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH,
Hamilton, Montana, MT, USA
| | | | - Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
- Pacific Center for Emerging Infectious Disease Research, John A. Burns
School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
9
|
Preston KB, Wong TAS, To A, Tashiro TE, Lieberman MM, Granados A, Feliciano K, Harrison J, Yalley-Ogunro J, Elyard HA, Donini O, Lehrer AT, Randolph TW. Single-vial filovirus glycoprotein vaccines: Biophysical characteristics and immunogenicity after co-lyophilization with adjuvant. Vaccine 2021; 39:5650-5657. [PMID: 34400019 DOI: 10.1016/j.vaccine.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Zaire ebolavirus (EBOV), Sudan ebolavirus (SUDV), and Marburg marburgvirus (MARV) are the most prevalent and pathogenic species of filovirus. Previously, we showed that glycoprotein antigens from each virus could be lyophilized to create thermostable monovalent subunit vaccines. However, cross-protection is not expected from the monovalent vaccines and therefore developing a trivalent filovirus vaccine would be desirable. Subunit protein vaccines often require the addition of an adjuvant to sufficiently boost the immunogenicity. Typically, liquid suspensions or emulsions of adjuvants and lyophilized antigens are stored in separate vials to avoid destabilizing interactions and are only mixed immediately before administration. Herein, we describe the development and characterization of monovalent and trivalent filovirus vaccines that are co-lyophilized with a squalane-in-water emulsion adjuvant. We found that the single-vial presentation retained adjuvant particle diameter and zeta potential after lyophilization and reconstitution. Furthermore, the trivalent vaccines elicited high antibody levels against all three antigens in mice and non-human primates. These results advance the prospect of developing a single-vial trivalent filovirus vaccine, which would enable easier distribution and administration of the vaccine to resource-poor areas.
Collapse
Affiliation(s)
- Kendall B Preston
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Teri Ann S Wong
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | - Taylor E Tashiro
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | - Michael M Lieberman
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | | | | | | | | | | | | | - Axel T Lehrer
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States.
| |
Collapse
|
10
|
Qi Y, Fox CB. Development of thermostable vaccine adjuvants. Expert Rev Vaccines 2021; 20:497-517. [PMID: 33724133 PMCID: PMC8292183 DOI: 10.1080/14760584.2021.1902314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/09/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The importance of vaccine thermostability has been discussed in the literature. Nevertheless, the challenge of developing thermostable vaccine adjuvants has sometimes not received appropriate emphasis. Adjuvants comprise an expansive range of particulate and molecular compositions, requiring innovative thermostable formulation and process development approaches. AREAS COVERED Reports on efforts to develop thermostable adjuvant-containing vaccines have increased in recent years, and substantial progress has been made in enhancing the stability of the major classes of adjuvants. This narrative review summarizes the current status of thermostable vaccine adjuvant development and looks forward to the next potential developments in the field. EXPERT OPINION As adjuvant-containing vaccines become more widely used, the unique challenges associated with developing thermostable adjuvant formulations merit increased attention. In particular, more focused efforts are needed to translate promising proof-of-concept technologies and formulations into clinical products.
Collapse
Affiliation(s)
- Yizhi Qi
- Infectious Disease Research Institute (IDRI), 1616 Eastlake
Ave E, Seattle, WA, USA
| | - Christopher B. Fox
- Infectious Disease Research Institute (IDRI), 1616 Eastlake
Ave E, Seattle, WA, USA
- Department of Global Health, University of Washington,
Seattle, WA, USA
| |
Collapse
|
11
|
Preston KB, Randolph TW. Stability of lyophilized and spray dried vaccine formulations. Adv Drug Deliv Rev 2021; 171:50-61. [PMID: 33484735 DOI: 10.1016/j.addr.2021.01.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
Liquid formulations of vaccines are subject to instabilities that result from degradation processes that proceed via a variety of physical and chemical pathways. In dried formulations, such as those prepared by lyophilization or spray drying, many of these degradation pathways may be avoided or inhibited. Thus, the stability of vaccine formulations can be enhanced significantly in the absence of bulk water. Potential advantages of dry vaccine formulations include extended shelf lives and less stringent cold-chain storage requirements, both of which offer possibilities of reduced vaccine wastage and facilitated distribution to resource-poor areas. Lyophilization and spray drying represent the most common methods of stabilizing vaccines through drying. This article reviews several lyophilized and spray dried vaccines that address a diverse set of pathogens, as well as some of the assays used to quantify their stability. Recent dry vaccine trends include needle-free delivery of dry powder via non-parenteral routes of administration and the incorporation of advanced vaccine adjuvants into formulations, which further contribute to the goal of increasing vaccine distribution to resource-poor areas. Challenges associated with development of these newer technologies are also discussed.
Collapse
Affiliation(s)
- Kendall B Preston
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America.
| |
Collapse
|
12
|
Lai CY, To A, Wong TAS, Lieberman MM, Clements DE, Senda JT, Ball AH, Pessaint L, Andersen H, Donini O, Lehrer AT. Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HT adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33688645 DOI: 10.1101/2021.03.02.433614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The speed at which several COVID-19 vaccines went from conception to receiving FDA and EMA approval for emergency use is an achievement unrivaled in the history of vaccine development. Mass vaccination efforts using the highly effective vaccines are currently underway to generate sufficient herd immunity and reduce transmission of the SARS-CoV-2 virus. Despite the most advanced vaccine technology, global recipient coverage, especially in resource-poor areas remains a challenge as genetic drift in naïve population pockets threatens overall vaccine efficacy. In this study, we described the production of insect-cell expressed SARS-CoV-2 spike protein ectodomain and examined its immunogenicity in mice. We demonstrated that, when formulated with CoVaccine HT™adjuvant, an oil-in-water nanoemulsion compatible with lyophilization, our vaccine candidates elicit a broad-spectrum IgG response, high neutralizing antibody titers, and a robust, antigen-specific IFN-γ secreting response from immune splenocytes in outbred mice. Our findings lay the foundation for the development of a dry-thermostabilized vaccine that is deployable without refrigeration.
Collapse
|
13
|
Doering J, Czajka T, Yates JL, Donini O, Mantis NJ. Potency determination of ricin toxin using a monoclonal antibody-based competition assay. J Immunol Methods 2020; 486:112844. [PMID: 32891616 DOI: 10.1016/j.jim.2020.112844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Mouse challenge studies with death as an endpoint remain the gold standard in assessing the potency of ricin toxin, a Category B biothreat agent derived from the castor bean (Ricinus communis). However, animal studies are expensive, time consuming and ethically concerning. In an effort to reduce reliance on animals in vaccine development, we developed a monoclonal antibody (MAb)-based ricin competition ELISA (RiCoE) that indicates conformation integrity of ricin toxin. In forced degradation (heat-denaturation) experiments with native ricin holotoxin, we demonstrate a correlation between the decline in MAb reactivity in RiCoE and a corresponding loss of toxin potency in Vero cells (IC50) and mice (LD50). The RiCoE assay was applied to differentially sourced commercial lots of ricin toxin derived from R. communis blends and compared to toxin potency in mice. There was near perfect congruence between RiCoE values with two different MAbs (PB10, SyH7) and ricin potency in the mouse model using morbidity as an endpoint. In conclusion, we propose that RiCoE can serve as a rapid and sensitive substitute to mouse lethal dose challenge studies as a means to determine ricin toxin potency and will be valuable at various stages of vaccine development.
Collapse
Affiliation(s)
- Jennifer Doering
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States of America
| | - Timothy Czajka
- Department of Biomedical Sciences, University at Albany, Albany, NY 12201, United States of America
| | - Jennifer L Yates
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States of America
| | - Oreola Donini
- Soligenix, Inc., Princeton, NJ 08540, United States of America
| | - Nicholas J Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States of America; Department of Biomedical Sciences, University at Albany, Albany, NY 12201, United States of America.
| |
Collapse
|
14
|
Slyke GV, Ehrbar DJ, Doering J, Yates JL, Vitetta ES, Donini O, Mantis NJ. Endpoint and epitope-specific antibody responses as correlates of vaccine-mediated protection of mice against ricin toxin. Vaccine 2020; 38:6721-6729. [PMID: 32891474 DOI: 10.1016/j.vaccine.2020.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
The successful licensure of vaccines for biodefense is contingent upon the availability of well-established correlates of protection (CoP) in at least two animal species that can be applied to humans, without the need to assess efficacy in the clinic. In this report we describe a multivariate model that combines pre-challenge serum antibody endpoint titers (EPT) and values derived from an epitope profiling immune-competition capture (EPICC) assay as a predictor in mice of vaccine-mediated immunity against ricin toxin (RT), a Category B biothreat. EPICC is a modified competition ELISA in which serum samples from vaccinated mice were assessed for their ability to inhibit the capture of soluble, biotinylated (b)-RT by a panel of immobilized monoclonal antibodies (mAbs) directed against four immunodominant toxin-neutralizing regions on the enzymatic A chain (RTA) of RT. In a test cohort of mice (n = 40) vaccinated with suboptimal doses of the RTA subunit vaccine, RiVax®, we identified two mAbs, PB10 and SyH7, which had EPICC inhibition values in pre-challenge serum samples that correlated with survival following a challenge with 5 × LD50 of RT administered by intraperitoneal (IP) injection. Analysis of a larger cohort of mice (n = 645) revealed that a multivariate model combining endpoint titers and EPICC values for PB10 and SyH7 as predictive variables had significantly higher statistical power than any one of the independent variables alone. Establishing the correlates of vaccine-mediated protection in mice represents an important steppingstone in the development of RiVax® as a medical countermeasure under the United States Food and Drug Administration's "Animal Rule."
Collapse
Affiliation(s)
- Greta Van Slyke
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States
| | - Dylan J Ehrbar
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States
| | - Jennifer Doering
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States
| | - Jennifer L Yates
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States
| | - Ellen S Vitetta
- Department of Immunology and Microbiology, University of Texas Southwestern Medical School, Dallas, TX, United States
| | | | - Nicholas J Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States.
| |
Collapse
|
15
|
Roy CJ, Van Slyke G, Ehrbar D, Bornholdt ZA, Brennan MB, Campbell L, Chen M, Kim D, Mlakar N, Whaley KJ, Froude JW, Torres-Velez FJ, Vitetta E, Didier PJ, Doyle-Meyers L, Zeitlin L, Mantis NJ. Passive immunization with an extended half-life monoclonal antibody protects Rhesus macaques against aerosolized ricin toxin. NPJ Vaccines 2020; 5:13. [PMID: 32128254 PMCID: PMC7018975 DOI: 10.1038/s41541-020-0162-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Inhalation of ricin toxin (RT), a Category B biothreat agent, provokes an acute respiratory distress syndrome marked by pro-inflammatory cytokine and chemokine production, neutrophilic exudate, and pulmonary edema. The severity of RT exposure is attributed to the tropism of the toxin's B subunit (RTB) for alveolar macrophages and airway epithelial cells, coupled with the extraordinarily potent ribosome-inactivating properties of the toxin's enzymatic subunit (RTA). While there are currently no vaccines or treatments approved to prevent RT intoxication, we recently described a humanized anti-RTA IgG1 MAb, huPB10, that was able to rescue non-human primates (NHPs) from lethal dose RT aerosol challenge if administered by intravenous (IV) infusion within hours of toxin exposure. We have now engineered an extended serum half-life variant of that MAb, huPB10-LS, and evaluated it as a pre-exposure prophylactic. Five Rhesus macaques that received a single intravenous infusion (25 mg/kg) of huPB10-LS survived a lethal dose aerosol RT challenge 28 days later, whereas three control animals succumbed to RT intoxication within 48 h. The huPB10-LS treated animals remained clinically normal in the hours and days following toxin insult, suggesting that pre-existing antibody levels were sufficient to neutralize RT locally. Moreover, pro-inflammatory markers in sera and BAL fluids collected 24 h following RT challenge were significantly dampened in huPB10-LS treated animals, as compared to controls. Finally, we found that all five surviving animals, within days after RT exposure, had anti-RT serum IgG titers against epitopes other than huPB10-LS, indicative of active immunization by residual RT and/or RT-immune complexes.
Collapse
Affiliation(s)
- Chad J. Roy
- Tulane National Primate Research Center, Covington, LA 70433 USA
| | - Greta Van Slyke
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208 USA
| | - Dylan Ehrbar
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208 USA
| | | | | | | | - Michelle Chen
- Mapp Biopharmaceutical, Inc, San Diego, CA 92121 USA
| | - Do Kim
- Mapp Biopharmaceutical, Inc, San Diego, CA 92121 USA
| | - Neil Mlakar
- Mapp Biopharmaceutical, Inc, San Diego, CA 92121 USA
| | | | - Jeffrey W. Froude
- Clinical Pharmacology Branch, Walter Reed Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910 USA
- Present Address: Vaccines and Therapeutics Division, Defense Threat Reduction Agency, 8725 John J. Kingman Rd., Fort Belvoir, VA 22060 USA
| | - Fernando J Torres-Velez
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208 USA
| | - Ellen Vitetta
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Peter J. Didier
- Tulane National Primate Research Center, Covington, LA 70433 USA
| | | | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc, San Diego, CA 92121 USA
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208 USA
| |
Collapse
|
16
|
Abstract
In this report, we used hydrogen exchange-mass spectrometry (HX-MS) to identify the epitopes recognized by 21 single-domain camelid antibodies (VHHs) directed against the ribosome-inactivating subunit (RTA) of ricin toxin, a biothreat agent of concern to military and public health authorities. The VHHs, which derive from 11 different B-cell lineages, were binned together based on competition ELISAs with IB2, a monoclonal antibody that defines a toxin-neutralizing hotspot ("cluster 3") located in close proximity to RTA's active site. HX-MS analysis revealed that the 21 VHHs recognized four distinct epitope subclusters (3.1-3.4). Sixteen of the 21 VHHs grouped within subcluster 3.1 and engage RTA α-helices C and G. Three VHHs grouped within subcluster 3.2, encompassing a-helices C and G, plus α-helix B. The single VHH in subcluster 3.3 engaged RTA α-helices B and G, while the epitope of the sole VHH defining subcluster 3.4 encompassed α-helices C and E, and β-strand h. Modeling these epitopes on the surface of RTA predicts that the 20 VHHs within subclusters 3.1-3.3 physically occlude RTA's active site cleft, while the single antibody in subcluster 3.4 associates on the active site's upper rim.
Collapse
|