1
|
von Elling-Tammen MS, Taft F, Thom V, Stitz J, Barbe S, Krause A. Optimizing nuclease treatment to enhance anion exchange chromatography of HIV-derived virus-like particles. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124539. [PMID: 40056795 DOI: 10.1016/j.jchromb.2025.124539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/10/2025]
Abstract
Residual host cell chromatin imposes numerous challenges on purifying HIV-derived enveloped virus-like particles (VLPs) using anion-exchange chromatography (AEX). According to FDA guidelines, DNA must be reduced to less than 10 ng per dose at a fragment size of less than 200 bp. To prove the fulfillment of these quality criteria, methods for the qualitative and quantitative analysis of DNA fragments must be applied and adapted to chromatin. DNA and chromatin impede the purification of HIV VLPs with AEX, co-eluting in the same fractions as the VLPs. Although nuclease treatments can be employed, the chromatin structure can shield DNA from nuclease activity. To address these challenges, we adjusted our analytical focus on characterizing the chromatin in our clarified HIV VLP supernatant. We identified two DNA subpopulations: a main large fragment population and a minor population consisting of short fragments below 200 bp. Our findings demonstrated that the larger DNA fragments are the primary issue in our process, as they co-elute with the desired VLPs. To remove the long DNA fragment population, we optimized the nuclease treatment using a Design of Experiment approach to digest the DNA despite the tight chromatin structure. The nucleases Benzonase, Denarase, and M-SAN efficiently digested the DNA removing over 90 % of the DNA. By shredding the long DNA fragments before the AEX step, we successfully separated the HIV VLPs from the remaining short DNA fragments. Combined with nuclease treatment, AEX membrane chromatography offers an efficient single-step purification platform for HIV VLP-based vaccines and other therapeutics.
Collapse
Affiliation(s)
- M S von Elling-Tammen
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany; Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany
| | - F Taft
- Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany
| | - V Thom
- Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany
| | - J Stitz
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| | - S Barbe
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany.
| | - A Krause
- Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany
| |
Collapse
|
2
|
Park EY, Minkner R. A systematic approach for scalable purification of virus-like particles. Protein Expr Purif 2025; 228:106664. [PMID: 39828016 DOI: 10.1016/j.pep.2025.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Virus-like particles (VLPs) are increasingly recognized as promising vaccine candidates and drug-delivery platforms because they do not contain genetic materials, mimic viral structures, and possess strong antigenic properties. Various hosts, including microorganisms, yeast, and insect cells, are commonly used for VLP expression. Recently, silkworms have emerged as a significant host for producing VLPs, providing a cost-effective and straightforward approach for large-scale expression. Despite the progress in VLP expression technology, purification methods for VLPs are still in their infancy and often rely on unscalable ultracentrifugation techniques. Moreover, VLP purification represents a substantial portion of the overall production cost, highlighting the urgent need for efficient and scalable downstream processing methods to overcome the current challenges in VLP production. Considering their differing structures and properties, this review systematically summarizes the published results of scalable downstream processes for both enveloped and non-enveloped VLPs. Its aim is to provide a comprehensive overview and significantly contribute to developing future VLP production for pharmaceutical applications, thereby guiding and inspiring further research in this field.
Collapse
Affiliation(s)
- Enoch Y Park
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Robert Minkner
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
3
|
Zhao L, Ma G. Chromatography media and purification processes for complex and super-large biomolecules: A review. J Chromatogr A 2025; 1744:465721. [PMID: 39893916 DOI: 10.1016/j.chroma.2025.465721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The biopharmaceutical industry has been one of the most dynamic industries in the world. New biopharmaceuticals are constantly developed, especially for complex and super-large biomolecules including antibodies, virus-like particles (VLPs), viral vectors, DNA, mRNA, and are very promising in drugs, vaccines, cell and gene therapy. Due to complex and unstable structures, as well as low concentration, it is very difficult to purify these complex and super-large biomolecules. Chromatography is the most widely used purification technique in bioseparation, and chromatography media is the key material. This review gives a comprehensive analysis of chromatography media and purification processes for complex and super-large biomolecules. A detailed summary of tailor-made chromatography media is first provided, including particle size and its uniformity, pore structure, spacer arm and polymer grafting, and new ligands and special separation mechanisms. Then the current choices and trends of purification processes for vaccines, VLPs, DNA, mRNA, antibodies and modified therapeutic proteins are reviewed. Finally, a brief overview of continuous biochromatography and computer-assisted chromatographic method development is provided. We hope this review will provide some useful guidance for design of chromatography media and purification of complex biopharmaceuticals.
Collapse
Affiliation(s)
- Lan Zhao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Ma
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Yu L, Chu M, Liu N, Sun Y. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: IX. Further studies on counterion effects and behavior in therapeutic protein separation. J Chromatogr A 2025; 1741:465613. [PMID: 39718261 DOI: 10.1016/j.chroma.2024.465613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Our previous studies on protein adsorption onto anion-exchangers of poly(ethylenimine) (PEI)-grafted Sepharose FF (PEI-Sepharose) proved their significantly improved performance over the commercial nongrafting anion-exchangers such as Q Sepharose FF, and it was found the protein adsorption behavior on PEI-Sepharose was more sensitive to counterions (Cl-, SCN-, HPO42- and SO42-). However, the complicated role of counterions has not been well interpreted due to their distinct chemical and physical characteristics. Thus, we have further studied the counterion effects by adding two halide ions (F- and Br-) to explore the effects of the three halide ions on bovine serum albumin adsorption and the results were compared with previous data. Furthermore, separation of recombinant human serum albumin (rHSA) from fermentation broth was studied. It was found that the counterion preference for PEI-Sepharose increased with the charge density of the counterions, demonstrating the favorable elution by choosing a proper counterion. Moreover, uptake kinetics onto PEI-Sepharose was very sensitive to counterions, even the three halide ions. In contrast, there is little difference among the halide ions for dynamic binding capacity of PEI-Sepharose, presenting a high value (104 ± 3 mg/mL) for the three halide ions. Furthermore, PEI-Sepharose exhibited much higher rHSA separation performance over Q Sepharose FF, characterized by sharper and more symmetrical elution peaks, higher recovery, enriched eluates, and reduced use of elution salt. The high recovery (>90 %) of rHSA from the Pichia pastoris culture supernatant proved the superiority of PEI-Sepharose column in downstream processing of therapeutic proteins.
Collapse
Affiliation(s)
- Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, PR China
| | - Mengyao Chu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, PR China
| | - Na Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, PR China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
5
|
Wolf T, Grau C, Rosengarten JF, Stitz J, Wilkens J, Barbe S. Investigation of the Electrokinetic Properties of HIV-Based Virus-Like Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4762-4771. [PMID: 38385169 DOI: 10.1021/acs.langmuir.3c03535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The antigen density on the surface of HIV-based virus-like particles (VLPs) plays a crucial role in the improvement of HIV vaccine potency. HIV VLPs consist of a dense protein core, which is surrounded by a lipid bilayer and whose surface is usually decorated with antigenic glycoproteins. The successful downstream processing of these particles is challenging, and the high-resolution and cost-efficient purification of HIV-based VLPs has not yet been achieved. Chromatography, one of the major unit operations involved in HIV VLP purification strategies, is usually carried out by means of ion exchangers or ion-exchange membranes. Understanding the electrokinetic behavior of HIV-based VLPs may help to improve the adjustment and efficiency of the corresponding chromatographic processes. In this study, we investigated the electrokinetics and aggregation of both undecorated and decorated VLPs and interpreted the data from the perspective of the soft particle model developed by Ohshima (OSPM), which fails to fully predict the behavior of the studied VLPs. Post-Ohshima literature, and particularly the soft multilayer particle model developed by Langlet et al., provides an alternative theoretical framework to overcome the limits of the OSPM. We finally hypothesized that the electrophoretic mobility of HIV-based VLPs is controlled by an electrohydrodynamic interplay between envelope glycoproteins, lipid bilayer, and Gag envelope.
Collapse
Affiliation(s)
- Tobias Wolf
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Christoph Grau
- Research Group Colloid Chemistry, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
- Institute of Physical Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Greinstraße 4-6, 50939 Cologne, Germany
| | - Jamila Franca Rosengarten
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Jörn Stitz
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| | - Jan Wilkens
- Research Group Colloid Chemistry, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| | - Stéphan Barbe
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| |
Collapse
|
6
|
Koch LF, Best T, Wüstenhagen E, Adrian K, Rammo O, Saul MJ. Novel insights into the isolation of extracellular vesicles by anion exchange chromatography. Front Bioeng Biotechnol 2024; 11:1298892. [PMID: 38312509 PMCID: PMC10836363 DOI: 10.3389/fbioe.2023.1298892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/12/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane structures enclosed by a lipid bilayer that are released into the extracellular space by all types of cells. EVs are involved in many physiological processes by transporting biologically active substances. Interest in EVs for diagnostic biomarker research and therapeutic drug delivery applications has increased in recent years. The realization of the full therapeutic potential of EVs is currently hampered by the lack of a suitable technology for the isolation and purification of EVs for downstream pharmaceutical applications. Anion Exchange Chromatography (AEX) is an established method in which specific charges on the AEX matrix can exploit charges on the surface of EVs and their interactions to provide a productive and scalable separation and purification method. The established AEX method using Eshmuno® Q, a strong tentacle anion exchange resin, was used to demonstrate the principal feasibility of AEX-based isolation and gain insight into isolated EV properties. Using several EV analysis techniques to provide a more detailed insight into EV populations during AEX isolation, we demonstrated that although the composition of CD9/63/81 remained constant for tetraspanin positive EVs, the size distribution and purity changed during elution. Higher salt concentrations eluted larger tetraspanin negative vesicles.
Collapse
Affiliation(s)
- Leon F. Koch
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Tatjana Best
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Merck Life Science KGaA, Darmstadt, Germany
| | | | | | | | - Meike J. Saul
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Universtiy Cancer Center Hamburg, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Lorenzo E, Miranda L, Gòdia F, Cervera L. Downstream process design for Gag HIV-1 based virus-like particles. Biotechnol Bioeng 2023; 120:2672-2684. [PMID: 37148527 DOI: 10.1002/bit.28419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Virus-like particles-based vaccines have been gaining interest in recent years. The manufacturing of these particles includes their production by cell culture followed by their purification to meet the requirements of its final use. The presence of host cell extracellular vesicles represents a challenge for better virus-like particles purification, because both share similar characteristics which hinders their separation. The present study aims to compare some of the most used downstream processing technologies for capture and purification of virus-like particles. Four steps of the purification process were studied, including a clarification step by depth filtration and filtration, an intermediate step by tangential flow filtration or multimodal chromatography, a capture step by ion exchange, heparin affinity and hydrophobic interaction chromatography and finally, a polishing step by size exclusion chromatography. In each step, the yields were evaluated by percentage of recovery of the particles of interest, purity, and elimination of main contaminants. Finally, a complete purification train was implemented using the best results obtained in each step. A final concentration of 1.40 × 1010 virus-like particles (VLPs)/mL with a purity of 64% after the polishing step was achieved, with host cell DNA and protein levels complaining with regulatory standards, and an overall recovery of 38%. This work has resulted in the development of a purification process for HIV-1 Gag-eGFP virus-like particles suitable for scale-up.
Collapse
Affiliation(s)
- Elianet Lorenzo
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laia Miranda
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Spain
- University College London, London, UK
| | - Francesc Gòdia
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Cervera
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
8
|
McColman S, Shkalla K, Sidhu P, Liang J, Osman S, Kovacs N, Bokhari Z, Forjaz Marques AC, Li Y, Lin Q, Zhang H, Cramb DT. SARS-CoV-2 virus-like-particles via liposomal reconstitution of spike glycoproteins. NANOSCALE ADVANCES 2023; 5:4167-4181. [PMID: 37560413 PMCID: PMC10408587 DOI: 10.1039/d3na00190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
The SARS-CoV-2 virus, implicated in the COVID-19 pandemic, recognizes and binds host cells using its spike glycoprotein through an angiotensin converting enzyme 2 (ACE-2) receptor-mediated pathway. Recent research suggests that spatial distributions of the spike protein may influence viral interactions with target cells and immune systems. The goal of this study has been to develop a liposome-based virus-like particle (VLP) by reconstituting the SARS-CoV-2 spike glycoprotein within a synthetic nanoparticle membrane, aiming to eventually establish tunability in spike protein presentation on the nanoparticle surface. Here we report on first steps to this goal, wherein liposomal SARS-CoV-2 VLPs were successfully produced via detergent mediated spike protein reconstitution. The resultant VLPs are shown to successfully co-localize in vitro with the ACE-2 receptor on lung epithelial cell surfaces, followed by internalization into these cells. These VLPs are the first step toward the overall goal of this research which is to form an understanding of the relationship between spike protein surface density and cell-level immune response, eventually toward creating better vaccines and anti-viral therapeutics.
Collapse
Affiliation(s)
- Sarah McColman
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
| | - Klaidi Shkalla
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
| | - Pavleen Sidhu
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
| | - Jady Liang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Department of Physiology, University of Toronto Toronto ON Canada
| | - Selena Osman
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
| | - Norbert Kovacs
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
| | - Zainab Bokhari
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
| | - Ana Carolina Forjaz Marques
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Faculdade de Ciências Farmacêuticas, Seção Técnica de Graduação, Universidade Estadual Paulista Araraquara SP Brazil
| | - Yuchong Li
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Department of Physiology, University of Toronto Toronto ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Qiwen Lin
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Department of Physiology, University of Toronto Toronto ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Department of Physiology, University of Toronto Toronto ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
- Departments of Anaesthesia and Physiology, Interdepartmental Division of Critical Care Medicine, University of Toronto Toronto ON Canada
| | - David T Cramb
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Department of Chemistry, Faculty of Science, University of Calgary Calgary AB Canada
| |
Collapse
|
9
|
Berg MC, Beck J, Karner A, Holzer K, Dürauer A, Hahn R. Mass transfer of proteins in chromatographic media: Comparison of pure and crude feed solutions. J Chromatogr A 2022; 1676:463264. [PMID: 35752146 DOI: 10.1016/j.chroma.2022.463264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/26/2022]
Abstract
Elucidation of intraparticle mass transfer mechanisms in protein chromatography is essential for process design. This study investigates the differences of adsorption and diffusion parameters of basic human fibroblast factor 2 (hFGF2) in a simple (purified) and a complex (clarified homogenate) feed solution on the grafted agarose-based strong cation exchanger Capto S. Microscopic investigations using confocal laser scanning microscopy revealed slower intraparticle diffusion of hFGF2 in the clarified homogenate compared to purified hFGF2. Diffusive adsorption fronts indicated a strong contribution of solid diffusion to the overall mass transfer flux. Protein adsorption methods such as batch uptake and shallow bed as well as breakthrough curve experiments confirmed a 40-fold reduction of the mass transfer flux for hFGF2 in the homogenate compared to pure hFGF2. The slower mass transfer was induced by components of the clarified homogenate. Essentially, the increased dynamic viscosity caused by a higher concentration of dsDNA and membrane lipids in the clarified homogenate contributed to this decrease in mass transfer. Moreover, binding capacity for hFGF2 was much lower in the clarified homogenate and substantially decreased the adsorbed phase driving force for mass transfer.
Collapse
Affiliation(s)
- Markus C Berg
- Austrian Center of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria
| | - Jürgen Beck
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Alex Karner
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Kerstin Holzer
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Astrid Dürauer
- Austrian Center of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Rainer Hahn
- Austrian Center of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria.
| |
Collapse
|
10
|
Goffar MG, Deo VK, Kato T, Park EY. Dual display hemagglutinin 1 and 5 on the surface of enveloped virus-like particles in silkworm expression system. Protein Expr Purif 2022; 197:106106. [PMID: 35525404 DOI: 10.1016/j.pep.2022.106106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Rous sarcoma virus-like particles (RSV-LPs) displaying hemagglutinins of H1N1 (A/New Caledonia/20/99) (H1) and H5N1 (A/Vietnam/1194/2004) (H5) of the influenza A virus were produced. The H1 has its transmembrane domain, but the H5 was fused with the transmembrane domain of glycoprotein 64 (BmGP64) from Bombyx mori nucleopolyhedrovirus (BmNPV). H1 and RSV Gag protein were coexpressed in the hemolymph of silkworm larvae, copurified, and confirmed RSV-LP displaying H1 (VLP/H1). Similarly, the RSV-LP displaying H5 (VLP/H5) production was also achieved. Using fetuin agarose column chromatography, RSV Gag protein-coexpressed H1 and H5 in silkworms were copurified from the hemolymph. By immuno-TEM, H1 and H5 were observed on the surface of an RSV-LP, indicating the formation of bivalent RSV-LP displaying two HAs (VLP/BivHA) in the hemolymph of silkworm larvae. VLP/H1 induced the hemagglutination of red blood cells (RBCs) of chicken and rabbit but not sheep, while VLP/H5 induced the hemagglutination of RBCs of chicken and sheep but not rabbit. Additionally, VLP/BivHA allowed the hemagglutination of RBCs of all three animals. Silkworm larvae can produce RSV-LPs displaying two HAs and is a promising tool to produce the bivalent enveloped VLPs for the vaccine platform.
Collapse
Affiliation(s)
- Muzajjad Gozal Goffar
- Laboratory of Biotechnology, Faculty of Applied Biological Chemistry, Department of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Vipin Kumar Deo
- Organization for International Collaboration Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Tatsuya Kato
- Laboratory of Biotechnology, Faculty of Applied Biological Chemistry, Department of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Enoch Y Park
- Laboratory of Biotechnology, Faculty of Applied Biological Chemistry, Department of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
11
|
The potential of emerging sub-omics technologies for CHO cell engineering. Biotechnol Adv 2022; 59:107978. [DOI: 10.1016/j.biotechadv.2022.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022]
|
12
|
Abstract
The development and adoption of digital twins (DT) for Quality-by-Design (QbD)-based processes with flexible operating points within a proven acceptable range (PAR) and automation through Advanced Process Control (APC) with Process Analytical Technology (PAT) instead of conventional process execution based on offline analytics and inflexible process set points is one of the great challenges in modern biotechnology. Virus-like particles (VLPs) are part of a line of innovative drug substances (DS). VLPs, especially those based on human immunodeficiency virus (HIV), HIV-1 Gag VLPs, have very high potential as a versatile vaccination platform, allowing for pseudotyping with heterologous envelope proteins, e.g., the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As enveloped VLPs, optimal process control with minimal hold times is essential. This study demonstrates, for the first time, the use of a digital twin for the overall production process of HIV-1 Gag VLPs from cultivation, clarification, and purification to lyophilization. The accuracy of the digital twins is in the range of 0.8 to 1.4% in depth filtration (DF) and 4.6 to 5.2% in ultrafiltration/diafiltration (UFDF). The uncertainty due to variability in the model parameter determination is less than 4.5% (DF) and less than 3.8% (UFDF). In the DF, a prediction of the final filter capacity was demonstrated from as low as 5.8% (9mbar) of the final transmembrane pressure (TMP). The scale-up based on DT in chromatography shows optimization potential in productivity up to a factor of 2. The schedule based on DT and PAT for APC has been compared to conventional process control, and hold-time and process duration reductions by a factor of 2 have been achieved. This work lays the foundation for the short-term validation of the DT and PAT for APC in an automated S7 process environment and the conversion from batch to continuous production.
Collapse
|
13
|
A scalable, integrated downstream process for production of a recombinant measles virus-vectored vaccine. Vaccine 2022; 40:1323-1333. [PMID: 35094870 DOI: 10.1016/j.vaccine.2022.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 11/20/2022]
Abstract
Purification of very large and complex, enveloped viruses, such as measles virus is very challenging, it must be performed in a closed system because the final product cannot be sterile filtered and often loss of virus titer and poor product purity has been observed. We developed a purification process where the clarified and endonuclease treated culture supernatant is loaded on a restricted access chromatography medium where small impurities are bound and the virus is collected in the flow-through, which is then concentrated, and buffer exchanged by ultra/diafiltration. Up to 98.5% of host cell proteins could be captured by direct loading of clarified and endonuclease treated cell culture supernatant. Reproducible process performance and scalability of the chromatography step were demonstrated from small to pilot scale, including loading volumes from 50 mL up to 9 L. A 10-fold virus concentration was achieved by the ultrafiltration using a 100 kDa flat-sheet membrane. The order of individual process steps had a large impact on the virus infectivity and total process yields. The developed process maintained virus infectivity and is twice as fast as the traditional process train, where concentration is performed before loading on the chromatography column. Capturing impurities by the restricted access medium makes it a platform purification process with a high flexibility, which can be easily and quickly adapted to other vectors based on the measles virus vector platform.
Collapse
|
14
|
González-Domínguez I, Lorenzo E, Bernier A, Cervera L, Gòdia F, Kamen A. A Four-Step Purification Process for Gag VLPs: From Culture Supernatant to High-Purity Lyophilized Particles. Vaccines (Basel) 2021; 9:vaccines9101154. [PMID: 34696262 PMCID: PMC8539588 DOI: 10.3390/vaccines9101154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Gag-based virus-like particles (VLPs) have high potential as scaffolds for the development of chimeric vaccines and delivery strategies. The production of purified preparations that can be preserved independently from cold chains is highly desirable to facilitate distribution and access worldwide. In this work, a nimble purification has been developed, facilitating the production of Gag VLPs. Suspension-adapted HEK 293 cells cultured in chemically defined cell culture media were used to produce the VLPs. A four-step downstream process (DSP) consisting of membrane filtration, ion-exchange chromatography, polishing, and lyophilization was developed. The purification of VLPs from other contaminants such as host cell proteins (HCP), double-stranded DNA, or extracellular vesicles (EVs) was confirmed after their DSP. A concentration of 2.2 ± 0.8 × 109 VLPs/mL in the lyophilized samples was obtained after its storage at room temperature for two months. Morphology and structural integrity of purified VLPs was assessed by cryo-TEM and NTA. Likewise, the purification methodologies proposed here could be easily scaled up and applied to purify similar enveloped viruses and vesicles.
Collapse
Affiliation(s)
- Irene González-Domínguez
- Departament d’Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.L.); (L.C.); (F.G.)
- Correspondence:
| | - Elianet Lorenzo
- Departament d’Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.L.); (L.C.); (F.G.)
| | - Alice Bernier
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (A.B.); (A.K.)
| | - Laura Cervera
- Departament d’Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.L.); (L.C.); (F.G.)
| | - Francesc Gòdia
- Departament d’Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.L.); (L.C.); (F.G.)
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (A.B.); (A.K.)
| |
Collapse
|
15
|
Zhang B, Yin S, Wang Y, Su Z, Bi J. Cost-effective purification process development for chimeric hepatitis B core (HBc) virus-like particles assisted by molecular dynamic simulation. Eng Life Sci 2021; 21:438-452. [PMID: 34140854 PMCID: PMC8182290 DOI: 10.1002/elsc.202000104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Inserting foreign epitopes to hepatitis B core (HBc) virus-like particles (VLPs) could influence the molecular conformation and therefore vary the purification process. In this study, a cost-effective purification process was developed for two chimeric HBc VLPs displaying Epstein-Barr nuclear antigens 1 (EBNA1), and hepatitis C virus (HCV) core. Both chimeric VLPs were expressed in soluble form with high production yields in Escherichia coli. Molecular dynamic (MD) simulation was employed to predict the stability of chimeric VLPs. HCV core-HBc was found to be less stable in water environment compared with EBNA1-HBc, indicating its higher hydrophobicity. Assisting with MD simulation, ammonium sulfate precipitation was optimized to remove host cell proteins with high target protein recovery yields. Moreover, 99% DNA impurities were removed using POROS 50 HQ chromatography. In characterization measurement, we found that inserting HCV core epitope would reduce the ratio of α-helix of HCV core-HBc. This could be another reason on the top of its higher hydrophobicity predicted by MD simulation, causing its less stability. Tertiary structure, transmission electron microscopy, and immunogenicity results indicate that two chimeric VLPs maintained correct VLP structure ensuring its bioactivity after being processed by the developed cost-effective purification approach.
Collapse
Affiliation(s)
- Bingyang Zhang
- School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Shuang Yin
- School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Yingli Wang
- School of Chinese Medicine and Food EngineeringShanxi University of Traditional Chinese MedicineJinzhongShanxi ProvinceP. R. China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Jingxiu Bi
- School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideSAAustralia
| |
Collapse
|
16
|
Yu L, Sun Y. Recent advances in protein chromatography with polymer-grafted media. J Chromatogr A 2021; 1638:461865. [PMID: 33453656 DOI: 10.1016/j.chroma.2020.461865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/19/2023]
Abstract
The strategy of using polymer-grafted media is effective to create protein chromatography of high capacity and uptake rate, giving rise to an excellent performance in high-throughput protein separation due to its high dynamic binding capacity. Taking the scientific development and technological innovation of protein chromatography as the objective, this review is devoted to an overview of polymer-grafted media reported in the last five years, including their fabrication routes, protein adsorption and chromatography, mechanisms behind the adsorption behaviors, limitations of polymer-grafted media and chromatographic operation strategies. Particular emphasis is placed on the elaboration and discussion on the behaviors of ion-exchange chromatography (IEC) with polymer-grafted media because IEC is the most suitable chromatographic mode for this kind of media. Recent advances in both the theoretical and experimental investigations on polymer-grafted media are discussed by focusing on their implications to the rational design of novel chromatographic media and mobile phase conditions for the development of high-performance protein chromatography. It is concluded that polymer-grafted media are suitable for development of IEC and mixed-mode chromatography with charged and low hydrophobic ligands, but not for hydrophobic interaction chromatography with high hydrophobic ligands and affinity chromatography with ligands that have single binding site on the protein.
Collapse
Affiliation(s)
- Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
17
|
Lavado-García J, González-Domínguez I, Cervera L, Jorge I, Vázquez J, Gòdia F. Molecular Characterization of the Coproduced Extracellular Vesicles in HEK293 during Virus-Like Particle Production. J Proteome Res 2020; 19:4516-4532. [PMID: 32975947 PMCID: PMC7640977 DOI: 10.1021/acs.jproteome.0c00581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/22/2022]
Abstract
Vaccine therapies based on virus-like particles (VLPs) are currently in the spotlight due to their potential for generating high immunogenic responses while presenting fewer side effects than conventional vaccines. These self-assembled nanostructures resemble the native conformation of the virus but lack genetic material. They are becoming a promising platform for vaccine candidates against several diseases due to the ability of modifying their membrane with antigens from different viruses. The coproduction of extracellular vesicles (EVs) when producing VLPs is a key phenomenon currently still under study. In order to characterize this extracellular environment, a quantitative proteomics approach has been carried out. Three conditions were studied: non-transfected, transfected with an empty plasmid as control, and transfected with a plasmid coding for HIV-1 Gag polyprotein. A shift in EV biogenesis has been detected upon transfection, changing the production from large to small EVs. Another remarkable trait found was the presence of DNA being secreted within vesicles smaller than 200 nm. Studying the protein profile of these biological nanocarriers, it was observed that EVs were reflecting an overall energy homeostasis disruption via mitochondrial protein deregulation. Also, immunomodulatory proteins like ITGB1, ENO3, and PRDX5 were identified and quantified in VLP and EV fractions. These findings provide insight on the nature of the VLP extracellular environment defining the characteristics and protein profile of EVs, with potential to develop new downstream separation strategies or using them as adjuvants in viral therapies.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Irene González-Domínguez
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Inmaculada Jorge
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro
de Investigación Biomédica en Red Enfermedades Cardiovasculares
(CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro
de Investigación Biomédica en Red Enfermedades Cardiovasculares
(CIBERCV), Madrid, Spain
| | - Francesc Gòdia
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
18
|
Retention and diffusion characteristics of oligonucleotides in a solid phase with polymer grafted anion-exchanger. J Chromatogr A 2020; 1629:461495. [PMID: 32846340 DOI: 10.1016/j.chroma.2020.461495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023]
Abstract
In the chromatographic separation process of oligonucleotides (ONs), mechanistic understanding of their binding and diffusion processes is of significant importance to determine operating conditions in a fast and robust way. In this work, we determined the number of binding sites and the diffusivities of ONs in a polymer grafted anion exchange chromatography through linear gradient experiments (LGE) being carried out at selected four to five gradient slopes. Synthetic poly (T)s with length ranging from 3 to 90-mer were employed as a model of an antisense oligonucleotide with typical lengths of 10 - 30 bases. Comparison of the retention was also conducted between the grafted anion exchanger with a conventional ligand and an anion monolith disk. For the ONs up to 50 bases, the number of binding sites determined can be correlated with the length of ONs, and the grafted resin showed a better diffusion and narrower peak width compared to the nongrafted one. The retention behavior became similar for porous media when the longer ONs (> 50mer) were applied. The results obtained suggest that antisense ONs can be separated with grafted ligands without sacrificing mass transfer properties.
Collapse
|
19
|
Pereira Aguilar P, Reiter K, Wetter V, Steppert P, Maresch D, Ling WL, Satzer P, Jungbauer A. Capture and purification of Human Immunodeficiency Virus-1 virus-like particles: Convective media vs porous beads. J Chromatogr A 2020; 1627:461378. [PMID: 32823092 DOI: 10.1016/j.chroma.2020.461378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 02/04/2023]
Abstract
Downstream processing (DSP) of large bionanoparticles is still a challenge. The present study aims to systematically compare some of the most commonly used DSP strategies for capture and purification of enveloped viruses and virus-like particles (eVLPs) by using the same staring material and analytical tools. As a model, Human Immunodeficiency Virus-1 (HIV-1) gag VLPs produced in CHO cells were used. Four different DSP strategies were tested. An anion-exchange monolith and a membrane adsorber, for direct capture and purification of eVLPs, and a polymer-grafted anion-exchange resin and a heparin-affinity resin for eVLP purification after a first flow-through step to remove small impurities. All tested strategies were suitable for capture and purification of eVLPs. The performance of the different strategies was evaluated regarding its binding capacity, ability to separate different particle populations and product purity. The highest binding capacity regarding total particles was obtained using the anion exchange membrane adsorber (5.3 × 1012 part/mL membrane), however this method did not allow the separation of different particle populations. Despite having a lower binding capacity (1.5 × 1011 part/mL column) and requiring a pre-processing step with flow-through chromatography, Heparin-affinity chromatography showed the best performance regarding separation of different particle populations, allowing not only the separation of HIV-1 gag VLPs from host cell derived bionanoparticles but also from chromatin. This work additionally shows the importance of thorough sample characterization combining several biochemical and biophysical methods in eVLP DSP.
Collapse
Affiliation(s)
- Patricia Pereira Aguilar
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Katrin Reiter
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Viktoria Wetter
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Petra Steppert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Peter Satzer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria.
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
20
|
Reiter K, Pereira Aguilar P, Grammelhofer D, Joseph J, Steppert P, Jungbauer A. Separation of influenza virus-like particles from baculovirus by polymer-grafted anion exchanger. J Sep Sci 2020; 43:2270-2278. [PMID: 32187844 PMCID: PMC7318652 DOI: 10.1002/jssc.201901215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The baculovirus expression vector system is a very powerful tool to produce virus‐like particles and gene‐therapy vectors, but the removal of coexpressed baculovirus has been a major barrier for wider industrial use. We used chimeric human immunodeficiency virus‐1 (HIV‐1) gag influenza‐hemagglutin virus‐like particles produced in Tnms42 insect cells using the baculovirus insect cell expression vector system as model virus‐like particles. A fast and simple purification method for these virus‐like particles with direct capture and purification within one chromatography step was developed. The insect cell culture supernatant was treated with endonuclease and filtered, before it was directly loaded onto a polymer‐grafted anion exchanger and eluted by a linear salt gradient. A 4.3 log clearance of baculovirus from virus‐like particles was achieved. The absence of the baculovirus capsid protein (vp39) in the product fraction was additionally shown by high performance liquid chromatography‐mass spectrometry. When considering a vaccination dose of 109 particles, 4200 doses can be purified per L pretreated supernatant, meeting the requirements for vaccines with <10 ng double‐stranded DNA per dose and 3.4 µg protein per dose in a single step. The process is simple with a very low number of handling steps and has the characteristics to become a platform for purification of these types of virus‐like particles.
Collapse
Affiliation(s)
- Katrin Reiter
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Patricia Pereira Aguilar
- Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Judith Joseph
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Petra Steppert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alois Jungbauer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
21
|
A Flow-Through Chromatographic Strategy for Hepatitis C Virus-Like Particles Purification. Processes (Basel) 2020. [DOI: 10.3390/pr8010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Biopharmaceuticals are currently becoming one of the fastest growing segments of the global pharmaceutical industry, being used in practically all branches of medicine from disease treatment to prevention. Virus-like particles (VLP) hold tremendous potential as a vaccine candidate due to their anticipated immunogenicity and safety profile when compared to inactivated or live attenuated viral vaccines. Nevertheless, there are several challenges yet to be solved in the development and manufacturing of these products, which ultimately can increase time to market. Suchlike virus-based products, the development of a platform approach is often hindered due to diversity and inherent variability of physicochemical properties of the product. In the present work, a flow-through chromatographic purification strategy for hepatitis C VLP expressed using the baculovirus-insect cell expression system was developed. The impact of operational parameters, such as residence time and ionic strength were studied using scaled-down models and their influence on the purification performance was described. The flow-through strategy herein reported made use of radial-flow chromatography columns packed with an anion exchanger and was compared with a bind and elute approach using the same chromatography media. Overall, by selecting the optimal operational setpoints, we were able to achieve higher VLP recoveries in the flow-through process (66% versus 37%) with higher removal of DNA, baculovirus and host-cell protein (92%, 99% and 50% respectively).
Collapse
|
22
|
Kamen AA, Lua LHL, Mukhopadhyay TK. Vaccine Technology VII: Beyond the "decade of vaccines". Vaccine 2019; 37:6931-6932. [PMID: 31623914 DOI: 10.1016/j.vaccine.2019.09.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, Canada.
| | - Linda H L Lua
- Protein Expression Facility, The University of Queensland, Brisbane, Australia.
| | | |
Collapse
|