1
|
Mo J, Mo J. Infectious Laryngotracheitis Virus and Avian Metapneumovirus: A Comprehensive Review. Pathogens 2025; 14:55. [PMID: 39861016 PMCID: PMC11769561 DOI: 10.3390/pathogens14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Respiratory avian viral diseases significantly impact the world poultry sector, leading to notable economic losses. The highly contagious DNA virus, infectious laryngotracheitis virus, and the RNA virus, avian metapneumovirus, are well known for their prevalent effects on avian respiratory systems. The infectious laryngotracheitis virus (ILTV), stemming from the Herpesviridae family, manifests as an upper respiratory disease within birds. Characterized by acute respiratory signs, it sporadically emerges worldwide, presenting a persistent threat to poultry health. Avian metapneumovirus (aMPV), belonging to the Pneumoviridae family is identified as the cause behind severe rhinotracheitis in turkeys and swollen head syndrome in chickens. This disease can lead to heightened mortality rates, especially when coupled with secondary bacterial infections. This review offers a comprehensive analysis and understanding of the general properties of these specific avian respiratory viruses, control measures, and their global status.
Collapse
Affiliation(s)
- Jongsuk Mo
- Exotic and Emerging Avian Disease Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA 30605, USA;
| | - Jongseo Mo
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
2
|
Kim DH, Lee J, Lee DY, Lee SH, Jeong JH, Kim JY, Kim J, Choi YK, Lee JB, Park SY, Choi IS, Lee SW, Youk S, Song CS. Intranasal Administration of Recombinant Newcastle Disease Virus Expressing SARS-CoV-2 Spike Protein Protects hACE2 TG Mice against Lethal SARS-CoV-2 Infection. Vaccines (Basel) 2024; 12:921. [PMID: 39204044 PMCID: PMC11359043 DOI: 10.3390/vaccines12080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), emerged as a global outbreak in 2019, profoundly affecting both human health and the global economy. Various vaccine modalities were developed and commercialized to overcome this challenge, including inactivated vaccines, mRNA vaccines, adenovirus vector-based vaccines, and subunit vaccines. While intramuscular vaccines induce high IgG levels, they often fail to stimulate significant mucosal immunity in the respiratory system. We employed the Newcastle disease virus (NDV) vector expressing the spike protein of the SARS-CoV-2 Beta variant (rK148/beta-S), and evaluated the efficacy of intranasal vaccination with rK148/beta-S in K18-hACE2 transgenic mice. Intranasal vaccination with a low dose (106.0 EID50) resulted in an 86% survival rate after challenge with the SARS-CoV-2 Beta variant. Administration at a high dose (107.0 EID50) led to a reduction in lung viral load and 100% survival against the SARS-CoV-2 Beta and Delta variants. A high level of the SARS-CoV-2 spike-specific IgA was also induced in vaccinated mice lungs following the SARS-CoV-2 challenge. Our findings suggest that rK148/beta-S holds promise as an intranasal vaccine candidate that effectively induces mucosal immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Deok-Hwan Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jiho Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture-Agricultural Research Service, 934 College Station Road, Athens, GA 30605, USA
| | - Da-Ye Lee
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seung-Hun Lee
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jei-Hyun Jeong
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ji-Yun Kim
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jiwon Kim
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| | - Joong-Bok Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
| | - Seung-Young Park
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
| | - In-Soo Choi
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
| | - Sang-Won Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
| | - Sungsu Youk
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju 28160, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Chowdhury IR, Viktorova E, Samal SK, Belov GA. The effect of 5' and 3' non-translated regions on the expression of a transgene from a Newcastle disease virus vector. Virus Res 2024; 341:199309. [PMID: 38181903 PMCID: PMC10818242 DOI: 10.1016/j.virusres.2024.199309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
Newcastle disease virus (NDV) is an avian virus and a promising vector for the development of vaccines for veterinary and human use. The optimal vaccine vector performance requires a stable high-level expression of a transgene. The foreign genes are usually incorporated in the genome of NDV as individual transcription units, whose transcription and subsequent translation of the mRNA are regulated by the 5' and 3' untranslated regions (UTRs) flanking the open reading frame of the transgene. Here, we investigated if the UTRs derived from the cognate NDV genes would increase the expression of a model protective antigene from an NDV vector. Our results show that in chicken DF1 cells, none of the UTRs tested significantly outperformed generic short sequences flanking the transgene, while in human HeLa cells, UTRs derived from the M gene of NDV statistically significantly increased the expression of the transgene. The UTRs derived from the HN gene significantly downregulated the transgene expression in both cell cultures. Further experiments demonstrated that NDV UTRs differently affect the mRNA abundance and translation efficacy. While both M and HN UTRs decreased the level of the transgene mRNA in infected cells compared to the mRNA flanked by generic UTRs, M, and particularly, HN UTRs strongly increased the mRNA translation efficacy. The major determinants of translation enhancement are localized in the 5'UTR of HN. Thus, our data reveal a direct role of NDV UTRs in translational regulation, and inform future optimization of NDV vectors for vaccine and therapeutic use.
Collapse
Affiliation(s)
- Ishita Roy Chowdhury
- Virginia-Maryland College of Veterinary Medicine and the Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Ekaterina Viktorova
- Virginia-Maryland College of Veterinary Medicine and the Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine and the Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - George A Belov
- Virginia-Maryland College of Veterinary Medicine and the Department of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
4
|
Kim DH, Lee J, Youk S, Jeong JH, Lee DY, Ju HS, Youn HN, Kim JC, Park SB, Park JE, Kim JY, Kim TH, Lee SH, Lee H, Mouhamed Abdallah Amal Abdal L, Lee DH, Park PG, Hong KJ, Song CS. Intramuscular administration of recombinant Newcastle disease virus expressing SARS-CoV-2 spike protein protects hACE-2 TG mice against SARS-CoV-2 infection. Vaccine 2023:S0264-410X(23)00641-2. [PMID: 37355454 PMCID: PMC10266497 DOI: 10.1016/j.vaccine.2023.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Coronavirus disease 2019 (Covid-19) caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) became a pandemic, causing significant burden on public health worldwide. Although the timely development and production of mRNA and adenoviral vector vaccines against SARS-CoV-2 have been successful, issues still exist in vaccine platforms for wide use and production. With the potential for proliferative capability and heat stability, the Newcastle disease virus (NDV)-vectored vaccine is a highly economical and conceivable candidate for treating emerging diseases. In this study, a recombinant NDV-vectored vaccine expressing the spike (S) protein of SARS-CoV-2, rK148/beta-S, was developed and evaluated for its efficacy against SARS-CoV-2 in K18-hACE-2 transgenic mice. Intramuscular vaccination with low dose (106.0 EID50) conferred a survival rate of 76 % after lethal challenge of a SARS-CoV-2 beta (B.1.351) variant. When administered with a high dose (107.0 EID50), vaccinated mice exhibited 100 % survival rate and reduced lung viral load against both beta and delta variants (B.1.617.2). Together with the protective immunity, rK148/beta-S is an accessible and cost-effective SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Deok-Hwan Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea; KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Jiho Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sungsu Youk
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jei-Hyun Jeong
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea; KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Da-Ye Lee
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Hyo-Seon Ju
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Ha-Na Youn
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Jin-Cheol Kim
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Soo-Bin Park
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Ji-Eun Park
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Ji-Yun Kim
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Tae-Hyeon Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seung-Hun Lee
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Hyukchae Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | | | - Dong-Hun Lee
- Wildlife Health Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea; KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Elbehairy MA, Samal SK, Belov GA. Encoding of a transgene in-frame with a Newcastle disease virus protein increases transgene expression and stability. J Gen Virol 2022; 103. [PMID: 35758932 PMCID: PMC10027024 DOI: 10.1099/jgv.0.001761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Newcastle disease virus (NDV) has been extensively explored as a vector for vaccine and oncolytic therapeutic development. In conventional NDV-based vectors, the transgene is arranged as a separate transcription unit in the NDV genome. Here, we expressed haemagglutinin protein (HA) of an avian influenza virus using an NDV vector design in which the transgene ORF is encoded in-frame with the ORF of an NDV gene. This arrangement does not increase the number of transcription units in the NDV genome, and imposes a selection pressure against mutations interrupting the transgene ORF. We placed the HA ORF upstream or downstream of N, M, F and HN ORFs of NDV so that both proteins are encoded in-frame and are separated by either a self-cleaving 2A peptide, furin cleavage site or both. Only constructs in which HA was placed downstream of the NDV HN were viable. These constructs expressed the transgene at a higher level compared to the vector encoding the same transgene in the same position in the NDV genome but as a separate transcription unit. Furthermore, the transgene expressed in one ORF with the NDV protein proved to be more stable over multiple passages. Thus, this design may be useful for applications where the stability of the transgene expression is highly important for a recombinant NDV vector.
Collapse
Affiliation(s)
- Mohamed A Elbehairy
- Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - George A Belov
- Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
| |
Collapse
|
6
|
Ravikumar R, Chan J, Prabakaran M. Vaccines against Major Poultry Viral Diseases: Strategies to Improve the Breadth and Protective Efficacy. Viruses 2022; 14:v14061195. [PMID: 35746665 PMCID: PMC9230070 DOI: 10.3390/v14061195] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022] Open
Abstract
The poultry industry is the largest source of meat and eggs for human consumption worldwide. However, viral outbreaks in farmed stock are a common occurrence and a major source of concern for the industry. Mortality and morbidity resulting from an outbreak can cause significant economic losses with subsequent detrimental impacts on the global food supply chain. Mass vaccination is one of the main strategies for controlling and preventing viral infection in poultry. The development of broadly protective vaccines against avian viral diseases will alleviate selection pressure on field virus strains and simplify vaccination regimens for commercial farms with overall savings in husbandry costs. With the increasing number of emerging and re-emerging viral infectious diseases in the poultry industry, there is an urgent need to understand the strategies for broadening the protective efficacy of the vaccines against distinct viral strains. The current review provides an overview of viral vaccines and vaccination regimens available for common avian viral infections, and strategies for developing safer and more efficacious viral vaccines for poultry.
Collapse
|
7
|
Huang KJ, Li CH, Tsai PK, Lai CC, Kuo YR, Hsieh MK, Cheng CW. Electromagnetic Force-Driven Needle-Free in Ovo Injection Device. Vet Sci 2022; 9:vetsci9030147. [PMID: 35324876 PMCID: PMC8951732 DOI: 10.3390/vetsci9030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Needle-free injections are mainly used for administering human or mammalian vaccines or drugs. However, poultry vaccines, in ovo injections to embryos, subcutaneous injections to chickens, and intramuscular injections are administered using needle injections. This article presents a new needle-free in ovo injection device method that uses push-pull solenoids to eject liquid jets, mainly for embryonic eggs of chickens. Furthermore, our study investigated the suitable jet pressures for using this method and the post-injection hatching rates in 18-day-old embryonic eggs. Using this method, we could deliver the liquid to the allantoic and amniotic cavities or the muscle tissue through the egg membrane of the air chamber using a jet pressure of ~6–7 MPa or ~8 MPa. After injecting 0.25 mL of 0.9% saline into 18-day-old Lohmann breed layer embryonic eggs and specific pathogen-free (SPF) embryonic eggs at a jet pressure of ~7 MPa, we observed hatching rates of 98.3% and 85.7%, respectively. This study’s electromagnetic needle-free in ovo injection device can apply vaccine or nutrient solution injection for embryo eggs and serve as a reference for future studies on needle-free in ovo injection automation systems, jet pressure control, and injection pretreatment processes.
Collapse
Affiliation(s)
- Ko-Jung Huang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (K.-J.H.); (P.-K.T.); (C.-C.L.); (Y.-R.K.)
| | - Cheng-Han Li
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (K.-J.H.); (P.-K.T.); (C.-C.L.); (Y.-R.K.)
- Correspondence: (C.-H.L.); (C.-W.C.); Tel.: +886-4-2219-5795 (C.-H.L. & C.-W.C.)
| | - Ping-Kun Tsai
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (K.-J.H.); (P.-K.T.); (C.-C.L.); (Y.-R.K.)
| | - Chia-Chun Lai
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (K.-J.H.); (P.-K.T.); (C.-C.L.); (Y.-R.K.)
| | - Yu-Ren Kuo
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (K.-J.H.); (P.-K.T.); (C.-C.L.); (Y.-R.K.)
| | - Ming-Kun Hsieh
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Ching-Wei Cheng
- Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, Taichung 404, Taiwan
- Correspondence: (C.-H.L.); (C.-W.C.); Tel.: +886-4-2219-5795 (C.-H.L. & C.-W.C.)
| |
Collapse
|
8
|
Gowthaman V, Kumar S, Koul M, Dave U, Murthy TRGK, Munuswamy P, Tiwari R, Karthik K, Dhama K, Michalak I, Joshi SK. Infectious laryngotracheitis: Etiology, epidemiology, pathobiology, and advances in diagnosis and control - a comprehensive review. Vet Q 2021; 40:140-161. [PMID: 32315579 PMCID: PMC7241549 DOI: 10.1080/01652176.2020.1759845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Infectious laryngotracheitis (ILT) is a highly contagious upper respiratory tract disease of chicken caused by a Gallid herpesvirus 1 (GaHV-1) belonging to the genus Iltovirus, and subfamily Alphaherpesvirinae within Herpesviridae family. The disease is characterized by conjunctivitis, sinusitis, oculo-nasal discharge, respiratory distress, bloody mucus, swollen orbital sinuses, high morbidity, considerable mortality and decreased egg production. It is well established in highly dense poultry producing areas of the world due to characteristic latency and carrier status of the virus. Co-infections with other respiratory pathogens and environmental factors adversely affect the respiratory system and prolong the course of the disease. Latently infected chickens are the primary source of ILT virus (ILTV) outbreaks irrespective of vaccination. Apart from conventional diagnostic methods including isolation and identification of ILTV, serological detection, advanced biotechnological tools such as PCR, quantitative real-time PCR, next generation sequencing, and others are being used in accurate diagnosis and epidemiological studies of ILTV. Vaccination is followed with the use of conventional vaccines including modified live attenuated ILTV vaccines, and advanced recombinant vector vaccines expressing different ILTV glycoproteins, but still these candidates frequently fail to reduce challenge virus shedding. Some herbal components have proved to be beneficial in reducing the severity of the clinical disease. The present review discusses ILT with respect to its current status, virus characteristics, epidemiology, transmission, pathobiology, and advances in diagnosis, vaccination and control strategies to counter this important disease of poultry.
Collapse
Affiliation(s)
- Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Monika Koul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Urmil Dave
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - T R Gopala Krishna Murthy
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu, India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Sunil K Joshi
- Department of Microbiology & Immunology, Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, Florida, USA
| |
Collapse
|
9
|
Tan L, Wen G, Yuan Y, Huang M, Sun Y, Liao Y, Song C, Liu W, Shi Y, Shao H, Qiu X, Ding C. Development of a Recombinant Thermostable Newcastle Disease Virus (NDV) Vaccine Express Infectious Bronchitis Virus (IBV) Multiple Epitopes for Protecting against IBV and NDV Challenges. Vaccines (Basel) 2020; 8:vaccines8040564. [PMID: 33019497 PMCID: PMC7712034 DOI: 10.3390/vaccines8040564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Newcastle disease (ND) and infectious bronchitis (IB) are two highly contagious diseases that severely threaten the poultry industry. The goal of this study is to prevent these two diseases and reduce the vaccine costs during storage and transportation. In this study, we design a thermostable recombinant Newcastle disease virus (NDV) candidate live vaccine strain designated as rLS-T-HN-T/B, which expresses the multiple epitope cassette of the identified infectious bronchitis virus (IBV) (S-T/B). The rLS-T-HN-T/B strain was found to possess similar growth kinetics, passage stability, morphological characteristics, and virulence to the parental LaSota strain. After incubation at 56 °C at the indicated time points, the rLS-T-HN-T/B strain was determined by the hemagglutination (HA), and 50% embryo infectious dose (EID50) assays demonstrated that it accords with the criteria for thermostability. The thermostable rLS-T-HN-T/B and parental LaSota vaccines were stored at 25 °C for 16 days prior to immunizing the one-day-old specific pathogen-free (SPF) chicks. Three weeks postimmunization, the virus challenge results suggested that the chicks vaccinated with the rLS-T-HN-T/B vaccine were protected by 100% and 90% against a lethal dose of NDV and IBV, respectively. Furthermore, the trachea ciliary activity assay indicated that the mean ciliostasis score of the chicks vaccinated with thermostable rLS-T-HN-T/B vaccine was significantly superior to that of the LaSota and PBS groups (p < 0.05). The rLS-T-HN-T/B vaccine stored at 25 °C for 16 days remained capable of eliciting the immune responses and protecting against IBV and NDV challenges. However, the same storage conditions had a great impact on the parental LaSota strain vaccinated chicks, and the NDV challenge protection ratio was only 20%. We conclude that the thermostable rLS-T-HN-T/B strain is a hopeful bivalent candidate vaccine to control both IB and ND and provides an alternative strategy for the development of cost-effective vaccines for village chickens, especially in the rural areas of developing countries.
Collapse
Affiliation(s)
- Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (G.W.); (H.S.)
| | - Yanmei Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Meizhen Huang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Weiwei Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Yonghong Shi
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Huabin Shao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (G.W.); (H.S.)
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-21-34293508
| |
Collapse
|
10
|
Wei X, Shao Y, Han Z, Sun J, Liu S. Glycoprotein-C-gene-deleted recombinant infectious laryngotracheitis virus expressing a genotype VII Newcastle disease virus fusion protein protects against virulent infectious laryngotracheitis virus and Newcastle disease virus. Vet Microbiol 2020; 250:108835. [PMID: 33011664 DOI: 10.1016/j.vetmic.2020.108835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023]
Abstract
To develop an alternative vectored vaccine against both Newcastle disease virus (NDV) and infectious laryngotracheitis virus (ILTV), the glycoprotein C (gC) gene was first deleted from an avirulent ILTV. Based on this gC-deleted ILTV mutant, a recombinant ILTV expressing the fusion protein (F) of a genotype VII NDV (designated ILTV-ΔgC-F) was then constructed. Expression of the NDV F protein in ILTV-ΔgC-F-infected LMH cells was examined with an immunofluorescence assay and western blotting. The F gene was stably maintained in the genome of ILTV-ΔgC-F and the F protein was stably expressed. Compared with the parental virus, ILTV-ΔgC-F demonstrated an increased penetration capacity in vitro, and an increased replication rate in vitro and in vivo. Both the parental virus and ILTV-ΔgC-F were avirulent in chickens. Vaccination of specific-pathogen-free chickens with ILTV-ΔgC-F induced ILTV-specific antibodies, detected with an enzyme-linked immunosorbent assay (ELISA), and provided complete clinical protection against virulent ILTV, although viral shedding and replication were detected in the respiratory tract in the early stage of infection in a very small number of birds. Vaccination with ILTV-ΔgC-F also provided significant protection against challenge with a virulent genotype VII NDV, although the level of NDV-specific antibodies detected with an ELISA was low. Notably, the numbers of birds that were positive for the virulent genotype VII NDV and the replication of the challenge virus NDV in selected target tissues were significantly lower in the ILTV-ΔgC-F-vaccinated chickens than in the control birds. Our results indicate that ILTV-ΔgC-F has potential utility as a bivalent candidate vaccine against both infectious laryngotracheitis and Newcastle disease.
Collapse
Affiliation(s)
- Xiao Wei
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| |
Collapse
|
11
|
Hu Z, Ni J, Cao Y, Liu X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines (Basel) 2020; 8:vaccines8020222. [PMID: 32422944 PMCID: PMC7349365 DOI: 10.3390/vaccines8020222] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
It has been 20 years since Newcastle disease virus (NDV) was first used as a vector. The past two decades have witnessed remarkable progress in vaccine generation based on the NDV vector and optimization of the vector. Protective antigens of a variety of pathogens have been expressed in the NDV vector to generate novel vaccines for animals and humans, highlighting a great potential of NDV as a vaccine vector. More importantly, the research work also unveils a major problem restraining the NDV vector vaccines in poultry, i.e., the interference from maternally derived antibody (MDA). Although many efforts have been taken to overcome MDA interference, a lack of understanding of the mechanism of vaccination inhibition by MDA in poultry still hinders vaccine improvement. In this review, we outline the history of NDV as a vaccine vector by highlighting some milestones. The recent advances in the development of NDV-vectored vaccines or therapeutics for animals and humans are discussed. Particularly, we focus on the mechanisms and hypotheses of vaccination inhibition by MDA and the efforts to circumvent MDA interference with the NDV vector vaccines. Perspectives to fill the gap of understanding concerning the mechanism of MDA interference in poultry and to improve the NDV vector vaccines are also proposed.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jie Ni
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|