1
|
Tobin GJ, Tobin JK, Wiggins TJ, Bushnell RV, Kozar AV, Maale MF, MacLeod DA, Meeks HN, Daly MJ, Dollery SJ. A highly immunogenic UVC inactivated Sabin based polio vaccine. NPJ Vaccines 2024; 9:217. [PMID: 39543143 PMCID: PMC11564903 DOI: 10.1038/s41541-024-00995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/13/2024] [Indexed: 11/17/2024] Open
Abstract
Despite their efficacy, the currently available polio vaccines, oral polio vaccine (OPV) and inactivated polio vaccine (IPV), possess inherent flaws posing significant challenges in the global eradication of polio. OPV, which uses live Sabin attenuated strains, carries the risk of reversion to pathogenic forms and causing vaccine-associated paralytic poliomyelitis (VAPP) and vaccine-derived polio disease (VDPD) in incompletely vaccinated or immune-compromised individuals. Conventional IPVs, which are non-replicative, are more expensive to manufacture and introduce biohazard and biosecurity risks due to the use of neuropathogenic strains in production. These types of limitations have led to a call by the Global Polio Eradication Initiative and others for the development of updated polio vaccines. We are developing a novel Ultraviolet-C radiation (UVC) inactivation method that preserves immunogenicity and is compatible with attenuated strains of polio. The method incorporates an antioxidant complex, manganese-decapeptide-phosphate (MDP), derived from the radioresistant bacterium Deinococcus radiodurans. The inclusion of MDP protects the immunogenic neutralizing epitopes from damage during UVC inactivation. The novel vaccine candidate, ultraIPVTM, produced using these methods demonstrates three crucial attributes: complete inactivation, which precludes the risk of vaccine-associated disease; use of non-pathogenic strains to reduce production risks; and significantly enhanced yield of doses per milligram of input virus, which could increase vaccine supply while reducing costs. Additionally, ultraIPVTM retains antigenicity post-freeze-thaw cycles, a testament to its robustness.
Collapse
Affiliation(s)
- Gregory J Tobin
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA.
| | - John K Tobin
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | | | - Ruth V Bushnell
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | - Arina V Kozar
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | - Matthew F Maale
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | - David A MacLeod
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | - Heather N Meeks
- Defense Threat Reduction Agency, 8725 John J. Kingman Rd #6201,Ft, Belvoir, VA, 22060, USA
| | - Michael J Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., 20814, Bethesda, MD, USA
| | - Stephen J Dollery
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA.
| |
Collapse
|
2
|
Sun G, Wang G, Zhong H. Observational analysis of the immunogenicity and safety of various types of spinal muscular atrophy vaccines. Inflammopharmacology 2024; 32:1025-1038. [PMID: 38308795 DOI: 10.1007/s10787-023-01395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND This study aimed to evaluate the immunogenicity and safety of different types of poliovirus vaccines. METHODS A randomized, blinded, single-center, parallel-controlled design was employed, and 360 infants aged ≥ 2 months were selected as study subjects. They were randomly assigned to bOPV group (oral Sabin vaccine) and sIPV group (Sabin strain inactivated polio vaccine), with 180 infants in each group. Adverse reaction events in the vaccinated subjects were recorded. The micro-neutralization test using cell culture was conducted to determine the geometric mean titer (GMT) of neutralizing antibodies against poliovirus types I, II, and III in different groups, and the seroconversion rates were calculated. RESULTS Both groups exhibited a 100% seropositivity rate after booster immunization. The titers of neutralizing antibodies for the three types were predominantly distributed within the range of 1:128 to 1:512. The fold increase of type I antibodies differed markedly between the two groups (P < 0.05). Moreover, the fold increase of type II and type III antibodies for poliovirus differed slightly between the two groups (P > 0.05). The fourfold increase rate in sIPV group was drastically superior to that in bOPV group (P < 0.05). When comparing the post-immunization GMT levels of type I antibodies in individuals who completed the full course of spinal muscular atrophy vaccination, bOPV group showed greatly inferior levels to sIPV group (P < 0.05). For type II and type III antibodies, individuals in bOPV group demonstrated drastically superior post-immunization GMT levels to those in sIPV group (P < 0.05). The incidence of adverse reactions between the bOPV and sIPV groups differed slightly (P > 0.05). CONCLUSION These findings indicated that both the oral vaccine and inactivated vaccine had good safety and immunogenicity in infants aged ≥ 2 months. The sIPV group generated higher levels of neutralizing antibodies in serum, particularly evident in the post-immunization GMT levels for types II and III.
Collapse
Affiliation(s)
- Guojuan Sun
- Immunization Program Department, Daqing Center for Disease Control and Prevention, Daqing, 163000, Heilongjiang, China
| | - Guangzhi Wang
- Pathology Department, Daqing People's Hospital, Daqing, 163000, Heilongjiang, China
| | - Heng Zhong
- Endocrinology Department, Heilongjiang Provincial Hospital, Harbin, 150036, Heilongjiang, China.
| |
Collapse
|
3
|
Ong-Lim AL, Shukarev G, Trinidad-Aseron M, Caparas-Yu D, Greijer A, Duchene M, Scheper G, van Paassen V, Le Gars M, Cahill CP, Schuitemaker H, Douoguih M, Jacquet JM. Safety and immunogenicity of 3 formulations of a Sabin inactivated poliovirus vaccine produced on the PER.C6® cell line: A phase 2, double-blind, randomized, controlled study in infants vaccinated at 6, 10 and 14 weeks of age. Hum Vaccin Immunother 2022; 18:2044255. [PMID: 35344464 PMCID: PMC9196784 DOI: 10.1080/21645515.2022.2044255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An inactivated poliovirus vaccine candidate using Sabin strains (sIPV) grown on the PER.C6® cell line was assessed in infants after demonstrated immunogenicity and safety in adults. The study recruited 300 infants who were randomized (1:1:1:1) to receive one of 3 dose levels of sIPV or a conventional IPV based on Salk strains (cIPV). Poliovirus-neutralizing antibodies were measured before the first dose and 28 days after the third dose. Reactogenicity was assessed for 7 days and unsolicited adverse events (AEs) for 28 days after each vaccination. Serious AEs (SAEs) were recorded throughout the study. Solicited AEs were mostly mild to moderate. None of the SAEs reported in the study were judged vaccine related, including one fatal SAE due to aspiration of vomitus that occurred 26 days after the third dose of low-dose sIPV. After 3 sIPV vaccinations and across all dose levels, seroconversion (SC) rates were at least 92% against Sabin poliovirus types and at least 80% against Salk types, with a dose-response in neutralizing antibody geometric mean titers (GMTs) observed across the 3 sIPV groups. Compared to cIPV, the 3 sIPV groups displayed similar or higher SC rates and GMTs against the 3 Sabin types but showed a lower response against Salk types 1 and 2; this was most visible for Salk type 1. While the PER.C6® cell line-based sIPV showed an acceptable safety profile and immunogenicity in infants, lower seroprotection against type 1 warrants optimization of dose level and additional clinical evaluation.
Collapse
Affiliation(s)
- Anna Lisa Ong-Lim
- Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | | | | | - Delia Caparas-Yu
- De La Salle Medical and Health Sciences Institute, Cavite, Philippines
| | - Astrid Greijer
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Michel Duchene
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Gert Scheper
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | - Conor P Cahill
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | | |
Collapse
|
4
|
Gao S, Wei M, Chu K, Li J, Zhu F. Effects of maternal antibodies in infants on the immunogenicity and safety of inactivated polio vaccine in infants. Hum Vaccin Immunother 2022; 18:2050106. [PMID: 35394898 PMCID: PMC9196670 DOI: 10.1080/21645515.2022.2050106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The presence of maternal poliovirus antibodies may interfere with the immune response to inactivated polio vaccine (IPV), and its influence on the safety of vaccination is not yet understood. A total of 1146 eligible infants were randomly assigned (1:1) to the IPV and Sabin IPV (SIPV) groups to compare and analyze the efficacy of the two vaccines in preventing poliovirus infection. We pooled the SIPV and IPV groups and reclassified them into the maternal poliovirus antibody-positive group (MAPG; ≥1: 8) and the maternal poliovirus antibody-negative group (MANG; <1: 8). We evaluated the impact of maternal poliovirus antibodies by comparing the geometric mean titer (GMT), seroconversion rate, and geometric mean increase (GMI) of types I-III poliovirus neutralizing antibodies post-vaccination, and incidence rates of adverse reactions following vaccination between the MAPG and MANG. Respective seroconversion rates in the MAPG and MANG were 94% and 100%, 79.27% and 100%, and 93.26% and 100% (all serotypes, P < .01) for types I-III poliovirus, respectively. The GMT of all types of poliovirus antibodies in the MAPG (1319.13, 219.91, 764.11, respectively) were significantly lower than those in the MANG (1584.92, 286.73, 899.59, respectively) (P < .05). The GMI in the MAPG was significantly lower than that in the MANG (P < .05). No statistically significant difference in the incidence of local and systemic adverse reactions was observed between the MAPG and MANG. Thus, the presence of maternal poliovirus antibodies does not affect the safety of IPV but can negatively impact the immune responses in infants after IPV vaccination.
Collapse
Affiliation(s)
- Shuyu Gao
- School of Public Health, Southeast University, Nanjing, PR China
| | - Mingwei Wei
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Kai Chu
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Jingxin Li
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China.,NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, PR China
| | - Fengcai Zhu
- School of Public Health, Southeast University, Nanjing, PR China.,Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China.,NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, PR China
| |
Collapse
|
5
|
Microneedle patch as a new platform to effectively deliver inactivated polio vaccine and inactivated rotavirus vaccine. NPJ Vaccines 2022; 7:26. [PMID: 35228554 PMCID: PMC8885742 DOI: 10.1038/s41541-022-00443-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
Abstract
We recently reported a lack of interference between inactivated rotavirus vaccine (IRV) and inactivated poliovirus vaccine (IPV) and their potential dose sparing when the two vaccines were administered intramuscularly either in combination or standalone in rats and guinea pigs. In the present study, we optimized the formulations of both vaccines and investigated the feasibility of manufacturing a combined IRV-IPV dissolving microneedle patch (dMNP), assessing its compatibility and immunogenicity in rats. Our results showed that IRV delivered by dMNP alone or in combination with IPV induced similar levels of RV-specific IgG and neutralizing antibody. Likewise, IPV delivered by dMNP alone or in combination with IRV induced comparable levels of neutralizing antibody of poliovirus types 1, 2, and 3. We further demonstrated high stability of IRV-dMNP at 5, 25, and 40 °C and IPV-dMNP at 5 and 25 °C, and found that three doses of IRV or IPV when co-administered at a quarter dose was as potent as a full target dose in inducing neutralizing antibodies against corresponding rotavirus or poliovirus. We conclude that IRV-IPV dMNP did not interfere with each other in triggering an immunologic response and were highly immunogenic in rats. Our findings support the further development of this innovative approach to deliver a novel combination vaccine against rotavirus and poliovirus in children throughout the world.
Collapse
|