1
|
Lin M, Yin Y, Zhao X, Wang C, Zhu X, Zhan L, Chen L, Wang S, Lin X, Zhang J, Xia N, Zheng Z. A truncated pre-F protein mRNA vaccine elicits an enhanced immune response and protection against respiratory syncytial virus. Nat Commun 2025; 16:1386. [PMID: 39910047 PMCID: PMC11799228 DOI: 10.1038/s41467-025-56302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
The Food and Drug Administration (FDA) has approved vaccines designed by GSK, Pfizer and Moderna to protect high-risk populations against respiratory syncytial virus (RSV). These vaccines employ the pre-fusion F (pre-F) protein as the immunogen. In this study, we explored an mRNA vaccine based on a modified pre-F protein called LC2DM-lipid nanoparticle (LC2DM-LNP). This vaccine features a truncated version of the pre-F protein that is anchored to the cell membrane. Our experiments in young and old female mice revealed that the LC2DM-LNP vaccine elicited robust neutralizing antibody titers. Moreover, LC2DM-LNP prompted a Th1-skewed T-cell immune response in female rodent models. Female cotton rats immunized with LC2DM-LNP demonstrated strong immunity to RSV, without signs of vaccine-enhanced respiratory disease (VERD), even in cases of breakthrough infection. Importantly, when administered to pregnant female cotton rats, LC2DM-LNP ensured the transfer of pre-F-specific antibodies to the offspring and provided protection against RSV without increasing lung inflammation. Our findings suggest that LC2DM-LNP could serve as an alternative RSV vaccine candidate for high-risk groups.
Collapse
Affiliation(s)
- Min Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, PR China
| | - Yifan Yin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, PR China
| | - Xiaomeng Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, PR China
| | - Chen Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, PR China
| | - Xueqing Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, PR China
| | - Letao Zhan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, PR China
| | - Li Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, PR China
| | - Siling Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, PR China
| | - Xue Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, PR China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, PR China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, PR China.
| | - Zizheng Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, PR China.
| |
Collapse
|
2
|
Kosanovich JL, Eichinger KM, Lipp MA, Gidwani SV, Brahmbhatt D, Yondola MA, Chi DH, Perkins TN, Empey KM. Lung ILC2s are activated in BALB/c mice born to immunized mothers despite complete protection against respiratory syncytial virus. Front Immunol 2024; 15:1374818. [PMID: 38827738 PMCID: PMC11140082 DOI: 10.3389/fimmu.2024.1374818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
Activated lung ILC2s produce large quantities of IL-5 and IL-13 that contribute to eosinophilic inflammation and mucus production following respiratory syncytial virus infection (RSV). The current understanding of ILC2 activation during RSV infection, is that ILC2s are activated by alarmins, including IL-33, released from airway epithelial cells in response to viral-mediated damage. Thus, high levels of RSV neutralizing maternal antibody generated from maternal immunization would be expected to reduce IL-33 production and mitigate ILC2 activation. Here we report that lung ILC2s from mice born to RSV-immunized dams become activated despite undetectable RSV replication. We also report, for the first time, expression of activating and inhibitory Fcgamma receptors on ILC2s that are differentially expressed in offspring born to immunized versus unimmunized dams. Alternatively, ex vivo IL-33-mediated activation of ILC2s was mitigated following the addition of antibody: antigen immune complexes. Further studies are needed to confirm the role of Fcgamma receptor ligation by immune complexes as an alternative mechanism of ILC2 regulation in RSV-associated eosinophilic lung inflammation.
Collapse
Affiliation(s)
- Jessica L. Kosanovich
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Katherine M. Eichinger
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Madeline A. Lipp
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | | | | - David H. Chi
- Division of Pediatric Otolaryngology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, United States
| | - Timothy N. Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kerry M. Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Gidwani SV, Brahmbhatt D, Zomback A, Bassie M, Martinez J, Zhuang J, Schulze J, McLellan JS, Mariani R, Alff P, Frasca D, Blomberg BB, Marshall CP, Yondola MA. Engineered dityrosine-bonding of the RSV prefusion F protein imparts stability and potency advantages. Nat Commun 2024; 15:2202. [PMID: 38485927 PMCID: PMC10940300 DOI: 10.1038/s41467-024-46295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Viral fusion proteins facilitate cellular infection by fusing viral and cellular membranes, which involves dramatic transitions from their pre- to postfusion conformations. These proteins are among the most protective viral immunogens, but they are metastable which often makes them intractable as subunit vaccine targets. Adapting a natural enzymatic reaction, we harness the structural rigidity that targeted dityrosine crosslinks impart to covalently stabilize fusion proteins in their native conformations. We show that the prefusion conformation of respiratory syncytial virus fusion protein can be stabilized with two engineered dityrosine crosslinks (DT-preF), markedly improving its stability and shelf-life. Furthermore, it has 11X greater potency as compared with the DS-Cav1 stabilized prefusion F protein in immunogenicity studies and overcomes immunosenescence in mice with simply a high-dose formulation on alum.
Collapse
Affiliation(s)
- Sonal V Gidwani
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
| | | | - Aaron Zomback
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
| | - Mamie Bassie
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
| | | | - Jian Zhuang
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - John Schulze
- Molecular Structure Facility, University of California, Davis, Davis, CA, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, College of Natural Sciences, Austin, TX, USA
| | - Roberto Mariani
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
- CUNY Kingsborough Community College, Brooklyn, NY, USA
| | - Peter Alff
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | | | - Mark A Yondola
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA.
| |
Collapse
|
4
|
Ma J, Chen L, Tang S, Shi Y. Efficacy and safety of respiratory syncytial virus vaccination during pregnancy to prevent lower respiratory tract illness in newborns and infants: a systematic review and meta-analysis of randomized controlled trials. Front Pediatr 2024; 11:1260740. [PMID: 38357264 PMCID: PMC10864603 DOI: 10.3389/fped.2023.1260740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/28/2023] [Indexed: 02/16/2024] Open
Abstract
To evaluate the effectiveness and safety of respiratory syncytial virus (RSV) vaccination during pregnancy in preventing lower respiratory tract infection (LRTI) in infants and neonates, we conducted a systematic search of randomized controlled trials (RCTs) in five databases (PubMed, Embase and Cochrane Library, Web of Science, Cochrane Center Register of Controlled trial) until 1 May 2023. We performed a meta-analysis of the eligible trials using RevMan5.4.1 software. Our analysis included six articles and five RCTs. The meta-analysis revealed significant differences in the incidences of LRTI [risk ratio (RR): 0.64; 95% confidence interval (CI): 0.43, 0.96; p = 0.03)] and severe LRTI (RR: 0.37; 95% CI: 0.18, 0.79; p = 0.01) between the vaccine group and the placebo group for newborns and infants. These differences were observed at 90, 120, and 150 days after birth (p = 0.003, p = 0.05, p = 0.02, p = 0.03, p = 0.009, p = 0.05). At 180 days after birth, there was a significant difference observed in the incidence of LRTI between the two groups (RR: 0.43; 95% CI: 0.21, 0.90; p = 0.02). The safety results showed a significant difference in the incidence of common adverse events between the two groups (RR: 1.08; 95% CI: 1.04, 1.12; p < 0.0001). However, there was no significant difference observed in the incidence of serious adverse events (RR: 1.05; 95% CI: 0.97, 1.15; p = 0.23), common and serious adverse events (RR: 1.02; 95% CI: 0.96, 1.10; p = 0.23), or common and serious adverse events among pregnant women and newborns and infants (RR: 0.98; 95% CI: 0.93, 1.04; p = 0.52). In conclusion, maternal RSV vaccination is an effective and safe immunization strategy for preventing LRTI in postpartum infants, with greater efficacy observed within the first 150 days after birth.
Collapse
Affiliation(s)
- Juan Ma
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
- Department of Neonatology, SongShan General Hospital, Chongqing, China
| | - Long Chen
- Department of Neonatology, Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
| | - ShiFang Tang
- Department of Neonatology, SongShan General Hospital, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| |
Collapse
|
5
|
Sakala IG, Honda-Okubo Y, Petrovsky N. Developmental and reproductive safety of Advax-CpG55.2™ adjuvanted COVID-19 and influenza vaccines in mice. Vaccine 2023; 41:6093-6104. [PMID: 37659896 DOI: 10.1016/j.vaccine.2023.08.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
SpikoGen® is a recombinant spike protein vaccine against COVID-19 that obtained marketing authorization in the Middle East on October 6th, 2021, becoming the first adjuvanted protein-based COVID-19 vaccine of its type to achieve approval. SpikoGen® vaccine utilizes a unique adjuvant Advax-CpG55.2, which comprises delta inulin and CpG55.2 oligonucleotide, a synthetic human toll-like receptor (TLR)-9 agonist. As part of a safety assessment, developmental and reproductive toxicity (DART) studies were undertaken in mice of Advax-CpG55.2 adjuvanted formulations including SpikoGen®, a H7 hemagglutinin influenza vaccine (rH7HA), the bivalent combination of SpikoGen® and rH7HA, and a next-generation quadrivalent spike protein vaccine. In the first study, vaccines were administered intramuscularly to pregnant dams on gestation days (GD) 6.5 and 12.5, and in the second two doses were given in the pre-mating period with a further two doses during gestation. The doses used in the pregnant mice were 250-1000 times the usual human doses on a weight for weight basis. Strong serum antibody responses with neutralizing activity against the relevant virus were seen in the immunized dams and also at the time of weaning in the sera of their pups, consistent with robust maternal antibody transfer. No adverse effects of any of the vaccine formulations were observed in the immunized dams or their pups. Notably, there were no adverse effects of any of the Advax-CpG55.2 adjuvanted vaccines on female mating performance, fertility, ovarian or uterine parameters, embryo-fetal or postnatal survival, fetal growth, or neurofunctional development. No evidence of antigen interference was observed when SpikoGen® vaccine was mixed and co-administered with influenza hemagglutinin vaccine to pregnant dams. Together with the strong safety profile of SpikoGen® vaccine seen in adults and children in human trials, this DART study data supports the safety of Advax-CpG55.2 adjuvanted COVID-19 and influenza vaccine in women of childbearing potential including during pregnancy.
Collapse
Affiliation(s)
- Isaac G Sakala
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | | |
Collapse
|
6
|
Kosanovich JL, Eichinger KM, Lipp MA, Gidwani SV, Brahmbhatt D, Yondola MA, Perkins TN, Empey KM. Exacerbated lung inflammation following secondary RSV exposure is CD4+ T cell-dependent and is not mitigated in infant BALB/c mice born to PreF-vaccinated dams. Front Immunol 2023; 14:1206026. [PMID: 37646035 PMCID: PMC10461110 DOI: 10.3389/fimmu.2023.1206026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations due to bronchiolitis in children under 5 years of age. Moreover, severe RSV disease requiring hospitalization is associated with the subsequent development of wheezing and asthma. Due to the young age in which viral protection is needed and risk of vaccine enhanced disease following direct infant vaccination, current approaches aim to protect young children through maternal immunization strategies that boost neutralizing maternal antibody (matAb) levels. However, there is a scarcity of studies investigating the influence of maternal immunization on secondary immune responses to RSV in the offspring or whether the subsequent development of wheezing and asthma is mitigated. Toward this goal, our lab developed a murine model of maternal RSV vaccination and repeat RSV exposure to evaluate the changes in immune response and development of exacerbated lung inflammation on secondary RSV exposure in mice born to immunized dams. Despite complete protection following primary RSV exposure, offspring born to pre-fusion F (PreF)-vaccinated dams had exaggerated secondary ILC2 and Th2 responses, characterized by enhanced production of IL-4, IL-5, and IL-13. These enhanced type 2 cellular responses were associated with exaggerated airway eosinophilia and mucus hyperproduction upon re-exposure to RSV. Importantly, depletion of CD4+ T cells led to complete amelioration of the observed type 2 pathology on secondary RSV exposure. These unanticipated results highlight the need for additional studies that look beyond primary protection to better understand how maternal immunization shapes subsequent immune responses to repeat RSV exposure.
Collapse
Affiliation(s)
- Jessica L. Kosanovich
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Katherine M. Eichinger
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Madeline A. Lipp
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | | | | - Timothy N. Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kerry M. Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Blanco JCG, Cullen LM, Kamali A, Sylla FYD, Chinmoun Z, Boukhvalova MS, Morrison TG. Correlative outcomes of maternal immunization against RSV in cotton rats. Hum Vaccin Immunother 2022; 18:2148499. [PMID: 36503354 PMCID: PMC9766472 DOI: 10.1080/21645515.2022.2148499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Maternal anti-respiratory syncytial virus (RSV) antibodies protect neonates from RSV disease throughout first weeks of life. Previous studies of maternal immunization in cotton rats showed that a single immunization during pregnancy of RSV-primed dams with virus-like particles (VLPs) assembled with pre-fusion F protein and the wild type G protein boosted their RSV serum antibody concentration and protected pups early in life against RSV challenge. We extended these findings by evaluating responses to RSV infection in litters from two consecutive pregnancies of immunized dams. Using an RSV-primed population of VLP-vaccinated and unvaccinated dams, we defined correlations between dams' and litters' RSV neutralizing antibodies (NA); between litters' NA and protection; and between litter's NA and their lung expression of selected cytokines, of a first or of a second pregnancy. Lung pathology was also evaluated. We found positive correlation between the NA titers in the dams at delivery and the NA in their first and second litters and negative correlations between the litters' NA and protection from RSV challenge. Vaccination of dams modulated the mRNA expression for IFNγ and IL-6 and lung pathology in the first and in the second litter at different times after birth, even in the absence of detectable NA. Maternal RSV vaccination enhanced the levels of antibodies transferred to offspring and their protection from challenge. Importantly, maternal vaccination also impacted the immunological and inflammatory response of the offspring's lungs well into maturity, and after the antiviral effect of maternally transferred NA waned or was no longer detectable.
Collapse
Affiliation(s)
- Jorge C. G. Blanco
- Research Department, Sigmovir Biosystems Inc. Rockville, Rockville, MD, USA
| | - Lori M. Cullen
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Arash Kamali
- Research Department, Sigmovir Biosystems Inc. Rockville, Rockville, MD, USA
| | | | - Zenab Chinmoun
- Research Department, Sigmovir Biosystems Inc. Rockville, Rockville, MD, USA
| | | | - Trudy G. Morrison
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
8
|
Tabarsi P, Anjidani N, Shahpari R, Mardani M, Sabzvari A, Yazdani B, Roshanzamir K, Bayatani B, Taheri A, Petrovsky N, Li L, Barati S. Safety and immunogenicity of SpikoGen®, an Advax-CpG55.2-adjuvanted SARS-CoV-2 spike protein vaccine: a phase 2 randomized placebo-controlled trial in both seropositive and seronegative populations. Clin Microbiol Infect 2022; 28:1263-1271. [PMID: 35436611 PMCID: PMC9012510 DOI: 10.1016/j.cmi.2022.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/05/2022] [Accepted: 04/03/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE We aimed to investigate the immunogenicity and safety of SpikoGen®, a subunit COVID-19 vaccine composed of a recombinant prefusion-stabilized SARS-CoV-2 spike protein combined with the Advax-CpG55.2™ adjuvant, in seronegative and seropositive populations as primary vaccination. METHODS This randomized, placebo-controlled, double-blind phase 2 trial was conducted on 400 participants randomized 3:1 to receive two doses of 25 μg of SpikoGen® 3 weeks apart or the placebo. The primary safety outcomes were the incidence of solicited adverse events up to 7 days after each dose and unsolicited adverse events up to 28 days after the second dose. The primary immunogenicity outcomes were seroconversion against the S1 protein and the geometric mean concentration of S1 antibodies by days 21 and 35. RESULTS The SpikoGen® vaccine was well tolerated and no serious adverse events were recorded. The most common solicited adverse events were injection site pain and fatigue, largely graded as mild and transient. By day 35 (2 weeks post second dose), the seroconversion rate against S1 was 63.55 (95% CI: 57.81-69.01) in the SpikoGen® group versus 7.23 (95% CI: 2.7-15.07) in the placebo group. The geometric mean concentration of S1 antibodies was 29.12 (95% CI: 24.32-34.87) in the SpikoGen® group versus 5.53 (95% CI: 4.39-6.97) in the placebo group. Previously infected seropositive volunteers showed a large SARS-CoV-2 humoral response after a single SpikoGen® dose. DISCUSSION SpikoGen® had an acceptable safety profile and induced promising humoral and cellular immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ramin Shahpari
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Masoud Mardani
- Infectious Disease and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Araz Sabzvari
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Babak Yazdani
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Khashayar Roshanzamir
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Ali Taheri
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | | | - Lei Li
- Vaxine Pty Ltd, Bedford Park, Adelaide, Australia
| | - Saghar Barati
- Medical Department, Orchid Pharmed Company, Tehran, Iran.
| |
Collapse
|
9
|
Honda-Okubo Y, Cartee RT, Thanawastien A, Seung Yang J, Killeen KP, Petrovsky N. A typhoid fever protein capsular matrix vaccine candidate formulated with Advax-CpG adjuvant induces a robust and durable anti-typhoid Vi polysaccharide antibody response in mice, rabbits and nonhuman primates. Vaccine 2022; 40:4625-4634. [PMID: 35750538 DOI: 10.1016/j.vaccine.2022.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Typhax is an investigational typhoid fever vaccine candidate that is comprised of Vi polysaccharide from Salmonella enterica serovar typhi (S. Typhi) non-covalently entrapped in a glutaraldehyde catalyzed, cross-linked α-poly-L-lysine and CRM197 protein matrix. A previous Phase 1 trial of an aluminum phosphate adjuvanted Typhax formulation showed it induced Vi IgG after a single dose but that subsequent doses failed to further boost Vi IgG levels. The current study asked whether Advax-CpG adjuvant might instead be able to overcome polysaccharide-induced immune inhibition and improve Typhax immunogenicity. Advax-CpG adjuvanted Typhax elicited high and sustained Vi IgG responses in mice, rabbits and non-human primates (NHP) with levels being boosted by repeated immunization. High Vi antibody responses were lost in CD4 + T cell depleted mice confirming that despite the lack of conjugation of the polysaccharide to the carrier protein, Typhax nevertheless acts in a T cell dependent manner, explaining its ability to induce long-term B cell memory responses to Vi capable of being boosted. In NHP, Advax-CpG adjuvanted Typhax induced up to 100-fold higher Vi IgG levels than the commercial Typhim Vi polysaccharide vaccine. Typhax induced high and sustained serum bactericidal activity against S. Typhi and stimulated robust Vi IgG responses even in animals previously primed with a pure polysaccharide vaccine. Hence Advax-CpG adjuvanted Typhax vaccine is a highly promising candidate to provide robust and durable protection against typhoid fever.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Adelaide, Australia; School of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robert T Cartee
- Matrivax Research & Development Corporation, Boston, MA, USA
| | | | - Jae Seung Yang
- Clinical Immunology, International Vaccine Institute (IVI), South Korea
| | - Kevin P Killeen
- Matrivax Research & Development Corporation, Boston, MA, USA
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Adelaide, Australia; School of Medicine and Public Health, Flinders University, Adelaide, Australia.
| |
Collapse
|
10
|
Tran C, Pham T, Chichirelo-Konstantynovych KD, Konstantynovych TV, Alif SM. Efficacy of maternal vaccination during pregnancy against infant respiratory viruses. Breathe (Sheff) 2022; 18:220017. [DOI: 10.1183/20734735.0017-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/13/2022] [Indexed: 11/05/2022] Open
|
11
|
Eichinger KM, Kosanovich JL, Lipp M, Empey KM, Petrovsky N. Strategies for active and passive pediatric RSV immunization. Ther Adv Vaccines Immunother 2021; 9:2515135520981516. [PMID: 33623860 PMCID: PMC7879001 DOI: 10.1177/2515135520981516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/20/2020] [Indexed: 12/26/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide, with the most severe disease occurring in very young infants. Despite half a century of research there still are no licensed RSV vaccines. Difficulties in RSV vaccine development stem from a number of factors, including: (a) a very short time frame between birth and first RSV exposure; (b) interfering effects of maternal antibodies; and (c) differentially regulated immune responses in infants causing a marked T helper 2 (Th2) immune bias. This review seeks to provide an age-specific understanding of RSV immunity critical to the development of a successful pediatric RSV vaccine. Historical and future approaches to the prevention of infant RSV are reviewed, including passive protection using monoclonal antibodies or maternal immunization strategies versus active infant immunization using pre-fusion forms of RSV F protein antigens formulated with novel adjuvants such as Advax that avoid excess Th2 immune polarization.
Collapse
Affiliation(s)
- Katherine M. Eichinger
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, and Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica L. Kosanovich
- Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madeline Lipp
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kerry M. Empey
- Department of Pharmacy and Therapeutics, Department of Pharmaceutical Sciences, School of Medicine and Clinical and Translational Science Institute, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia and Vaxine Pty Ltd, Warradale, SA 5046, Australia
| |
Collapse
|