1
|
Colombatti Olivieri MA, Price NPJ, Jackson MA, Bannantine JP. Evaluation of the cytotoxicity and antibacterial activity of a synthetic tunicamycin derivative against Mycobacterium avium complex. Front Microbiol 2025; 16:1604400. [PMID: 40443998 PMCID: PMC12119611 DOI: 10.3389/fmicb.2025.1604400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/29/2025] [Indexed: 06/02/2025] Open
Abstract
Two synthetic derivatives of the tunicamycin antibiotic, TunR1 and TunR2, were previously developed that significantly reduced toxicity in eukaryotes but remained potent against Gram positive prokaryotes. TunR2 has been demonstrated to be non-toxic and effective in a zebrafish model of mycobacterial infection. In this study, we evaluated the cytotoxicity in bovine cells and the antibacterial effect of natural Tun as well as two synthetic derivatives of Tun, designated TunR1 and TunR2, on Mycobacterium avium complex. The average minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) for TunR2 ranged from 16 to 32 μg/mL when tested on seven Mycobacterium avium subspecies paratuberculosis (Map) strains. MICs were higher for the closely related Mycobacterium avium subspecies hominissuis (>32 μg/mL), and lower for Mycobacterium marinum (0.025 μg/mL) and Mycobacterium smegmatis (3.2 μg/mL). Effects on the Map cell wall could be detected by electron microscopy at TunR2 concentrations above 128 μg/mL. The toxicity of TunR2 in eukaryotes was evaluated in vitro by hemolysis of bovine red blood cells (RBCs) and by MTT viability assay on a bovine epithelial cell line, cultured bovine peripheral blood mononuclear cells (PBMCs), and bovine monocyte-derived macrophages (bMDMs). The concentrations of the drug that produce 50% of inhibition (IC50) in each of these three cell types was lower than the MIC for Map. Hemolytic activity was demonstrated in 91% of RBCs when exposed to 31 μg/mL of TunR2. Also, low-dose TunR2 treatment of infected macrophages did not significantly decrease Map survival after 48 h of infection. These results suggest that TunR2 is not a good candidate to treat Map infections.
Collapse
Affiliation(s)
- Maria A. Colombatti Olivieri
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, United States
- ARS Participation Program, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Neil P. J. Price
- National Center for Agricultural Utilization Research, USDA-Agricultural Research Service, Peoria, IL, United States
| | - Michael A. Jackson
- National Center for Agricultural Utilization Research, USDA-Agricultural Research Service, Peoria, IL, United States
| | - John P. Bannantine
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
2
|
Guo W, Wang X, Hu J, Zhang B, Zhao L, Zhang G, Qi J, Wei Z, Bao Y, Tian M, Wang S. In silico design of a multi-epitope vaccine against Mycobacterium avium subspecies paratuberculosis. Front Immunol 2025; 16:1505313. [PMID: 39935480 PMCID: PMC11810964 DOI: 10.3389/fimmu.2025.1505313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
The widespread chronic enteritis known as Paratuberculosis (PTB) or Johne's disease (JD) is caused by Mycobacterium avium subspecies paratuberculosis (MAP), posing a significant threat to global public health. Given the challenges associated with PTB or JD, the development and application of vaccines are potentially important for disease control. The aim of this study was to design a multi-epitope vaccine against MAP. A total of 198 MAP genomes were analyzed using pan-genome and reverse vaccinology approaches. B-cell and T-cell epitope analysis was performed on the selected promising cross-protective antigens followed by selection of epitopes with high antigenicity, no allergenicity, and no toxicity for the design of the vaccine. The designed vaccine was evaluated through molecular dynamics simulations, molecular docking, and immunological simulations. The results revealed the identification of five promising cross-protective antigens. In total, 10 B-cell epitopes, 10 HTL epitopes, and 9 CTL epitopes were selected for the design of the vaccine. Both the vaccine candidate and the vaccine-TLR4 complex demonstrated considerable stability in molecular dynamics simulations. Molecular docking studies confirmed that the vaccine candidate successfully interacted with TLR4. Immunological simulations showed an increase in both B-cell and T-cell populations after vaccination. Additionally, the vaccine candidate exhibited a codon adaptability index of 1.0 and a GC content of 53.64%, indicating strong potential for successful expression in Escherichia coli. This research developed a multi-epitope vaccine targeting MAP through pan-genomes and reverse vaccinology methods, offering innovative strategies for creating effective vaccines against MAP.
Collapse
Affiliation(s)
- Weiqi Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xinyu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Beibei Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Luru Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Guangdong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
3
|
Colombatti Olivieri MA, Cuerda MX, Moyano RD, Gravisaco MJ, Pinedo MFA, Delgado FO, Calamante G, Mundo S, de la Paz Santangelo M, Romano MI, Alonso MN, Del Medico Zajac MP. Superior protection against paratuberculosis by a heterologous prime-boost immunization in a murine model. Vaccine 2024; 42:126055. [PMID: 38880691 DOI: 10.1016/j.vaccine.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Vaccination is the best strategy to control Paratuberculosis (PTB), which is a significant disease in cattle and sheep. Previously we showed the humoral and cellular immune response induced by a novel vaccine candidate against PTB based on the Argentinian Mycobacterium avium subspecies paratuberculosis (Map) 6611 strain. To improve 6611 immunogenicity and efficacy, we evaluated this vaccine candidate in mice with two different adjuvants and a heterologous boost with a recombinant modified vaccinia Ankara virus (MVA) expressing the antigen 85A (MVA85A). We observed that boosting with MVA85A did not improve total IgG or specific isotypes in serum induced by one or two doses of 6611 formulated with incomplete Freund's adjuvant (IFA). However, when 6611 was formulated with ISA201 adjuvant, MVA85A boost enhanced the production of IFNγ, Th1/Th17 cytokines (IL-2, TNF, IL-17A) and IL-6, IL-4 and IL-10. Also, this group showed the highest levels of IgG2b and IgG3 isotypes, both important for better protection against Map infection in the murine model. Finally, the heterologous scheme elicited the highest levels of protection after Map challenge (lowest CFU count and liver lesion score). In conclusion, our results encourage further evaluation of 6611 strain + ISA201 prime and MVA85A boost in bovines.
Collapse
MESH Headings
- Animals
- Mycobacterium avium subsp. paratuberculosis/immunology
- Immunization, Secondary/methods
- Mice
- Paratuberculosis/prevention & control
- Paratuberculosis/immunology
- Immunoglobulin G/blood
- Cytokines/metabolism
- Female
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Adjuvants, Immunologic/administration & dosage
- Disease Models, Animal
- Bacterial Vaccines/immunology
- Bacterial Vaccines/administration & dosage
- Mice, Inbred BALB C
- Vaccinia virus/immunology
- Vaccinia virus/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Immunity, Cellular/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
Collapse
Affiliation(s)
| | - María Ximena Cuerda
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Roberto Damián Moyano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Fiorella Alvarado Pinedo
- Centro de Diagnóstico e Investigaciones Veterinarias (CEDIVE) de la Facultad de Ciencias Veterinarias - Universidad de La Plata, Chascomús, Buenos Aires 7130, Argentina
| | - Fernando Oscar Delgado
- Instituto de Patobiologia Veterinaria (IPV), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Gabriela Calamante
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Silvia Mundo
- Cátedra de Inmunología de la Facultad de Ciencias Veterinarias - Universidad de Buenos Aires, Ciudad de Buenos Aires 1427, Argentina
| | - María de la Paz Santangelo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Isabel Romano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Natalia Alonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina.
| | - María Paula Del Medico Zajac
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| |
Collapse
|