1
|
de Moura IA, Silva AJD, de Macêdo LS, de Melo KMTB, Leal LRS, Espinoza BCF, Invenção MDCV, de Pinho SS, de Freitas AC. Advances in the Functionalization of Vaccine Delivery Systems: Innovative Strategies and Translational Perspectives. Pharmaceutics 2025; 17:640. [PMID: 40430931 PMCID: PMC12115142 DOI: 10.3390/pharmaceutics17050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
The development of effective vaccines requires a rational design that considers the interaction between antigens, their vectors, and the immune system in addition to the activation of pathways that induce a safe and specific immune response. The efficacy of a vaccine formulation depends on the nature of the antigen, the protection offered by the delivery system, the ability to potentiate the immune response, and the precise release of the immunogen. Carrier systems such as lipid nanoparticles, polymers, exosomes, and microorganisms can be functionalized by chemical, physical, or biological methods to generate selective and improved biodistribution profiles. These methods enhance interaction with target cells, thereby improving immunological efficacy. The conjugation of specific ligands or the modification of parameters such as shape, charge, and size of vectors can enhance the specificity, stability, and efficiency of antigen transport to cellular compartments, thereby facilitating a robust immune response. This study examines modifications in vaccine delivery systems, focusing on biomolecules and physicochemical changes that enhance antigen presentation. Additionally, we examine innovative methods, including microneedles, electroporation, and needle-free systems that show potential for enhancing the immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Avenida da Engenharia S/N, Recife 50740-600, Pernambuco, Brazil; (I.A.d.M.); (A.J.D.S.); (L.S.d.M.); (K.M.T.B.d.M.); (L.R.S.L.); (B.C.F.E.); (M.d.C.V.I.); (S.S.d.P.)
| |
Collapse
|
2
|
Wagstaffe HR, Ascough S, Openshaw PJM, HIC-Vac meeting contributors. Human challenge models for vaccine development-strengths, limitations, and expansion into endemic settings: a HIC-Vac meeting report. IMMUNOTHERAPY ADVANCES 2025; 5:ltaf004. [PMID: 40265077 PMCID: PMC12012439 DOI: 10.1093/immadv/ltaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/06/2025] [Indexed: 04/24/2025] Open
Abstract
The HIC-Vac network is a unique association of researchers focussed on the development and use of human infection challenge (HIC, otherwise known as controlled human infection models or CHIM) studies for vaccine and therapeutic development, particularly for pathogens of high global impact. The fifth annual meeting of the HIC-Vac network was held on 1-3 November 2023. The theme of the meeting was capacity-building in endemic settings particularly in low- and middle-income countries (LMIC), where pathogens cause the greatest morbidity and mortality. In this report we highlight the strengths and limitations of HIC and expansion of such studies into endemic settings, noting that immune responses and vaccine efficacy differ across diverse settings and populations. The consensus was that HIC studies must not be restricted to high income settings if they are to be relevant to LMIC populations. This report summarizes the work presented at the HIC-Vac annual meeting, highlighting current and future challenge models, challenge agent manufacture, public engagement, ethics, and industry perspectives.
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Stephanie Ascough
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
3
|
Schmitt P, Borkner L, Jazayeri SD, McCarthy KN, Mills KH. Nasal vaccines for pertussis. Curr Opin Immunol 2023; 84:102355. [PMID: 37307651 DOI: 10.1016/j.coi.2023.102355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
Whooping cough, caused by Bordetella pertussis, is still a major cause of morbidity and mortality worldwide. Current acellular pertussis (aP) vaccines induce potent circulating IgG and prevent severe disease in children/adults and in infants born to vaccinated mothers. However, they do not prevent nasal infection, allowing asymptomatic transmission of B. pertussis. Studies in animal models have demonstrated that, unlike natural infection, immunization with aP vaccines fails to induce secretory immunoglobulin A (IgA) or interleukin-17 (IL-17)-secreting tissue-resident memory CD4 T (TRM) cells, required for sustained sterilizing immunity in the nasal mucosa. Live-attenuated vaccines or aP vaccines formulated with novel adjuvants that induce respiratory IgA and TRM cells, especially when delivered by the nasal route, are in development and have considerable promise as next-generation vaccines against pertussis.
Collapse
Affiliation(s)
- Pauline Schmitt
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lisa Borkner
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Seyed Davoud Jazayeri
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Karen N McCarthy
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kingston Hg Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
da Silva Antunes R, Garrigan E, Quiambao LG, Dhanda SK, Marrama D, Westernberg L, Wang E, Abawi A, Sutherland A, Armstrong SK, Brickman TJ, Sidney J, Frazier A, Merkel TJ, Peters B, Sette A. T cell reactivity to Bordetella pertussis is highly diverse regardless of childhood vaccination. Cell Host Microbe 2023; 31:1404-1416.e4. [PMID: 37490913 PMCID: PMC10528758 DOI: 10.1016/j.chom.2023.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
The incidence of whooping cough due to Bordetella pertussis (BP) infections has increased recently. It is believed that the shift from whole-cell pertussis (wP) vaccines to acellular pertussis (aP) vaccines may be contributing to this rise. While T cells are key in controlling and preventing disease, nearly all knowledge relates to antigens in aP vaccines. A whole-genome mapping of human BP-specific CD4+ T cell responses was performed in healthy vaccinated adults and revealed unexpected broad reactivity to hundreds of antigens. The overall pattern and magnitude of T cell responses to aP and non-aP vaccine antigens are similar regardless of childhood vaccination, suggesting that asymptomatic infections drive the pattern of T cell reactivity in adults. Lastly, lack of Th1/Th2 polarization to non-aP vaccine antigens suggests these antigens have the potential to counteract aP vaccination Th2 bias. These findings enhance our insights into human T cell responses to BP and identify potential targets for next-generation pertussis vaccines.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| | - Emily Garrigan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Lorenzo G Quiambao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sandeep Kumar Dhanda
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Daniel Marrama
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Luise Westernberg
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Adam Abawi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Tod J Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Isticato R. Bacterial Spore-Based Delivery System: 20 Years of a Versatile Approach for Innovative Vaccines. Biomolecules 2023; 13:947. [PMID: 37371527 DOI: 10.3390/biom13060947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Mucosal vaccines offer several advantages over injectable conventional vaccines, such as the induction of adaptive immunity, with secretory IgA production at the entry site of most pathogens, and needle-less vaccinations. Despite their potential, only a few mucosal vaccines are currently used. Developing new effective mucosal vaccines strongly relies on identifying innovative antigens, efficient adjuvants, and delivery systems. Several approaches based on phages, bacteria, or nanoparticles have been proposed to deliver antigens to mucosal surfaces. Bacterial spores have also been considered antigen vehicles, and various antigens have been successfully exposed on their surface. Due to their peculiar structure, spores conjugate the advantages of live microorganisms with synthetic nanoparticles. When mucosally administered, spores expressing antigens have been shown to induce antigen-specific, protective immune responses. This review accounts for recent progress in the formulation of spore-based mucosal vaccines, describing a spore's structure, specifically the spore surface, and the diverse approaches developed to improve its efficiency as a vehicle for heterologous antigen presentation.
Collapse
Affiliation(s)
- Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Naples, Italy
| |
Collapse
|
6
|
Nian X, Liu H, Cai M, Duan K, Yang X. Coping Strategies for Pertussis Resurgence. Vaccines (Basel) 2023; 11:889. [PMID: 37242993 PMCID: PMC10220650 DOI: 10.3390/vaccines11050889] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Pertussis (whooping cough) is a respiratory disease caused primarily by Bordetella pertussis, a Gram-negative bacteria. Pertussis is a relatively contagious infectious disease in people of all ages, mainly affecting newborns and infants under 2 months of age. Pertussis is undergoing a resurgence despite decades of high rates of vaccination. To better cope with the challenge of pertussis resurgence, we evaluated its possible causes and potential countermeasures in the narrative review. Expanded vaccination coverage, optimized vaccination strategies, and the development of a new pertussis vaccine may contribute to the control of pertussis.
Collapse
Affiliation(s)
- Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Hongbo Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Mengyao Cai
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Bejing 100029, China
| |
Collapse
|
7
|
da Silva Antunes R, Garrigan E, Quiambao LG, Dhanda SK, Marrama D, Westernberg L, Wang E, Sutherland A, Armstrong SK, Brickman TJ, Sidney J, Frazier A, Merkel T, Peters B, Sette A. Genome-wide characterization of T cell responses to Bordetella pertussis reveals broad reactivity and similar polarization irrespective of childhood vaccination profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534182. [PMID: 36993748 PMCID: PMC10055406 DOI: 10.1101/2023.03.24.534182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The incidence of whooping cough (pertussis), the respiratory disease caused by Bordetella pertussis (BP) has increased in recent years, and it is suspected that the switch from whole-cell pertussis (wP) to acellular pertussis (aP) vaccines may be a contributing factor to the rise in morbidity. While a growing body of evidence indicates that T cells play a role in the control and prevention of symptomatic disease, nearly all data on human BP-specific T cells is related to the four antigens contained in the aP vaccines, and data detailing T cell responses to additional non-aP antigens, are lacking. Here, we derived a full-genome map of human BP-specific CD4+ T cell responses using a high-throughput ex vivo Activation Induced Marker (AIM) assay, to screen a peptide library spanning over 3000 different BP ORFs. First, our data show that BP specific-CD4+ T cells are associated with a large and previously unrecognized breadth of responses, including hundreds of targets. Notably, fifteen distinct non-aP vaccine antigens were associated with reactivity comparable to that of the aP vaccine antigens. Second, the overall pattern and magnitude of CD4+ T cell reactivity to aP and non-aP vaccine antigens was similar regardless of aP vs wP childhood vaccination history, suggesting that the profile of T cell reactivity in adults is not driven by vaccination, but rather is likely driven by subsequent asymptomatic or sub-clinical infections. Finally, while aP vaccine responses were Th1/Th2 polarized as a function of childhood vaccination, CD4+ T cell responses to non-aP BP antigens vaccine responses were not, suggesting that these antigens could be used to avoid the Th2 bias associated with aP vaccination. Overall, these findings enhance our understanding of human T cell responses against BP and suggest potential targets for designing next-generation pertussis vaccines.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Emily Garrigan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Lorenzo G Quiambao
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Daniel Marrama
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Luise Westernberg
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Eric Wang
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Aaron Sutherland
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - April Frazier
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Tod Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
- University of California San Diego School of Medicine, La Jolla, San Diego, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
- University of California San Diego School of Medicine, La Jolla, San Diego, California, USA
| |
Collapse
|
8
|
Locht C. Pasteurian Contributions to the Study of Bordetella pertussis Toxins. Toxins (Basel) 2023; 15:toxins15030176. [PMID: 36977067 PMCID: PMC10054083 DOI: 10.3390/toxins15030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
As a tribute to Louis Pasteur on the occasion of the 200th anniversary of his birth, this article summarizes the main contributions of scientists from Pasteur Institutes to the current knowledge of toxins produced by Bordetella pertussis. The article therefore focuses on publications authored by researchers from Pasteur Institutes and is not intended as a systematic review of B. pertussis toxins. Besides identifying B. pertussis as the causative agent of whooping cough, Pasteurians have made several major contributions with respect to the structure–function relationship of the Bordetella lipo-oligosaccharide, adenylyl cyclase toxin and pertussis toxin. In addition to contributing to the understanding of these toxins’ mechanisms at the molecular and cellular levels and their role in pathogenesis, scientists at Pasteur Institutes have also exploited potential applications of the gathered knowledge of these toxins. These applications range from the development of novel tools to study protein–protein interactions over the design of novel antigen delivery tools, such as prophylactic or therapeutic vaccine candidates against cancer and viral infection, to the development of a live attenuated nasal pertussis vaccine. This scientific journey from basic science to applications in the field of human health matches perfectly with the overall scientific objectives outlined by Louis Pasteur himself.
Collapse
Affiliation(s)
- Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|