1
|
Sanchez-Martinez A, Moore T, Freitas TS, Benzaken TR, O'Hagan S, Millar E, Groves HE, Drysdale SB, Broadbent L. Recent advances in the prevention and treatment of respiratory syncytial virus disease. J Gen Virol 2025; 106. [PMID: 40202895 DOI: 10.1099/jgv.0.002095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Respiratory syncytial virus (RSV) is associated with considerable healthcare burden; as such, prevention and treatment of RSV have long been considered a priority. Historic failures in RSV vaccine development had slowed the research field. However, the discovery of the conformational change in the RSV fusion protein (F) has led to considerable advancements in the field. The RSV pharmaceutical landscape has drastically changed in recent years with successful trials of both vaccines and second-generation mAbs leading to licensing and roll-out of these agents in several countries. RSV preventative and therapeutic measures will likely have a significant impact on RSV-related morbidity and mortality. However, there are still gaps in the protection that these immunizations offer that should be addressed. Many unanswered questions about RSV infection dynamics and subsequent disease should be a focus of ongoing research. This review discusses the currently licensed RSV pharmaceuticals and others that have recently progressed to clinical trials.
Collapse
Affiliation(s)
| | - Tom Moore
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Medical Radiation Physics Group, The National Physical Laboratory, Teddington, UK
- School of Mathematics and Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Telma Sancheira Freitas
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Tami R Benzaken
- Immunisations and Vaccine Preventable Disease Division, United Kingdom Health Security Agency, London, UK
| | - Shaun O'Hagan
- Department of Paediatric Infectious Diseases, Royal Belfast Hospital for Sick Children, 274 Grosvenor Rd, Belfast, BT12 6BA, UK
| | - Emma Millar
- Acute Paediatric Medical Services, Antrim Area Hospital, Bush Road, Antrim, BT41 2RL, UK
| | - Helen E Groves
- Department of Paediatric Infectious Diseases, Royal Belfast Hospital for Sick Children, 274 Grosvenor Rd, Belfast, BT12 6BA, UK
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- The NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lindsay Broadbent
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
2
|
Li J, Long H, Chen S, Zhang Z, Li S, Liu Q, Liu J, Cai J, Luo L, Peng Y. An mRNA-Based Respiratory Syncytial Virus Vaccine Elicits Strong Neutralizing Antibody Responses and Protects Rodents Without Vaccine-Associated Enhanced Respiratory Disease. Vaccines (Basel) 2025; 13:52. [PMID: 39852831 PMCID: PMC11768429 DOI: 10.3390/vaccines13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) causes the most common type of severe lower respiratory tract infection worldwide, and the fusion (F) protein is a target for neutralizing antibodies and vaccine development. This study aimed to investigate the immunogenicity and efficacy of an mRNA-based RSV vaccine with an F protein sequence. METHODS We designed an mRNA construct encoding a modified RSV F protein, which was further developed into an LNP-encapsulated mRNA vaccine (LVRNA007). LVRNA007 was administered to mice and cotton rats, followed by immunogenicity analysis and viral challenge studies. Protection of rodents from the viral infection was evaluated based on the presence of the virus in the lung and pathological examination of respiratory tissues. RESULTS LVRNA007 induced robust humoral and cellular immune responses in both mice and cotton rats, with neutralization antibody levels in the immunized animals maintained at high levels for over one year. Vaccination of LVRNA007 also protected the rodents from RSV challenge, judged by the much decreased virus titer and the pathological score in the lung tissue. In addition, no vaccine-enhanced disease (VED) phenomenon was observed with LVRNA007 vaccination. CONCLUSIONS Based on the preclinical immunogenicity and efficacy data, LVRNA007 could be a potential promising vaccine for prophylaxis of RSV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yucai Peng
- Liverna Therapeutics Inc., Zhuhai 519000, China; (J.L.); (H.L.); (S.C.); (Z.Z.); (S.L.); (Q.L.); (J.L.); (J.C.); (L.L.)
| |
Collapse
|
3
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Riccò M, Abu-Raya B, Icardi G, Spoulou V, Greenberg D, Pecurariu OF, Hung IFN, Osterhaus A, Sambri V, Esposito S. Respiratory Syncytial Virus: A WAidid Consensus Document on New Preventive Options. Vaccines (Basel) 2024; 12:1317. [PMID: 39771979 PMCID: PMC11679680 DOI: 10.3390/vaccines12121317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Respiratory syncytial virus (RSV) is a leading cause of respiratory infections, particularly affecting young infants, older adults, and individuals with comorbidities. Methods: This document, developed as a consensus by an international group of experts affiliated with the World Association of Infectious Diseases and Immunological Disorders (WAidid), focuses on recent advancements in RSV prevention, highlighting the introduction of monoclonal antibodies (mAbs) and vaccines. Results: Historically, RSV treatment options were limited to supportive care and the monoclonal antibody palivizumab, which required multiple doses. Recent innovations have led to the development of long-acting mAbs, such as nirsevimab, which provide season-long protection with a single dose. Nirsevimab has shown high efficacy in preventing severe RSV-related lower respiratory tract infections (LRTIs) in infants, reducing hospitalizations and ICU admissions. Additionally, new vaccines, such as RSVpreF and RSVpreF3, target older adults and have demonstrated significant efficacy in preventing LRTIs in clinical trials. Maternal vaccination strategies also show promise in providing passive immunity to newborns, protecting them during the most vulnerable early months of life. This document further discusses the global burden of RSV, its economic impact, and the challenges of implementing these preventative strategies in different healthcare settings. Conclusions: The evidence supports the integration of both passive (mAbs) and active (vaccines) immunization approaches as effective tools to mitigate the public health impact of RSV. The combined use of these interventions could substantially reduce RSV-related morbidity and mortality across various age groups and populations, emphasizing the importance of widespread immunization efforts.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy;
| | - Bahaa Abu-Raya
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority, Halifax, NS B3K 6R8, Canada;
- Departments of Pediatrics, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Giancarlo Icardi
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department “MAKKA”, First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, Athens Medical School, 11527 Athens, Greece;
| | - David Greenberg
- Pediatric Infectious Diseases Unit, Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 8410501, Israel;
| | - Oana Falup Pecurariu
- Children’s Clinical Hospital Brasov, 500063 Brasov, Romania;
- Faculty of Medicine Brasov, Transilvania University, 500019 Brasov, Romania
| | - Ivan Fan-Ngai Hung
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR 999077, China;
| | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Vittorio Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy;
- Department Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
5
|
Vijayan A, Vogels R, Groppo R, Jin Y, Khan S, Van Kampen M, Jorritsma S, Boedhoe S, Baert M, van Diepen H, Kuipers H, Serroyen J, Del Valle JR, Broman A, Nguyen L, Ray S, Jarai B, Arora J, Lifton M, Mildenberg B, Morton G, Santra S, Grossman TR, Schuitemaker H, Custers J, Zahn R. A self-amplifying RNA RSV prefusion-F vaccine elicits potent immunity in pre-exposed and naïve non-human primates. Nat Commun 2024; 15:9884. [PMID: 39543172 PMCID: PMC11564874 DOI: 10.1038/s41467-024-54289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Newly approved subunit and mRNA vaccines for respiratory syncytial virus (RSV) demonstrate effectiveness in preventing severe disease, with protection exceeding 80% primarily through the generation of antibodies. An alternative vaccine platform called self-amplifying RNA (saRNA) holds promise in eliciting humoral and cellular immune responses. We evaluate the immunogenicity of a lipid nanoparticle (LNP)-formulated saRNA vaccine called SMARRT.RSV.preF, encoding a stabilized form of the RSV fusion protein, in female mice and in non-human primates (NHPs) that are either RSV-naïve or previously infected. Intramuscular vaccination with SMARRT.RSV.preF vaccine induces RSV neutralizing antibodies and cellular responses in naïve mice and NHPs. Importantly, a single dose of the vaccine in RSV pre-exposed NHPs elicits a dose-dependent anamnestic humoral immune response comparable to a subunit RSV preF vaccine. Notably, SMARRT.RSV.preF immunization significantly increases polyfunctional RSV.F specific memory CD4+ and CD8+ T-cells compared to RSV.preF protein vaccine. Twenty-four hours post immunization with SMARRT.RSV.preF, there is a dose-dependent increase in the systemic levels of inflammatory and chemotactic cytokines associated with the type I interferon response in NHPs, which is not observed with the protein vaccine. We identify a cluster of analytes including IL-15, TNFα, CCL4, and CXCL10, whose levels are significantly correlated with each other after SMARRT.RSV.preF immunization. These findings suggest saRNA vaccines have the potential to be developed as a prophylactic RSV vaccine based on innate, cellular, and humoral immune profiles they elicit.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands.
- Artemis Bioservices, Delft, The Netherlands.
| | - Ronald Vogels
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Rachel Groppo
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Yi Jin
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Selina Khan
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
- Oncode Accelerator Foundation, Utrecht, The Netherlands
| | | | - Sytze Jorritsma
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Satish Boedhoe
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Miranda Baert
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
- LUCID research centre, Leiden Medical University, Leiden, The Netherlands
| | | | - Harmjan Kuipers
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Jan Serroyen
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | | | - Ann Broman
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Lannie Nguyen
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Sayoni Ray
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Bader Jarai
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Jayant Arora
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Michelle Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School., Boston, USA
| | - Benjamin Mildenberg
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School., Boston, USA
| | - Georgeanna Morton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School., Boston, USA
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School., Boston, USA
| | | | | | - Jerome Custers
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Roland Zahn
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands.
| |
Collapse
|
6
|
Plotkin SA. Multiple Questions About Protection From Respiratory Syncytial Virus. Pediatr Infect Dis J 2024; 43:867-868. [PMID: 38869297 DOI: 10.1097/inf.0000000000004425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Affiliation(s)
- Stanley A Plotkin
- From the Department of Pediatrics, University of Pennsylvania, Doylestown, Pennsylvania
| |
Collapse
|
7
|
Riccò M, Cascio A, Corrado S, Bottazzoli M, Marchesi F, Gili R, Giuri PG, Gori D, Manzoni P. Efficacy of Respiratory Syncytial Virus Vaccination to Prevent Lower Respiratory Tract Illness in Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Vaccines (Basel) 2024; 12:500. [PMID: 38793751 PMCID: PMC11126042 DOI: 10.3390/vaccines12050500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
A systematic review and meta-analysis was designed in order to ascertain the effectiveness of respiratory syncytial virus (RSV) vaccination in preventing lower respiratory tract diseases (LRTD) in older adults (age ≥ 60 years). Studies reporting on randomized controlled trials (RCTs) were searched for in three databases (PubMed, Embase, and Scopus) and the preprint repository medRxiv until 31 March 2024. A total of nine studies were eventually included, two of which were conference proceedings. Our analysis included five RCTs on five RSV vaccines (RSVpreF, RSVPreF3, Ad26.RSV.preF, MEDI7510, and mRNA-1345). The meta-analysis documented a pooled vaccine efficacy of 81.38% (95% confidence interval (95% CI) 70.94 to 88.06) for prevention of LRTD with three or more signs/symptoms during the first RSV season after the delivery of the vaccine. Follow-up data were available for RSVPreF3 (2 RSV seasons), RSVpreF (mid-term estimates of second RSV season), and mRNA-1345 (12 months after the delivery of the primer), with a pooled VE of 61.15% (95% CI 45.29 to 72.40). After the first season, the overall risk for developing RSV-related LRTD was therefore substantially increased (risk ratio (RR) 4.326, 95% CI 2.415; 7.748). However, all estimates were affected by substantial heterogeneity, as suggested by the 95% CI of I2 statistics, which could be explained by inconsistencies in the design of the parent studies, particularly when dealing with case definition. In conclusion, adult RSV vaccination was quite effective in preventing LRTD in older adults, but the overall efficacy rapidly decreased in the second season after the delivery of the vaccine. Because of the heterogenous design of the parent studies, further analyses are required before tailoring specific public health interventions.
Collapse
Affiliation(s)
- Matteo Riccò
- AUSL–IRCCS di Reggio Emilia, Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), Local Health Unit of Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Antonio Cascio
- Infectious and Tropical Diseases Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, “G D’Alessandro”, University of Palermo, AOUP P. Giaccone, 90127 Palermo, Italy;
| | - Silvia Corrado
- ASST Rhodense, Dipartimento della donna e Area Materno-Infantile, UOC Pediatria, 20024 Milano, Italy
| | - Marco Bottazzoli
- Department of Otorhinolaryngology, APSS Trento, 38122 Trento, Italy
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Renata Gili
- Department of Prevention, Turin Local Health Authority, 10125 Torino, Italy
| | | | - Davide Gori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Paolo Manzoni
- Department of Public Health and Pediatric Sciences, University of Torino School of Medicine, 10125 Turin, Italy;
| |
Collapse
|
8
|
Tong X, Raffaele J, Feller K, Dornadula G, Devlin J, Boyd D, Loughney JW, Shanter J, Rustandi RR. Correlating Stability-Indicating Biochemical and Biophysical Characteristics with In Vitro Cell Potency in mRNA LNP Vaccine. Vaccines (Basel) 2024; 12:169. [PMID: 38400152 PMCID: PMC10893231 DOI: 10.3390/vaccines12020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The development of mRNA vaccines has increased rapidly since the COVID-19 pandemic. As one of the critical attributes, understanding mRNA lipid nanoparticle (LNP) stability is critical in the vaccine product development. However, the correlation between LNPs' physiochemical characteristics and their potency still remains unclear. The lack of regulatory guidance on the specifications for mRNA LNPs is also partially due to this underexplored relationship. In this study, we performed a three-month stability study of heat-stressed mRNA LNP samples. The mRNA LNP samples were analyzed for their mRNA degradation, LNP particle sizes, and mRNA encapsulation efficiency. In vitro cell potency was also evaluated and correlated with these above-mentioned physiochemical characterizations. The mRNA degradation-cell potency correlation data showed two distinct regions, indicating a critical cut-off size limit for mRNA degradation. The same temperature dependence was also observed in the LNP size-cell potency correlation.
Collapse
Affiliation(s)
- Xin Tong
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA (K.F.); (G.D.); (J.W.L.); (R.R.R.)
| | - Jessica Raffaele
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA (K.F.); (G.D.); (J.W.L.); (R.R.R.)
| | - Katrina Feller
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA (K.F.); (G.D.); (J.W.L.); (R.R.R.)
| | - Geethanjali Dornadula
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA (K.F.); (G.D.); (J.W.L.); (R.R.R.)
| | - James Devlin
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA (K.F.); (G.D.); (J.W.L.); (R.R.R.)
| | - David Boyd
- Process Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA; (D.B.); (J.S.)
| | - John W. Loughney
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA (K.F.); (G.D.); (J.W.L.); (R.R.R.)
| | - Jon Shanter
- Process Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA; (D.B.); (J.S.)
| | - Richard R. Rustandi
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA (K.F.); (G.D.); (J.W.L.); (R.R.R.)
| |
Collapse
|
9
|
See KC. Vaccination for Respiratory Syncytial Virus: A Narrative Review and Primer for Clinicians. Vaccines (Basel) 2023; 11:1809. [PMID: 38140213 PMCID: PMC10747850 DOI: 10.3390/vaccines11121809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) poses a significant burden on public health, causing lower respiratory tract infections in infants, young children, older adults, and immunocompromised individuals. Recent development and licensure of effective RSV vaccines provide a promising approach to lessening the associated morbidity and mortality of severe infections. This narrative review aims to empower clinicians with the necessary knowledge to make informed decisions regarding RSV vaccination, focusing on the prevention and control of RSV infections, especially among vulnerable populations. The paper explores the available RSV vaccines and existing evidence regarding their efficacy and safety in diverse populations. Synthesizing this information for clinicians can help the latter understand the benefits and considerations associated with RSV vaccination, contributing to improved patient care and public health outcomes.
Collapse
Affiliation(s)
- Kay Choong See
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore
| |
Collapse
|