1
|
Chen D, Zhang W, Xiao B, Xu B, Yang X, Deng S, Li G, Yang G, Cao J, Mei X, Luo Q, Huang P, Sun X, Su J, Zhong N, Zhao Z, Wang Z. Effect of wild-type vaccine doses on BA.5 hybrid immunity, disease severity, and XBB reinfection risk. J Virol 2024; 98:e0128524. [PMID: 39499071 DOI: 10.1128/jvi.01285-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/09/2024] [Indexed: 11/07/2024] Open
Abstract
Vaccination against the wild-type (WT) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus did not produce detectable levels of neutralizing antibodies (NAbs) against the BA.5 strain before it emerged. However, coronavirus disease-2019 (COVID-19) severity varied highly between unvaccinated, partially vaccinated, and fully vaccinated individuals, for unknown reasons. We assessed the severity of BA.5 infection and the risk of XBB strain reinfection and measured serum levels of NAbs against WT, BA.5, and XBB.1.9.1 SARS-CoV-2 strains at varying time points in 1,373 individuals who received zero, one, two, or three WT vaccine doses. We found that two to three WT doses significantly increased WT and BA.5 NAb levels and reduced the incidence of COVID-19-associated pneumonia upon BA.5 strain infection compared to zero to one dose. Regarding XBB reinfection, those who received two to three doses and were infected with the BA.5 variant exhibited a significantly lower reinfection risk compared to those who received zero to one dose. RNA analysis revealed that the differentially expressed genes between the two to three dose and unvaccinated groups were enriched in B cell activation, cytokine-cytokine receptor interaction, complement, and monocyte activation functions-indicating that vaccination increased the antibody response and reduced inflammation. Our results suggest that multiple antigen exposures to either matched or unmatched SARS-COV-2 variants, through vaccination or infection, may be necessary to achieve significant immune imprinting.IMPORTANCEThe administration of coronavirus disease-2019 (COVID-19) vaccines that do not perfectly match the viral strains that individuals become infected with has been found to impact the resultant illness severity-although the precise mechanism underlying this phenomenon remains unclear. We assessed viral clearance, as well as serum levels of inflammatory cytokines and neutralizing antibodies (NAbs) against wild-type, BA.5, and XBB.1.9.1 variants of the severe acute respiratory syndrome coronavirus 2 among individuals who received varying doses of such strain-mismatched vaccines. Notably, vaccination with ≥2 doses of strain-mismatched COVID-19 vaccines appeared to stimulate the production of specific NAbs during infection with new variants, as well as attenuate the inflammatory response and enhance viral clearance. Such vaccination regimens can also reduce the risk of reinfection. These findings may be important for guiding the development of future COVID-19 vaccination strategies that target both matched and mismatched viral variants.
Collapse
Affiliation(s)
- Daxiang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Weihong Zhang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyun Yang
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Shidong Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Guichang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Gang Yang
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Jinpeng Cao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Xinyue Mei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Qi Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Peiyu Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Xi Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Jie Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Zhuxiang Zhao
- Department of Infectious Disease, Respiratory and Critical Care Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Katzmarzyk M, Naughton R, Sitaras I, Jacobsen H, Higdon MM, Deloria Knoll M. Evaluating the Quality of Studies Assessing COVID-19 Vaccine Neutralizing Antibody Immunogenicity. Vaccines (Basel) 2024; 12:1238. [PMID: 39591141 PMCID: PMC11598362 DOI: 10.3390/vaccines12111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
Objective: COVID-19 vaccine-neutralizing antibodies provide early data on potential vaccine effectiveness, but their usefulness depends on study reliability and reporting quality. Methods: We systematically evaluated 50 published post-vaccination neutralizing antibody studies for key parameters that determine study and data quality regarding sample size, SARS-CoV-2 infection, vaccination regimen, sample collection period, demographic characterization, clinical characterization, experimental protocol, live virus and pseudo-virus details, assay standardization, and data reporting. Each category was scored from very high to low or unclear quality, with the lowest score determining the overall study quality score. Results: None of the studies attained an overall high or very high score, 8% (n = 4) attained moderate, 42% (n = 21) low, and 50% (n = 25) unclear. The categories with the fewest studies assessed as ≥ high quality were SARS-CoV-2 infection (42%), sample size (30%), and assay standardization (14%). Overall quality was similar over time. No association between journal impact factor and quality score was found. Conclusions: We found that reporting in neutralization studies is widely incomplete, limiting their usefulness for downstream analyses.
Collapse
Affiliation(s)
- Maeva Katzmarzyk
- Department of Viral Immunology, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | | | - Ioannis Sitaras
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Henning Jacobsen
- Department of Viral Immunology, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Melissa M. Higdon
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Maria Deloria Knoll
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Muangnoicharoen S, Wiangcharoen R, Lawpoolsri S, Nanthapisal S, Jongkaewwattana A, Duangdee C, Kamolratanakul S, Luvira V, Thanthamnu N, Chantratita N, Thitithanyanont A, Anh Wartel T, Excler JL, Ryser MF, Leong C, Mak TK, Pitisuttithum P. Heterologous Ad26.COV2.S booster after primary BBIBP-CorV vaccination against SARS-CoV-2 infection: 1-year follow-up of a phase 1/2 open-label trial. Vaccine 2024; 42:3999-4010. [PMID: 38744598 DOI: 10.1016/j.vaccine.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Inactivated whole-virus vaccination elicits immune responses to both SARS-CoV-2 nucleocapsid (N) and spike (S) proteins, like natural infections. A heterologous Ad26.COV2.S booster given at two different intervals after primary BBIBP-CorV vaccination was safe and immunogenic at days 28 and 84, with higher immune responses observed after the longer pre-boost interval. We describe booster-specific and hybrid immune responses over 1 year. METHODS This open-label phase 1/2 study was conducted in healthy Thai adults aged ≥ 18 years who had completed primary BBIBP-CorV primary vaccination between 90-240 (Arm A1; n = 361) or 45-75 days (Arm A2; n = 104) before enrolment. All received an Ad26.COV2.S booster. We measured anti-S and anti-N IgG antibodies by Elecsys®, neutralizing antibodies by SARS-CoV-2 pseudovirus neutralization assay, and T-cell responses by quantitative interferon (IFN)-γ release assay. Immune responses were evaluated in the baseline-seronegative population (pre-booster anti-N < 1.4 U/mL; n = 241) that included the booster-effect subgroup (anti-N < 1.4 U/mL at each visit) and the hybrid-immunity subgroup (anti-N ≥ 1.4 U/mL and/or SARS-CoV-2 infection, irrespective of receiving non-study COVID-19 boosters). RESULTS In Arm A1 of the booster-effect subgroup, anti-S GMCs were 131-fold higher than baseline at day 336; neutralizing responses against ancestral SARS-CoV-2 were 5-fold higher than baseline at day 168; 4-fold against Omicron BA.2 at day 84. IFN-γ remained approximately 4-fold higher than baseline at days 168 and 336 in 18-59-year-olds. Booster-specific responses trended lower in Arm A2. In the hybrid-immunity subgroup at day 336, anti-S GMCs in A1 were 517-fold higher than baseline; neutralizing responses against ancestral SARS-CoV-2 and Omicron BA.2 were 28- and 31-fold higher, respectively, and IFN-γ was approximately 14-fold higher in 18-59-year-olds at day 336. Durable immune responses trended lower in ≥ 60-year-olds. CONCLUSION A heterologous Ad26.COV2.S booster after primary BBIBP-CorV vaccination induced booster-specific immune responses detectable up to 1 year that were higher in participants with hybrid immunity. CLINICAL TRIALS REGISTRATION NCT05109559.
Collapse
Affiliation(s)
- Sant Muangnoicharoen
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Saranath Lawpoolsri
- Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand; Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sira Nanthapisal
- Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Anan Jongkaewwattana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chatnapa Duangdee
- Faculty of Tropical Medicine, Hospital for Tropical Diseases, Bangkok, Thailand
| | | | - Viravarn Luvira
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narumon Thanthamnu
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - T Anh Wartel
- International Vaccine Institute, Seoul, Republic of Korea
| | | | | | - Chloe Leong
- Janssen Asia Pacific Medical Affairs Operations, Sydney, Australia
| | - Tippi K Mak
- Centre of Regulatory Excellence, Duke-NUS Medical School, Singapore; Vaccine and Infectious Disease Organization, University of Saskatchewan, Canada
| | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Luvira V, Pitisuttithum P. Effect of homologous or heterologous vaccine booster over two initial doses of inactivated COVID-19 vaccine. Expert Rev Vaccines 2024; 23:283-293. [PMID: 38369699 DOI: 10.1080/14760584.2024.2320861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Inactivated vaccines were delivered to low- and middle-income countries during the early pandemics of COVID-19. Currently, more than 10 inactivated COVID-19 vaccines have been developed. Most inactivated vaccines contain an inactivated whole-cell index SARS-CoV-2 strain that is adjuvant. Whole virions inactivated with aluminum hydroxide vaccines were among the most commonly used. However, with the emerging of COVID-19 variants and waning of the immunity of two doses of after 3 months, WHO and many local governments have recommended the booster-dose program especially with heterologous platform vaccine. AREA COVERED This review was conducted through a literature search of the MEDLINE database to identify articles published from 2020 to 2023 covered the inactivated COVID-19 vaccines primary series with homologous and heterologous booster focusing on safety, immunogenicity, efficacy, and effectiveness. EXPERT OPINION The inactivated vaccines, especially whole virion inactivated in aluminum hydroxide appeared to be safe and had good priming effects. Immune responses generated after one dose of heterologous boost were high and able to preventing severity of disease and symptomatic infection. A new approach to inactivated vaccine has been developed using inactivating recombinant vector virus-NDV-HXP-S vaccine.
Collapse
Affiliation(s)
- Viravarn Luvira
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Nantanee R, Jaru-Ampornpan P, Chantasrisawad N, Himananto O, Papakhee S, Sophonphan J, Tawan M, Jupimai T, Anugulruengkitt S, Puthanakit T. Immunogenicity of BNT162b2 in children 6 months to under 5 years of age with previous SARS-CoV-2 infection, in the era of Omicron predominance. Vaccine X 2023; 15:100367. [PMID: 37601322 PMCID: PMC10432840 DOI: 10.1016/j.jvacx.2023.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
Background Children 6 months to < 5 years old are recommended to receive 3-dose regimen of BNT162b2. Children previously infected with Omicron variant of SARS-CoV-2 develop immunity from natural infection, therefore may require fewer doses of vaccine. Objective To compare immunogenicity of 1- or 2-dose BNT162b2 in healthy children post COVID-19 with 3-dose BNT162b2 in COVID-naïve children. Methods Children aged 6 months to < 5 years who developed COVID-19 during the Omicron-predominant period were enrolled; Group A 3-6 months(N = 40) and Group B > 6 months(N = 40) prior to vaccination. Participants in Group A and B received 2-dose BNT162b2 intramuscularly 1 month apart. COVID-naïve children were enrolled as a control group (N = 40) and received 3-dose BNT162b2 at month 0,1,3. Neutralizing antibody against Omicron variant(BA.2.75 and BA.4/5) was determined by pseudovirus assays(pVNT) as reported by neutralization dilution for 50%inhibition (ID50) at 28 days after the 1st and 2nd dose. Results From October-November 2022, 120 children with a median age of 2.8 years (IQR 1.6-4.0) were enrolled. The median duration since COVID-19 to vaccination was 4.4 months(IQR 3.8-5.4) in Group A and 7.9 months(7.0-8.5) in Group B. In Group A, the geometric means(GMs) of pVNT-BA.2.75 ID50 were 553 (95%CI 338-906) and 753(516-1098) after 1 and 2 doses, respectively, and the GMs of pVNT-BA.4/5 ID50 were 1936(1402-2673) and 1885(1414-2512), respectively. In Group B, the GMs of pVNT-BA.2.75 ID50 were 1383(1100-1742) and 1419 (1104-1823), and the GMs of pVNT-BA.4/5 ID50 were 2627(2048-3367) and 2056(1546-2735), respectively. Meanwhile in COVID-naïve group, the GMs of pVNT-BA.2.75 and pVNT-BA.4/5 ID50 were 158(98-255) and 59(31-114) after the 3rd dose, respectively. The geometric mean ratio(GMR) of pVNT-BA.2.75 ID50 after 1 dose in Group A and B compared with after 3 doses in COVID-naïve group were 3.50 (1.93-6.34) and 8.74 (4.79-15.95), respectively. The GMR of pVNT-BA.2.75 ID50 after 1 dose in Group B compared with Group A was 2.50 (1.45-4.31). Conclusions Children previously infected with SARS-CoV-2 Omicron variant, developed robust neutralizing antibody response against Omicron variant after single-dose BNT162b2. Children with an interval of > 6 months since COVID-19 infection developed higher neutralizing antibody response compared to those with a 3-to-6-month interval.
Collapse
Affiliation(s)
- Rapisa Nantanee
- Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Allergy and Clinical Immunology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Peera Jaru-Ampornpan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Napaporn Chantasrisawad
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Orawan Himananto
- Monoclonal and Antibody Production Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Supawan Papakhee
- Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiratchaya Sophonphan
- Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Monta Tawan
- Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thidarat Jupimai
- Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suvaporn Anugulruengkitt
- Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanyawee Puthanakit
- Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Study Team1
- Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Allergy and Clinical Immunology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Monoclonal and Antibody Production Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
6
|
Ashrafian F, Bagheri Amiri F, Bavand A, Zali M, Sadat Larijani M, Ramezani A. A Comparative Study of Immunogenicity, Antibody Persistence, and Safety of Three Different COVID-19 Boosters between Individuals with Comorbidities and the Normal Population. Vaccines (Basel) 2023; 11:1376. [PMID: 37631944 PMCID: PMC10459403 DOI: 10.3390/vaccines11081376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Data on immunogenicity, immune response persistency, and safety of COVID-19 boosters in patients with comorbidities are limited. Therefore, we aimed to evaluate three different boosters' immunogenicity and safety in individuals with at least one underlying disease (UD) (obesity, hypertension, and diabetes mellitus) with healthy ones (HC) who were primed with two doses of the BBIBP-CorV vaccine and received a booster shot of the same priming vaccine or protein subunit vaccines, PastoCovac Plus or PastoCovac. One hundred and forty subjects including sixty-three ones with a comorbidity and seventy-seven healthy ones were enrolled. The presence of SARS-CoV-2 antibodies was assessed before the booster injection and 28, 60, 90, and 180 days after it. Moreover, the adverse events (AEs) were recorded on days 7 and 21 postbooster shot for evaluating safety outcomes. Significantly increased titers of antispike, antiRBD, and neutralizing antibodies were observed in both UD and HC groups 28 days after the booster dose. Nevertheless, the titer of antispike IgG and anti-RBD IgG was lower in the UD group compared to the HC group. The long-term assessment regarding persistence of humoral immune responses showed that the induced antibodies were detectable up to 180 days postbooster shots though with a declined titer in both groups with no significant differences (p > 0.05). Furthermore, no significant difference in antibody levels was observed between each UD subgroup and the HC group, except for neutralizing antibodies in the hypertension subgroup. PastoCovac Plus and PastoCovac boosters induced a higher fold rise in antibodies in UD individuals than BBIBP-CorV booster recipients. No serious AEs after the booster injection were recorded. The overall incidence of AEs after the booster injection was higher in the UD group than the HC group among whom the highest systemic rate of AEs was seen in the BBIBP-CorV booster recipients. In conclusion, administration of COVID-19 boosters could similarly induce robust and persistent humoral immune responses in individuals with or without UD primarily vaccinated with two doses of the BBIBP-CorV. Protein-based boosters with higher a higher fold rise in antibodies and lower AEs in individuals with comorbidities might be considered a better choice for these individuals.
Collapse
Affiliation(s)
- Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| | - Mahsan Zali
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| | - Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| |
Collapse
|