1
|
Abbasian MH, Rahimian K, Mahmanzar M, Bayat S, Kuehu DL, Sisakht MM, Moradi B, Deng Y. Comparative Atlas of SARS-CoV-2 Substitution Mutations: A Focus on Iranian Strains Amidst Global Trends. Viruses 2024; 16:1331. [PMID: 39205305 PMCID: PMC11359407 DOI: 10.3390/v16081331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new emerging coronavirus that caused coronavirus disease 2019 (COVID-19). Whole-genome tracking of SARS-CoV-2 enhanced our understanding of the mechanism of the disease, control, and prevention of COVID-19. METHODS we analyzed 3368 SARS-CoV-2 protein sequences from Iran and compared them with 15.6 million global sequences in the GISAID database, using the Wuhan-Hu-1 strain as a reference. RESULTS Our investigation revealed that NSP12-P323L, ORF9c-G50N, NSP14-I42V, membrane-A63T, Q19E, and NSP3-G489S were found to be the most frequent mutations among Iranian SARS-CoV-2 sequences. Furthermore, it was observed that more than 94% of the SARS-CoV-2 genome, including NSP7, NSP8, NSP9, NSP10, NSP11, and ORF8, had no mutations when compared to the Wuhan-Hu-1 strain. Finally, our data indicated that the ORF3a-T24I, NSP3-G489S, NSP5-P132H, NSP14-I42V, envelope-T9I, nucleocapsid-D3L, membrane-Q19E, and membrane-A63T mutations might be responsible factors for the surge in the SARS-CoV-2 Omicron variant wave in Iran. CONCLUSIONS real-time genomic surveillance is crucial for detecting new SARS-CoV-2 variants, updating diagnostic tools, designing vaccines, and understanding adaptation to new environments.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran 1497716316, Iran;
| | - Karim Rahimian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14174, Iran;
| | - Mohammadamin Mahmanzar
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish 7941639982, Iran;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Saleha Bayat
- Department of Biology & Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran;
| | - Donna Lee Kuehu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Mahsa Mollapour Sisakht
- Faculty of Pharmacy, Biotechnology Research Center, Tehran University of Medical Sciences, Tehran 1936893813, Iran;
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran;
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| |
Collapse
|
2
|
Choga WT, Bareng OT, Moraka NO, Maruapula D, Gobe I, Ndlovu NS, Zuze BJL, Motshosi PC, Seru KB, Matsuru T, Boitswarelo M, Matshaba M, Gaolathe T, Mosepele M, Makhema J, Tamura TJM, Li JZ, Shapiro R, Lockman S, Gaseitsiwe S, Moyo S. Low Prevalence of Nirmatrelvir-Ritonavir Resistance-Associated Mutations in SARS-CoV-2 Lineages From Botswana. Open Forum Infect Dis 2024; 11:ofae344. [PMID: 39015352 PMCID: PMC11250512 DOI: 10.1093/ofid/ofae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Background We evaluated naturally occurring nirmatrelvir-ritonavir (NTV/r) resistance-associated mutations (RAMs) among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains from Botswana, a country with no NTV/r use to date, in order to recommend the usage of the agent for high-risk patients with coronavirus disease 2019 (COVID-19). Methods We conducted a retrospective analysis using 5254 complete SARS-CoV-2 sequences from Botswana (September 2020-September 2023). We evaluated the mutational landscape of SARS-CoV-2 3-Chymotrypsin-like protease (3CLpro) relative to the highlighted list of RAMs granted Food and Drug Administration Emergency Use Authorization in 2023. Results The sequenced 5254 samples included Beta variants of concerns (VOCs; n = 323), Delta VOCs (n = 1314), and Omicron VOCs (n = 3354). Overall, 77.8% of the sequences exhibited at least 1 polymorphism within 76/306 amino acid positions in the nsp5 gene. NTV/rRAMs were identified in 34/5254 (0.65%; 95% CI, 0.43%-0.87%) and occurred at 5 distinct positions. Among the NTV/r RAMS detected, A191V was the most prevalent (24/34; 70.6%). Notably, T21I mutation had a prevalence of 20.6% (7/34) and coexisted with either K90R (n = 3) polymorphism in Beta sequences with RAMs or P132H (n = 3) polymorphism for Omicron sequences with RAMs. Other NTV/r RAMs detected included P108S, with a prevalence of 5.88% (2/34), and L50F, with a prevalence of 2.94% (1/34). NTV/r RAMs were significantly higher (P < .001) in Delta (24/35) compared with Beta (4/34) and Omicron (6/34) sequences. Conclusions The frequency of NTV/r RAMs in Botswana was low. Higher rates were observed in Delta VOCs compared to Omicron and Beta VOCs. As NTV/r use expands globally, continuous surveillance for drug-resistant variants is essential, given the RAMs identified in our study.
Collapse
Affiliation(s)
- Wonderful T Choga
- Botswana Harvard Health Partnership, Gaborone, Botswana
- School of Applied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Ontlametse T Bareng
- Botswana Harvard Health Partnership, Gaborone, Botswana
- School of Applied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Natasha O Moraka
- Botswana Harvard Health Partnership, Gaborone, Botswana
- School of Applied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | - Irene Gobe
- School of Applied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Nokuthula S Ndlovu
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | | | | | | | - Teko Matsuru
- Botswana Harvard Health Partnership, Gaborone, Botswana
| | - Matshwenyego Boitswarelo
- Department of Health Systems Management, Clinical Services, Ministry of Health Botswana, Gaborone, Botswana
| | - Mogomotsi Matshaba
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Tendani Gaolathe
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Internal Medicine, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Mosepele Mosepele
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Internal Medicine, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Joseph Makhema
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Trevor J M Tamura
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Roger Shapiro
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shahin Lockman
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Simani Gaseitsiwe
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sikhulile Moyo
- Botswana Harvard Health Partnership, Gaborone, Botswana
- School of Applied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
3
|
El-Hddad SSA, Sobhy MH, El-Morsy A, Shoman NA, El-Adl K. Quinazolines and thiazolidine-2,4-dions as SARS-CoV-2 inhibitors: repurposing, in silico molecular docking and dynamics simulation. RSC Adv 2024; 14:13237-13250. [PMID: 38655479 PMCID: PMC11037030 DOI: 10.1039/d4ra02029d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
This paper presents an extensive analysis of COVID-19 with a specific focus on VEGFR-2 inhibitors as potential treatments. The investigation includes an overview of computational methodologies employed in drug repurposing and highlights in silico research aimed at developing treatments for SARS-CoV-2. The study explores the possible effects of twenty-eight established VEGFR-2 inhibitors, which include amide and urea linkers, against SARS-CoV-2. Among these, nine inhibitors exhibit highly promising in silico outcomes (designated as 3-6, 11, 24, 26, 27, and sorafenib) and are subjected to extensive molecular dynamics (MD) simulations to evaluate the binding modes and affinities of these inhibitors to the SARS-CoV-2 Mpro across a 100 ns timeframe. Additionally, MD simulations are conducted to ascertain the binding free energy of the most compelling ligand-pocket complexes identified through docking studies. The findings provide valuable understanding regarding the dynamic and thermodynamic properties of the interactions between ligands and pockets, reinforcing the outcomes of the docking studies and presenting promising prospects for the creation of therapeutic treatments targeting COVID-19.
Collapse
Affiliation(s)
- Sanadelaslam S A El-Hddad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Omar Almukhtar University Al Bayda 991 Libya
| | - Mohamed H Sobhy
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
| | - Ahmed El-Morsy
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University Najaf Iraq
| | - Nabil A Shoman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Ahram Canadian University Giza Egypt
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo11884 Egypt
| |
Collapse
|
4
|
Scutari R, Fox V, Fini V, Granaglia A, Vittucci AC, Smarrazzo A, Lancella L, Calo' Carducci F, Romani L, Cursi L, Bernaschi P, Russo C, Campana A, Bernardi S, Villani A, Perno CF, Alteri C. Molecular characterization of SARS-CoV-2 Omicron clade and clinical presentation in children. Sci Rep 2024; 14:5325. [PMID: 38438451 PMCID: PMC10912656 DOI: 10.1038/s41598-024-55599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Since its emergence, SARS-CoV-2 Omicron clade has shown a marked degree of variability and different clinical presentation compared with previous clades. Here we demonstrate that at least four Omicron lineages circulated in children since December 2021, and studied until November 2022: BA.1 (33.6%), BA.2 (40.6%), BA.5 (23.7%) and BQ.1 (2.1%). At least 70% of infections concerned children under 1 year, most of them being infected with BA.2 lineages (n = 201, 75.6%). Looking at SARS-CoV-2 genetic variability, 69 SNPs were found to be significantly associated in pairs, (phi < - 0.3 or > 0.3 and p-value < 0.001). 16 SNPs were involved in 4 distinct clusters (bootstrap > 0.75). One of these clusters (A23040G, A27259C, T23617G, T23620G) was also positively associated with moderate/severe COVID-19 presentation (AOR [95% CI] 2.49 [1.26-4.89] p-value: 0.008) together with comorbidities (AOR [95% CI] 2.67 [1.36-5.24] p-value: 0.004). Overall, these results highlight the extensive SARS-CoV-2 Omicron circulation in children, mostly aged < 1 year, and provide insights on viral diversification even considering low-abundant SNPs, finally suggesting the potential contribution of viral diversification in affecting disease severity.
Collapse
Affiliation(s)
- Rossana Scutari
- Multimodal Laboratory Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Major School in Microbiology and Virology, Campus Bio-Medico University, Rome, Italy
| | - Valeria Fox
- Multimodal Laboratory Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Vanessa Fini
- Multimodal Laboratory Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Annarita Granaglia
- Multimodal Laboratory Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Chiara Vittucci
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Smarrazzo
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Lancella
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Lorenza Romani
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Cursi
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Bernaschi
- Microbiology and Diagnostics in Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristina Russo
- Microbiology and Diagnostics in Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Bernardi
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alberto Villani
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Multimodal Laboratory Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
- Microbiology and Diagnostics in Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Claudia Alteri
- Multimodal Laboratory Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Strizki JM, Gaspar JM, Howe JA, Hutchins B, Mohri H, Nair MS, Kinek KC, McKenna P, Goh SL, Murgolo N. Molnupiravir maintains antiviral activity against SARS-CoV-2 variants and exhibits a high barrier to the development of resistance. Antimicrob Agents Chemother 2024; 68:e0095323. [PMID: 38047645 PMCID: PMC10777856 DOI: 10.1128/aac.00953-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/03/2023] [Indexed: 12/05/2023] Open
Abstract
Molnupiravir, an oral prodrug of N-hydroxycytidine (NHC), previously demonstrated broad in vitro antiviral activity against multiple RNA viruses and has shown a high barrier to the development of resistance. Here, we present the antiviral activity of NHC against recent SARS-CoV-2 variants and the results of resistance selection studies to better understand the potential for viral resistance to NHC. NHC activity against SARS-CoV-2 variants omicron (BA.1, BA.1.1, BA.2, BA.4, BA.4.6, BA.5, BQ.1.1, XBB.1, and XBB.1.5), alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2), lambda (C.37), and mu (B.1.621) was evaluated in Vero E6 cells using cytopathic effect assays. Resistance selection studies were performed by passaging SARS-CoV-2 (WA1) in the presence of NHC or a 3C-like protease inhibitor (MRK-A) in Vero E6 cells. Supernatants from cultures exhibiting a cytopathic effect score of ≥2 were re-passaged, and IC50 values were estimated. Whole-genome deep sequencing was performed on viral RNA isolated at each passage. NHC demonstrated similar potency against all SARS-CoV-2 variants evaluated. No evidence of SARS-CoV-2 phenotypic or genotypic resistance to NHC was observed following 30 passages. A random pattern of nucleotide changes was observed in NHC cultures, consistent with the drug's mechanism of action. In contrast, resistance was readily selected in all three MRK-A control cultures with the selection of a T21I substitution in the 3C-like protease. In conclusion, molnupiravir maintains antiviral activity across all major SARS-CoV-2 variants. Furthermore, no evidence of viral resistance to NHC was observed, supporting previous reports that NHC has a high barrier to developing resistance.
Collapse
Affiliation(s)
- Julie M. Strizki
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - John M. Gaspar
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - John A. Howe
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - Beth Hutchins
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - Hiroshi Mohri
- Aaron Diamond AIDS Research Center, Columbia University Medical Center, New York, New York, USA
| | - Manoj S. Nair
- Aaron Diamond AIDS Research Center, Columbia University Medical Center, New York, New York, USA
| | - Keith C. Kinek
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - Philip McKenna
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - Shih Lin Goh
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - Nicholas Murgolo
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
6
|
Senthilazhagan K, Sakthimani S, Kallanja D, Venkataraman S. SARS-CoV-2: analysis of the effects of mutations in non-structural proteins. Arch Virol 2023; 168:186. [PMID: 37344726 DOI: 10.1007/s00705-023-05818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
A worldwide pandemic that started in China in late 2019 was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded RNA virus belonging to the family Coronaviridae. Due to its structural variability and mutability, this virus continues to evolve and pose a major health threat around the world. Its characteristics, such as transmissibility, antigenicity, and resistance to drugs and vaccines, are continually altered through mutations. Examining mutational hotspots and their structural repercussions can thus aid in the development of more-effective vaccinations and treatment plans. In this study, we used full genome sequences of SARS-CoV-2 variants to predict structural changes in viral proteins. These sequences were obtained from the Global Initiative on Sharing Avian Influenza Data (GISAID), and a set of significant mutations were identified in each of the non-structural proteins (NSP1-16) and structural proteins, including the envelope, nucleocapsid, membrane, and spike proteins. The mutations were characterized as stabilizing or destabilizing based on their effect on protein dynamics and stability, and their impact on structure and function was evaluated. Among all of the proteins, NSP6 stands out as especially variable. The results of this study augment our understanding of how mutational events influence virus pathogenicity and evolution.
Collapse
Affiliation(s)
- Kavya Senthilazhagan
- Department of Biotechnology, Anna University, 600025, Guindy, Chennai, Tamil Nādu, India
| | - Seshagiri Sakthimani
- Department of Biotechnology, Anna University, 600025, Guindy, Chennai, Tamil Nādu, India
| | - Deepthi Kallanja
- Department of Biotechnology, Anna University, 600025, Guindy, Chennai, Tamil Nādu, India
| | - Sangita Venkataraman
- Department of Biotechnology, Anna University, 600025, Guindy, Chennai, Tamil Nādu, India.
| |
Collapse
|
7
|
Chen S, Arutyunova E, Lu J, Khan MB, Rut W, Zmudzinski M, Shahbaz S, Iyyathurai J, Moussa EW, Turner Z, Bai B, Lamer T, Nieman JA, Vederas JC, Julien O, Drag M, Elahi S, Young HS, Lemieux MJ. SARS-CoV-2 M pro Protease Variants of Concern Display Altered Viral Substrate and Cell Host Target Galectin-8 Processing but Retain Sensitivity toward Antivirals. ACS CENTRAL SCIENCE 2023; 9:696-708. [PMID: 37122453 PMCID: PMC10042146 DOI: 10.1021/acscentsci.3c00054] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Indexed: 05/03/2023]
Abstract
The main protease of SARS-CoV-2 (Mpro) is the most promising drug target against coronaviruses due to its essential role in virus replication. With newly emerging variants there is a concern that mutations in Mpro may alter the structural and functional properties of protease and subsequently the potency of existing and potential antivirals. We explored the effect of 31 mutations belonging to 5 variants of concern (VOCs) on catalytic parameters and substrate specificity, which revealed changes in substrate binding and the rate of cleavage of a viral peptide. Crystal structures of 11 Mpro mutants provided structural insight into their altered functionality. Additionally, we show Mpro mutations influence proteolysis of an immunomodulatory host protein Galectin-8 (Gal-8) and a subsequent significant decrease in cytokine secretion, providing evidence for alterations in the escape of host-antiviral mechanisms. Accordingly, mutations associated with the Gamma VOC and highly virulent Delta VOC resulted in a significant increase in Gal-8 cleavage. Importantly, IC50s of nirmatrelvir (Pfizer) and our irreversible inhibitor AVI-8053 demonstrated no changes in potency for both drugs for all mutants, suggesting Mpro will remain a high-priority antiviral drug candidate as SARS-CoV-2 evolves.
Collapse
Affiliation(s)
- Sizhu
Amelia Chen
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Elena Arutyunova
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jimmy Lu
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Muhammad Bashir Khan
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Wioletta Rut
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, Wroclaw, 50-370, Poland
| | - Mikolaj Zmudzinski
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, Wroclaw, 50-370, Poland
| | - Shima Shahbaz
- Department
of Dentistry & Dental Hygiene, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jegan Iyyathurai
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Eman W. Moussa
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Zoe Turner
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Bing Bai
- Li
Ka Shing Applied Virology Institute, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Tess Lamer
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - James A. Nieman
- Li
Ka Shing Applied Virology Institute, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - John C. Vederas
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, Wroclaw, 50-370, Poland
| | - Shokrollah Elahi
- Department
of Dentistry & Dental Hygiene, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Howard S. Young
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - M. Joanne Lemieux
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
8
|
Sun B, Zhang J, Wang J, Liu Y, Sun H, Lu Z, Chen L, Ding X, Pan J, Hu C, Yang S, Jiang D, Yang K. Comparative Immunoreactivity Analyses of Hantaan Virus Glycoprotein-Derived MHC-I Epitopes in Vaccination. Vaccines (Basel) 2022; 10:564. [PMID: 35455313 PMCID: PMC9030823 DOI: 10.3390/vaccines10040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
MHC-I antigen processes and presentation trigger host-specific anti-viral cellular responses during infection, in which epitope-recognizing cytotoxic T lymphocytes eliminate infected cells and contribute to viral clearance through a cytolytic killing effect. In this study, Hantaan virus (HTNV) GP-derived 9-mer dominant epitopes were obtained with high affinity to major HLA-I and H-2 superfamilies. Further immunogenicity and conservation analyses selected 11 promising candidates, and molecule docking (MD) was then simulated with the corresponding MHC-I alleles. Two-way hierarchical clustering revealed the interactions between GP peptides and MHC-I haplotypes. Briefly, epitope hotspots sharing good affinity to a wide spectrum of MHC-I molecules highlighted the biomedical practice for vaccination, and haplotype clusters represented the similarities among individuals during T-cell response establishment. Cross-validation proved the patterns observed through both MD simulation and public data integration. Lastly, 148 HTNV variants yielded six types of major amino acid residue replacements involving four in nine hotspots, which minimally influenced the general potential of MHC-I superfamily presentation. Altogether, our work comprehensively evaluates the pan-MHC-I immunoreactivity of HTNV GP through a state-of-the-art workflow in light of comparative immunology, acknowledges present discoveries, and offers guidance for ongoing HTNV vaccine pursuit.
Collapse
Affiliation(s)
- Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Junqi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Jiawei Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Yang Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
- Shaanxi Provincial Center for Disease Control and Prevention, Xi’an 710054, China
| | - Hao Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
- Tangshan Sannvhe Airport, Tangshan 063000, China
| | - Zhenhua Lu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
- Department of Epidemiology, Public Health School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China
| | - Longyu Chen
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Xushen Ding
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Jingyu Pan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Chenchen Hu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Shuya Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| |
Collapse
|