1
|
Lopez-Fabuel I, Garcia-Macia M, Buondelmonte C, Burmistrova O, Bonora N, Alonso-Batan P, Morant-Ferrando B, Vicente-Gutierrez C, Jimenez-Blasco D, Quintana-Cabrera R, Fernandez E, Llop J, Ramos-Cabrer P, Sharaireh A, Guevara-Ferrer M, Fitzpatrick L, Thompton CD, McKay TR, Storch S, Medina DL, Mole SE, Fedichev PO, Almeida A, Bolaños JP. Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. Nat Commun 2022; 13:536. [PMID: 35087090 PMCID: PMC8795187 DOI: 10.1038/s41467-022-28191-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.
Collapse
Affiliation(s)
- Irene Lopez-Fabuel
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| | - Marina Garcia-Macia
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Costantina Buondelmonte
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | | | - Nicolo Bonora
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Paula Alonso-Batan
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Brenda Morant-Ferrando
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Carlos Vicente-Gutierrez
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Ruben Quintana-Cabrera
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Emilio Fernandez
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Aseel Sharaireh
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Marta Guevara-Ferrer
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Lorna Fitzpatrick
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | | | - Tristan R McKay
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Stephan Storch
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), High Content Screening Facility, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138, Naples, Italy
| | - Sara E Mole
- MRC Laboratory for Molecular Biology and GOS Institute of Child Health, University College London, London, UK
| | | | - Angeles Almeida
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
3
|
Fjelldal MF, Freyd T, Evenseth LM, Sylte I, Ring A, Paulsen RE. Exploring the overlapping binding sites of ifenprodil and EVT-101 in GluN2B-containing NMDA receptors using novel chicken embryo forebrain cultures and molecular modeling. Pharmacol Res Perspect 2019; 7:e00480. [PMID: 31164987 PMCID: PMC6543015 DOI: 10.1002/prp2.480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDAR) are widely expressed in the brain. GluN2B subunit-containing NMDARs has recently attracted significant attention as potential pharmacological targets, with emphasis on the functional properties of allosteric antagonists. We used primary cultures from chicken embryo forebrain (E10), expressing native GluN2B-containing NMDA receptors as a novel model system. Comparing the inhibition of calcium influx by well-known GluN2B subunit-specific allosteric antagonists, the following rank order of potency was found: EVT-101 (EC 50 22 ± 8 nmol/L) > Ro 25-6981 (EC 50 60 ± 30 nmol/L) > ifenprodil (EC 50 100 ± 40 nmol/L) > eliprodil (EC 50 1300 ± 700 nmol/L), similar to previous observations in rat cortical cultures and cell lines overexpressing chimeric receptors. The less explored Ro 04-5595 had an EC 50 of 186 ± 32 nmol/L. Venturing to explain the differences in potency, binding properties were further studied by in silico docking and molecular dynamics simulations using x-ray crystal structures of GluN1/GluN2B amino terminal domain. We found that Ro 04-5595 was predicted to bind the recently discovered EVT-101 binding site, not the ifenprodil-binding site. The EVT-101 binding pocket appears to accommodate more structurally different ligands than the ifenprodil-binding site, and contains residues essential in ligand interactions necessary for calcium influx inhibition. For the ifenprodil site, the less effective antagonist (eliprodil) fails to interact with key residues, while in the EVT-101 pocket, difference in potency might be explained by differences in ligand-receptor interaction patterns.
Collapse
Affiliation(s)
- Marthe F. Fjelldal
- Department of Pharmaceutical BiosciencesSchool of PharmacyUniversity of OsloOsloNorway
- Norwegian Defence Research EstablishmentKjellerNorway
- Realomics Strategic Research InitiativeOsloNorway
| | - Thibaud Freyd
- Molecular Pharmacology and ToxicologyDepartment of Medical BiologyUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
- Department of ChemistryHylleraas Centre for Quantum Molecular SciencesUniversity of OsloOsloNorway
| | - Linn M. Evenseth
- Molecular Pharmacology and ToxicologyDepartment of Medical BiologyUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Ingebrigt Sylte
- Molecular Pharmacology and ToxicologyDepartment of Medical BiologyUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Avi Ring
- Norwegian Defence Research EstablishmentKjellerNorway
| | - Ragnhild E. Paulsen
- Department of Pharmaceutical BiosciencesSchool of PharmacyUniversity of OsloOsloNorway
- Realomics Strategic Research InitiativeOsloNorway
| |
Collapse
|
4
|
Mitsuoka T, Hanamura K, Koganezawa N, Kikura-Hanajiri R, Sekino Y, Shirao T. Assessment of NMDA receptor inhibition of phencyclidine analogues using a high-throughput drebrin immunocytochemical assay. J Pharmacol Toxicol Methods 2019; 99:106583. [PMID: 31082488 DOI: 10.1016/j.vascn.2019.106583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In recent years, new psychoactive substances (NPS) have been widely distributed for abuse purposes. Effective measures to counter the spread of NPS are to promptly legislate them through the risk assessment. Phencyclidine analogues having inhibitory effects toward NMDA receptor (NMDAR) have recently emerged in Japan. Therefore, it is important to establish a high-throughput system for efficiently detecting NPS that can inhibit NMDAR activity. METHODS Hippocampal neurons prepared from embryonic rats were incubated in 96-well microplates. After 3 weeks in vitro, cultured neurons were preincubated with phencyclidine (PCP) or PCP-analogues, including 3-methoxyphencyclidine (3-MeO-PCP) and 4-[1-(3-methoxyphenyl)cyclohexyl]morpholine (3-MeO-PCMo), and then treated with 100 μM glutamate for 10 min. After fixation, cultured neurons were immunostained with anti-drebrin and anti-MAP2 antibodies. The linear cluster density of drebrin along the dendrites was automatically quantified using a protocol that was originally developed by us. RESULTS The high-throughput immunocytochemical assay, measuring drebrin cluster density of cultured neurons, demonstrated that glutamate-induced reduction of drebrin cluster density in 96-well plates is competitively inhibited by NMDAR antagonist, APV. The reduction was also antagonized by PCP, 3-MeO-PCP and 3-MeO-PCMo. The inhibitory activity of 3-MeO-PCMo was lower than that of PCP or 3-MeO-PCP, with IC50 values of 26.67 μM (3-MeO-PCMo), 2.02 μM (PCP) and 1.51 μM (3-MeO-PCP). DISCUSSION The relative efficacy among PCP, 3-MeO-PCP and 3-MeO-PCMo calculated from IC50 are similar to those from Ki values. This suggests that the high-throughput imaging analysis is useful to speculate the Ki values of new PCP analogues without performing the kinetic studies.
Collapse
Affiliation(s)
- Toshinari Mitsuoka
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Ruri Kikura-Hanajiri
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.
| |
Collapse
|
6
|
Morland C, Pettersen MN, Hassel B. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium. Neurotoxicology 2016; 54:34-43. [PMID: 26994581 DOI: 10.1016/j.neuro.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 02/01/2023]
Abstract
Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia.
Collapse
Affiliation(s)
- Cecilie Morland
- Norwegian Defence Research Establishment, Kjeller, Norway; Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | | | - Bjørnar Hassel
- Norwegian Defence Research Establishment, Kjeller, Norway; Department of Complex Neurology and Neurohabilitation, Oslo University Hospital and The University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolaños JP. Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ 2012; 19:1582-9. [PMID: 22421967 PMCID: PMC3438489 DOI: 10.1038/cdd.2012.33] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a master regulator of glycolysis by its ability to synthesize fructose-2,6-bisphosphate, a potent allosteric activator of 6-phosphofructo-1-kinase. Being a substrate of the E3 ubiquitin ligase anaphase-promoting complex-Cdh1 (APCCdh1), PFKFB3 is targeted to proteasomal degradation in neurons. Here, we show that activation of N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) stabilized PFKFB3 protein in cortical neurons. Expressed PFKFB3 was found to be mainly localized in the nucleus, where it is subjected to degradation; however, expression of PFKFB3 lacking the APCCdh1-targeting KEN motif, or following NMDAR stimulation, promoted accumulation of PFKFB3 and its release from the nucleus to the cytosol through an excess Cdh1-inhibitable process. NMDAR-mediated increase in PFKFB3 yielded neurons having a higher glycolysis and lower pentose-phosphate pathway (PPP); this led to oxidative stress and apoptotic neuronal death that was counteracted by overexpressing glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of the PPP. Furthermore, expression of the mutant form of PFKFB3 lacking the KEN motif was sufficient to trigger oxidative stress and apoptotic death of neurons. These results reveal that, by inhibition of APCCdh1, glutamate receptors activation stabilizes PFKFB3 thus switching neuronal metabolism leading to oxidative damage and neurodegeneration.
Collapse
Affiliation(s)
- P Rodriguez-Rodriguez
- Departamento de Bioquimica y Biologia Molecular, Instituto de Neurociencias de Castilla y Leon, Universidad de Salamanca, Edificio Departamental, Spain
| | | | | | | |
Collapse
|
8
|
Ring A, Tanso R, Noraberg J. The use of Organotypic Hippocampal Slice Cultures to Evaluate Protection by Non-competitive NMDA Receptor Antagonists against Excitotoxicity. Altern Lab Anim 2010; 38:71-82. [DOI: 10.1177/026119291003800108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is great interest in testing neuroprotectants which inhibit the neurodegeneration that results from excessive activation of N-methyl-D-aspartate (NMDA) receptors. As an alternative to in vivo testing in animal models, we demonstrate here the use of a complex in vitro model to compare the efficacy and toxicity of NMDA receptor inhibitors. Organotypic hippocampal slice cultures were used to compare the effectiveness of the Alzheimer's disease drug, memantine, the Parkinson's disease drug, procyclidine, and the novel neuroprotectant, gacyclidine (GK11), against NMDA-induced toxicity. All three drugs are non-competitive NMDA receptor open-channel blockers that inhibit excitotoxic injury, and their neuroprotective capacities have been extensively investigated in vivo in animal models. They have also been evaluated as potential countermeasure agents against organophosphate poisoning. Quantitative densitometric image analysis of propidium iodide uptake in hippocampal regions CA1, CA3 and DG, showed that, after exposure to 10μM NMDA for 24 hours, GK11 was the most potent of the three drugs, with an IC50 of about 50nM and complete protection at 250nM. When applied at high doses, GK11 was still the more potent neuroprotectant, and also the least cytotoxic. These findings are consistent with those from in vivo tests in rodents. We conclude that the slice culture model provides valuable pre-clinical data, and that applying the model to the screening of neuroprotectants might significantly limit the use of in vivo tests in animals.
Collapse
Affiliation(s)
- Avi Ring
- Department of Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Rita Tanso
- Department of Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Jens Noraberg
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Bak LK, Walls AB, Schousboe A, Ring A, Sonnewald U, Waagepetersen HS. Neuronal glucose but not lactate utilization is positively correlated with NMDA-induced neurotransmission and fluctuations in cytosolic Ca2+ levels. J Neurochem 2009; 109 Suppl 1:87-93. [PMID: 19393013 DOI: 10.1111/j.1471-4159.2009.05943.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the brain utilizes glucose for energy production, individual brain cells may to some extent utilize substrates derived from glucose. Thus, it has been suggested that neurons consume extracellular lactate during synaptic activity. However, the precise role of lactate for fueling neuronal activity is still poorly understood. Recently, we demonstrated that glucose metabolism is up-regulated in cultured glutamatergic neurons during neurotransmission whereas that of lactate is not. Here, we show that utilization of glucose but not lactate correlates with NMDA-induced neurotransmitter glutamate release in cultured cerebellar neurons from mice. Pulses of NMDA at 30, 100, and 300 microM, leading to a progressive increase in both cytosolic [Ca2+] and release of glutamate, increased uptake and metabolism of glucose but not that of lactate as evidenced by mass spectrometric measurement of 13C incorporation into intracellular glutamate. In this manuscript, a cascade of events for the preferential neuronal utilization of glucose during neurotransmission is suggested and discussed in relation to our current understanding of neuronal energy metabolism.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|