1
|
Li L, Li D, Wang J, Dai Y. Single-cell RNA sequencing reveals key regulators and differentiation trajectory of iPSC-derived cardiomyocytes. Sci Rep 2024; 14:29268. [PMID: 39587160 PMCID: PMC11589621 DOI: 10.1038/s41598-024-79488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Cardiac differentiation of human pluripotent stem cells is not only a new strategy of regenerative therapy for cardiovascular disease treatment but also provides unique opportunities for the study of in vitro disease models and human heart development. To elucidate the dynamic gene regulatory networks and pivotal regulators involved in the cardiomyocyte differentiation process, we conducted an analysis of single-cell RNA sequencing data obtained from the reprogramming of two human induced pluripotent stem cell (iPSC) lines into cardiomyocytes. The data were collected from 32,365 cells at 4 stages of this process. We successfully identified cardiomyocyte clusters and several other cell clusters with different molecular characteristics derived from iPSC and described the differentiation trajectory of cardiomyocytes during differentiation in vitro. Through differential gene analysis and SCENIC analysis, we identified several candidate genes including CREG and NR2F2 that play an important regulatory role in cardiomyocyte lineage commitment. This study provides the key differentiation trajectory of heart differentiation in vitro at single-cell resolution and reveals the molecular basis of heart development and differentiation of iPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Lu Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Dandan Li
- Experimental Center, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, 518118, Guangdong, China
| | - Jiahong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yong Dai
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
2
|
Wen Y, Yang H, Hong Y. Transcriptomic Approaches to Cardiomyocyte-Biomaterial Interactions: A Review. ACS Biomater Sci Eng 2024; 10:4175-4194. [PMID: 38934720 DOI: 10.1021/acsbiomaterials.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Biomaterials, essential for supporting, enhancing, and repairing damaged tissues, play a critical role in various medical applications. This Review focuses on the interaction of biomaterials and cardiomyocytes, emphasizing the unique significance of transcriptomic approaches in understanding their interactions, which are pivotal in cardiac bioengineering and regenerative medicine. Transcriptomic approaches serve as powerful tools to investigate how cardiomyocytes respond to biomaterials, shedding light on the gene expression patterns, regulatory pathways, and cellular processes involved in these interactions. Emerging technologies such as bulk RNA-seq, single-cell RNA-seq, single-nucleus RNA-seq, and spatial transcriptomics offer promising avenues for more precise and in-depth investigations. Longitudinal studies, pathway analyses, and machine learning techniques further improve the ability to explore the complex regulatory mechanisms involved. This review also discusses the challenges and opportunities of utilizing transcriptomic techniques in cardiomyocyte-biomaterial research. Although there are ongoing challenges such as costs, cell size limitation, sample differences, and complex analytical process, there exist exciting prospects in comprehensive gene expression analyses, biomaterial design, cardiac disease treatment, and drug testing. These multimodal methodologies have the capacity to deepen our understanding of the intricate interaction network between cardiomyocytes and biomaterials, potentially revolutionizing cardiac research with the aim of promoting heart health, and they are also promising for studying interactions between biomaterials and other cell types.
Collapse
Affiliation(s)
- Yufeng Wen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
3
|
Guerrelli D, Pressman J, Salameh S, Posnack N. hiPSC-CM electrophysiology: impact of temporal changes and study parameters on experimental reproducibility. Am J Physiol Heart Circ Physiol 2024; 327:H12-H27. [PMID: 38727253 PMCID: PMC11390151 DOI: 10.1152/ajpheart.00631.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the comprehensive in vitro proarrhythmia assay (CiPA). Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. We investigated the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology. iCell cardiomyocytes2 were cultured and biosignals were acquired using a microelectrode array (MEA) system (2-14 days). Continuous recordings revealed a 22.6% increase in the beating rate and 7.7% decrease in the field potential duration (FPD) during a 20-min equilibration period. Location-specific differences across a multiwell plate were also observed, with iCell cardiomyocytes2 in the outer rows beating 8.8 beats/min faster than the inner rows. Cardiac endpoints were also impacted by cell culture duration; from 2 to 14 days, the beating rate decreased (-12.7 beats/min), FPD lengthened (+257 ms), and spike amplitude increased (+3.3 mV). Cell culture duration (4-10 days) also impacted cardiomyocyte drug responsiveness (E-4031, nifedipine, isoproterenol). qRT-PCR results suggest that daily variations in cardiac metrics may be linked to the continued maturation of hiPSC-CMs in culture (2-30 days). Daily experiments were also repeated using a second cell line (Cor.4U). Collectively, our study highlights multiple sources of variability to consider and address when performing hiPSC-CM MEA studies. To improve reproducibility and data interpretation, MEA-based studies should establish a standardized protocol and report key experimental conditions (e.g., cell line, culture time, equilibration time, electrical stimulation settings, and raw data values).NEW & NOTEWORTHY We demonstrate that iCell cardiomyocytes2 electrophysiology measurements are impacted by deviations in experimental techniques including electrical stimulation protocols, equilibration time, well-to-well variability, and length of hiPSC-CM culture. Furthermore, our results indicate that hiPSC-CM drug responsiveness changes within the first 2 wk following defrost.
Collapse
Affiliation(s)
- Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Biomedical Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, United States
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
| | - Jenna Pressman
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Biomedical Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, United States
| | - Shatha Salameh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
| | - Nikki Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
4
|
Guerrelli D, Pressman J, Posnack N. hiPSC-CM Electrophysiology: Impact of Temporal Changes and Study Parameters on Experimental Reproducibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560475. [PMID: 37873094 PMCID: PMC10592927 DOI: 10.1101/2023.10.02.560475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative. Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. Our study aimed to investigate the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology. hiPSC-CMs (iCell cardiomyocyte 2 ) were cultured for 14 days and biosignals were acquired using a microelectrode array (MEA) system. Continuous recordings revealed a 22.6% increase in the beating rate and 7.7% decrease in the field potential duration (FPD) during a 20-minute equilibration period. Location specific differences across a multiwell plate were also observed, with hiPSC-CMs in the outer rows beating 8.8 beats per minute (BPM) faster than the inner rows. Cardiac endpoints were also impacted by cell culture duration; from 2-14 days the beating rate decreased (-12.7 BPM), FPD lengthened (+257 ms), and spike amplitude increased (+3.3 mV). Cell culture duration (4-10 days) also impacted hiPSC-CM drug responsiveness (E-4031, nifedipine, isoproterenol). Our study highlights multiple sources of variability that should be considered and addressed when performing hiPSC-CM MEA studies. To improve reproducibility and data interpretation, MEA-based studies should establish a standardized protocol and report key experimental conditions (e.g., culture time, equilibration time, electrical stimulation settings, report raw data values). New & Noteworthy We demonstrate that hiPSC-CM electrophysiology measurements are significantly impacted by slight deviations in experimental techniques including electrical stimulation protocols, equilibration time, well-to-well variability, and length of hiPSC-CM culture. Furthermore, our results indicate that hiPSC-CM drug responsiveness changes within the first two weeks following defrost.
Collapse
|
5
|
Clark AP, Wei S, Fullerton K, Krogh-Madsen T, Christini DJ. Rapid ionic current phenotyping (RICP) identifies mechanistic underpinnings of iPSC-CM AP heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553521. [PMID: 37645815 PMCID: PMC10461967 DOI: 10.1101/2023.08.16.553521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
As a renewable, easily accessible, human-derived in vitro model, human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) are a promising tool for studying arrhythmia-related factors, including cardiotoxicity and congenital proarrhythmia risks. An oft-mentioned limitation of iPSC-CMs is the abundant cell-to-cell variability in recordings of their electrical activity. Here, we develop a new method, rapid ionic current phenotyping (RICP), that utilizes a short (10 s) voltage clamp protocol to quantify cell-to-cell heterogeneity in key ionic currents. We correlate these ionic current dynamics to action potential recordings from the same cells and produce mechanistic insights into cellular heterogeneity. We present evidence that the L-type calcium current is the main determinant of upstroke velocity, rapid delayed rectifier K+ current is the main determinant of the maximal diastolic potential, and an outward current in the excitable range of slow delayed rectifier K+ is the main determinant of action potential duration. We measure an unidentified outward current in several cells at 6 mV that is not recapitulated by iPSC-CM mathematical models but contributes to determining action potential duration. In this way, our study both quantifies cell-to-cell variability in membrane potential and ionic currents, and demonstrates how the ionic current variability gives rise to action potential heterogeneity. Based on these results, we argue that iPSC-CM heterogeneity should not be viewed simply as a problem to be solved but as a model system to understand the mechanistic underpinnings of cellular variability.
Collapse
Affiliation(s)
- Alexander P Clark
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Siyu Wei
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Kristin Fullerton
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - David J Christini
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| |
Collapse
|
6
|
Liu Y, Guo L, Xu C, Liu J, Fan Q, Gai Y, Zhao S, Wu X, Mi T, Wang J, Li Y. Comprehensive analysis of transcriptomics and metabolomics to understand tail-suspension-induced myocardial injury in rat. Front Cardiovasc Med 2023; 9:1074257. [PMID: 36733828 PMCID: PMC9886666 DOI: 10.3389/fcvm.2022.1074257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Background/Aims The effect and underlying mechanism of microgravity on myocardium still poorly understood. The present study aims to reveal the effect and underlying mechanism of tail-suspension-induced microgravity on myocardium of rats. Methods Tail-suspension was conducted to simulate microgravity in rats. Echocardiography assay was used to detect cardiac function. The cardiac weight index was measured. Hematoxylin and eosin (HE) staining and transmission electron microscopy assay were conducted to observe the structure of the tissues. RNA sequencing and non-targeted metabolomics was employed to obtain transcriptome and metabolic signatures of heart from tail-suspension-induced microgravity and control rats. Results Microgravity induced myocardial atrophy and decreased cardiac function in rats. Structure and ultrastructure changes were observed in myocardium of rats stimulated with microgravity. RNA sequencing for protein coding genes was performed and identified a total of 605 genes were differentially expressed in myocardium of rats with tail suspension, with 250 upregulated and 355 downregulated (P < 0.05 and | log2fold change| > 1). A total of 55 differentially expressed metabolites were identified between the two groups (VIP > 1 and P < 0.05) by the metabolic profiles of heart tissues from microgravity groups and control. Several major pathways altered aberrantly at both transcriptional and metabolic levels, including FoxO signaling pathway, Amyotrophic lateral sclerosis, Histidine metabolism, Arginine and proline metabolism. Conclusion Microgravity can induce myocardial atrophy and decreases cardiac function in rats and the molecular alterations at the metabolic and transcriptomic levels was observed, which indicated major altered pathways in rats with tail suspension. The differentially expressed genes and metabolites-involved in the pathways maybe potential biomarkers for microgravity-induced myocardial atrophy.
Collapse
|
7
|
Lee J, Gänswein T, Ulusan H, Emmenegger V, Saguner AM, Duru F, Hierlemann A. Repeated and On-Demand Intracellular Recordings of Cardiomyocytes Derived from Human-Induced Pluripotent Stem Cells. ACS Sens 2022; 7:3181-3191. [PMID: 36166837 PMCID: PMC7613763 DOI: 10.1021/acssensors.2c01678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pharmaceutical compounds may have cardiotoxic properties, triggering potentially life-threatening arrhythmias. To investigate proarrhythmic effects of drugs, the patch clamp technique has been used as the gold standard for characterizing the electrophysiology of cardiomyocytes in vitro. However, the applicability of this technology for drug screening is limited, as it is complex to use and features low throughput. Recent studies have demonstrated that 3D-nanostructured electrodes enable to obtain intracellular signals from many cardiomyocytes in parallel; however, the tedious electrode fabrication and limited measurement duration still remain major issues for cardiotoxicity testing. Here, we demonstrate how porous Pt-black electrodes, arranged in high-density microelectrode arrays, can be used to record intracellular-like signals of cardiomyocytes at large scale repeatedly over an extended period of time. The developed technique, which yields highly parallelized electroporations using stimulation voltages around 1 V peak-to-peak amplitude, enabled intracellular-like recordings at high success rates without causing significant alteration in key electrophysiological features. In a proof-of-concept study, we investigated electrophysiological modulations induced by two clinically applied drugs, nifedipine and quinidine. As the obtained results were in good agreement with previously published data, we are confident that the developed technique has the potential to be routinely used in in vitro platforms for cardiotoxicity screening.
Collapse
Affiliation(s)
- Jihyun Lee
- Corresponding Authors Jihyun Lee — Bio Engineering Laboratory, ETH Zurich, 4058 Basel, Switzerland; ® Phone: +41 (0)61 387 31 28; jihyun.lee@ bsse.ethz.ch; Andreas Hierlemann — Bio Engineering Laboratory, ETH Zurich, 4058 Basel, Switzerland; Phone: +41 (0)61 387 31 50;
| | | | | | | | | | | | - Andreas Hierlemann
- Corresponding Authors Jihyun Lee — Bio Engineering Laboratory, ETH Zurich, 4058 Basel, Switzerland; ® Phone: +41 (0)61 387 31 28; jihyun.lee@ bsse.ethz.ch; Andreas Hierlemann — Bio Engineering Laboratory, ETH Zurich, 4058 Basel, Switzerland; Phone: +41 (0)61 387 31 50;
| |
Collapse
|
8
|
Shen YY, Zhang RR, Liu QY, Li SY, Yi S. Robust temporal changes of cellular senescence and proliferation after sciatic nerve injury. Neural Regen Res 2022; 17:1588-1595. [PMID: 34916445 PMCID: PMC8771116 DOI: 10.4103/1673-5374.330619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/28/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence and proliferation are essential for wound healing and tissue remodeling. However, senescence-proliferation cell fate after peripheral nerve injury has not been clearly revealed. Here, post-injury gene expression patterns in rat sciatic nerve stumps (SRP113121) and L4-5 dorsal root ganglia (SRP200823) obtained from the National Center for Biotechnology Information were analyzed to decipher cellular senescence and proliferation-associated genetic changes. We first constructed a rat sciatic nerve crush model. Then, β-galactosidase activities were determined to indicate the existence of cellular senescence in the injured sciatic nerve. Ki67 and EdU immunostaining was performed to indicate cellular proliferation in the injured sciatic nerve. Both cellular senescence and proliferation were less vigorous in the dorsal root ganglia than in sciatic nerve stumps. These results reveal the dynamic changes of injury-induced cellular senescence and proliferation from both genetic and morphological aspects, and thus extend our understanding of the biological processes following peripheral nerve injury. The study was approved by the Animal Ethics Committee of Nantong University, China (approval No. 20190226-001) on February 26, 2019.
Collapse
Affiliation(s)
- Yin-Ying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Rui-Rui Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Qian-Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Shi-Ying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
9
|
Anto Michel N, Ljubojevic-Holzer S, Bugger H, Zirlik A. Cellular Heterogeneity of the Heart. Front Cardiovasc Med 2022; 9:868466. [PMID: 35548426 PMCID: PMC9081371 DOI: 10.3389/fcvm.2022.868466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in technology such as the introduction of high throughput multidimensional tools like single cell sequencing help to characterize the cellular composition of the human heart. The diversity of cell types that has been uncovered by such approaches is by far greater than ever expected before. Accurate identification of the cellular variety and dynamics will not only facilitate a much deeper understanding of cardiac physiology but also provide important insights into mechanisms underlying its pathological transformation. Distinct cellular patterns of cardiac cell clusters may allow differentiation between a healthy heart and a sick heart while potentially predicting future disease at much earlier stages than currently possible. These advances have already extensively improved and will ultimately revolutionize our knowledge of the mechanisms underlying cardiovascular disease as such. In this review, we will provide an overview of the cells present in the human and rodent heart as well as genes that may be used for their identification.
Collapse
|
10
|
Deciphering Cardiac Biology and Disease by Single-Cell Transcriptomic Profiling. Biomolecules 2022; 12:biom12040566. [PMID: 35454155 PMCID: PMC9032111 DOI: 10.3390/biom12040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
By detecting minute molecular changes in hundreds to millions of single cells, single-cell RNA sequencing allows for the comprehensive characterization of the diversity and dynamics of cells in the heart. Our understanding of the heart has been transformed through the recognition of cellular heterogeneity, the construction of regulatory networks, the building of lineage trajectories, and the mapping of intercellular crosstalk. In this review, we introduce cardiac progenitors and their transcriptional regulation during embryonic development, highlight cellular heterogeneity and cell subtype functions in cardiac health and disease, and discuss insights gained from the study of pluripotent stem-cell-derived cardiomyocytes.
Collapse
|
11
|
Schmid C, Abi-Gerges N, Leitner MG, Zellner D, Rast G. Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes. Cells 2021; 10:3370. [PMID: 34943878 PMCID: PMC8699770 DOI: 10.3390/cells10123370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
Subtype-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are promising tools, e.g., to assess the potential of drugs to cause chronotropic effects (nodal hiPSC-CMs), atrial fibrillation (atrial hiPSC-CMs), or ventricular arrhythmias (ventricular hiPSC-CMs). We used single-cell patch-clamp reverse transcriptase-quantitative polymerase chain reaction to clarify the composition of the iCell cardiomyocyte population (Fujifilm Cellular Dynamics, Madison, WI, USA) and to compare it with atrial and ventricular Pluricytes (Ncardia, Charleroi, Belgium) and primary human atrial and ventricular cardiomyocytes. The comparison of beating and non-beating iCell cardiomyocytes did not support the presence of true nodal, atrial, and ventricular cells in this hiPSC-CM population. The comparison of atrial and ventricular Pluricytes with primary human cardiomyocytes showed trends, indicating the potential to derive more subtype-specific hiPSC-CM models using appropriate differentiation protocols. Nevertheless, the single-cell phenotypes of the majority of the hiPSC-CMs showed a combination of attributes which may be interpreted as a mixture of traits of adult cardiomyocyte subtypes: (i) nodal: spontaneous action potentials and high HCN4 expression and (ii) non-nodal: prominent INa-driven fast inward current and high expression of SCN5A. This may hamper the interpretation of the drug effects on parameters depending on a combination of ionic currents, such as beat rate. However, the proven expression of specific ion channels supports the evaluation of the drug effects on ionic currents in a more realistic cardiomyocyte environment than in recombinant non-cardiomyocyte systems.
Collapse
Affiliation(s)
- Christina Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
- Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Michael Georg Leitner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
| | - Dietmar Zellner
- Non-Clinical Statistics, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Georg Rast
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
| |
Collapse
|
12
|
Hnatiuk AP, Briganti F, Staudt DW, Mercola M. Human iPSC modeling of heart disease for drug development. Cell Chem Biol 2021; 28:271-282. [PMID: 33740432 PMCID: PMC8054828 DOI: 10.1016/j.chembiol.2021.02.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have emerged as a promising platform for pharmacogenomics and drug development. In cardiology, they make it possible to produce unlimited numbers of patient-specific human cells that reproduce hallmark features of heart disease in the culture dish. Their potential applications include the discovery of mechanism-specific therapeutics, the evaluation of safety and efficacy in a human context before a drug candidate reaches patients, and the stratification of patients for clinical trials. Although this new technology has the potential to revolutionize drug discovery, translational hurdles have hindered its widespread adoption for pharmaceutical development. Here we discuss recent progress in overcoming these hurdles that should facilitate the use of hiPSCs to develop new medicines and individualize therapies for heart disease.
Collapse
Affiliation(s)
- Anna P Hnatiuk
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Francesca Briganti
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - David W Staudt
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|