1
|
Zhao S, Cui X, Pang Y, Zhang X, You X, Yang Y, Lei Y. Cloning, genome structure and expression analysis of MHC class I gene in Korean quail. Br Poult Sci 2021; 63:291-297. [PMID: 34649479 DOI: 10.1080/00071668.2021.1991885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. The major histocompatibility complex (MHC) is a highly polymorphic region of the genome essential to immune responses and animal health. However, avian MHC genetic structure is different from that of mammals. In this study, the structure and expression of Korean quail MHC class I gene was analysed.2. The quail MHC gene consisted of eight exons and seven introns. The open reading frame of the cDNA was 353 amino acids, and the molecular weight was about 38.91 kDa. Exons 1 and 2 coded for leading peptides and alpha 1 regions, respectively. Exons 3 and 4 encoded alpha 2 and alpha 3 regions. Exons 5 to 8 coded for connecting peptides and transmembrane regions/cytoplasmic regions (TM/CY). The Korean quail MHC class I amino acid sequence shared 87% to 99% homology with Japanese quail and 71% to 75% with chicken. The amino acid shared 40% and 43% homology with humans and mice, respectively.3. Real-time quantitative PCR showed that MHC-I was highly expressed in immune tissues such as the bursa of Fabricius. Moreover, the constructed evolutionary tree was consistent with accepted evolutionary pathways.4. MHC-I is closely related to the host's immune system, and these findings may help to better understand the role of Korean quail MHC-I in the immune system.
Collapse
Affiliation(s)
- S Zhao
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - X Cui
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - Y Pang
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - X Zhang
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - X You
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - Y Yang
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - Y Lei
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| |
Collapse
|
2
|
Arnaiz-Villena A, Ruiz-del-Valle V, Muñiz E, Palacio-Gruber J, Campos C, Gómez-Casado E, Villa JMM, Serrano-Vela I. Major Histocompatibility Complex Allele Persistence in Eurasia and America in the Genus Carduelis (Spinus) During Million Years. THE OPEN ORNITHOLOGY JOURNAL 2017; 10:92-104. [DOI: 10.2174/1874453201710010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 10/10/2023]
Abstract
Introduction:GenusCarduelis(Fringillidaefamily) includes goldfinches, siskins, redpolls, greenfinches and crossbills. Many of the species classified within this genus and other related genera have been grouped by using molecular systematics and the mitochondrial cytochrome b (mt cyt b) gene. According to this, the Eurasian siskin (C. spinus)is the only one extant direct ancestor of several North American finches; North American / South American radiations may have been originated by Eurasian siskin (or extinct relative). In the present work, we aim to perform a study of transpecies and transcontinental analyses of MHC (Major Histocompatibility Complex) Class I alleles in several genusCarduelis/Spinusspecies in order to draw evolutionary conclusions in several wild bird species belonging to the genusCarduelis / Spinus.Materials and Methods:Blood was taken from worldwide wild bird species. Passerine phylogeny was done after analysing mtDNA with Maximun Likelihood and Bayesian dendrograms. Major histocompatibility complex alleles were obtained by standard DNA cloning and sequencing.Results:We found two matches between MHC-I DNA alleles from different South American siskins at DNA level. Also, it was observed that the Eurasian siskin shares a protein with pine siskin and another with three South American siskins. Eight South American siskins species also share the same MHC protein. In addition, studied songbirds MHC class I intron 2 is longer than that ofGallus gallus.Conclusion:We have drawn the following conclusions: 1) We present the first direct evidence that “Minimal Essential MHC” does not exist for birds; one of its main definition characters,i.e.: small intron size does not hold for songbirds. 2) We also report that MHC genes transpecies evolution exist in birds by showing also for the first time that worldwide bird species keep the same MHC protein and DNA alleles. 3) New evidences on MHC alleles conservation from EurasianCarduelis spinus(most ancient) to South American siskins (most recent) during million years support that Eurasian siskin is the parental species for American GenusCarduelis (Spinus)species. It is uncertain whether Eurasian siskin (or extant relative) had initially an Holoartic distribution, including America.
Collapse
|
3
|
Yu S, Wei W, Xia M, Jiang Z, He D, Li Z, Han H, Chu W, Liu H, Chen J. Molecular characterization, alternative splicing and expression analysis ofACSF2and its correlation with egg-laying performance in geese. Anim Genet 2016; 47:451-62. [DOI: 10.1111/age.12435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 01/07/2023]
Affiliation(s)
- S. Yu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - W. Wei
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - M. Xia
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Z. Jiang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - D. He
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Z. Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - H. Han
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - W. Chu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - H. Liu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - J. Chen
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
4
|
Lyons AC, Hoostal MJ, Bouzat JL. Characterization of major histocompatibility complex class I loci of the lark sparrow (Chondestes grammacus) and insights into avian MHC evolution. Genetica 2015; 143:521-34. [PMID: 26071093 DOI: 10.1007/s10709-015-9850-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/06/2015] [Indexed: 11/29/2022]
Abstract
The major histocompatibilty complex (MHC) has become increasingly important in the study of the immunocapabilities of non-model vertebrates due to its direct involvement in the immune response. The characterization of MHC class I loci in the lark sparrow (Chondestes grammacus) revealed multiple MHC class I loci with elevated genetic diversity at exon 3, evidence of differential selection between the peptide binding region (PBR) and non-PBR, and the presence of multiple pseudogenes with limited divergence. The minimum number of functional MHC class I loci was estimated at four. Sequence analysis revealed d N /d S ratios significantly less than one at non-PBR sites, indicative of negative selection, whereas PBR sites associated with antigen recognition showed ratios greater than 1 but non-significant. GenBank surveys and phylogenetic analyses of previously reported avian MHC class I sequences revealed variable signatures of evolutionary processes acting upon this gene family, including gene duplication and potential concerted evolution. An increase in the number of class I loci across species coincided with an increase in pseudogene prevalence, revealing the importance of gene duplication in the expansion of multigene families and the creation of pseudogenes.
Collapse
Affiliation(s)
- Amanda C Lyons
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | | | | |
Collapse
|
5
|
Tariq M, Chen R, Yuan H, Liu Y, Wu Y, Wang J, Xia C. De novo transcriptomic analysis of peripheral blood lymphocytes from the Chinese goose: gene discovery and immune system pathway description. PLoS One 2015; 10:e0121015. [PMID: 25816068 PMCID: PMC4376690 DOI: 10.1371/journal.pone.0121015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 02/10/2015] [Indexed: 11/29/2022] Open
Abstract
Background The Chinese goose is one of the most economically important poultry birds and is a natural reservoir for many avian viruses. However, the nature and regulation of the innate and adaptive immune systems of this waterfowl species are not completely understood due to limited information on the goose genome. Recently, transcriptome sequencing technology was applied in the genomic studies focused on novel gene discovery. Thus, this study described the transcriptome of the goose peripheral blood lymphocytes to identify immunity relevant genes. Principal Findings De novo transcriptome assembly of the goose peripheral blood lymphocytes was sequenced by Illumina-Solexa technology. In total, 211,198 unigenes were assembled from the 69.36 million cleaned reads. The average length, N50 size and the maximum length of the assembled unigenes were 687 bp, 1,298 bp and 18,992 bp, respectively. A total of 36,854 unigenes showed similarity by BLAST search against the NCBI non-redundant (Nr) protein database. For functional classification, 163,161 unigenes were comprised of three Gene Ontology (Go) categories and 67 subcategories. A total of 15,334 unigenes were annotated into 25 eukaryotic orthologous groups (KOGs) categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotated 39,585 unigenes into six biological functional groups and 308 pathways. Among the 2,757 unigenes that participated in the 15 immune system KEGG pathways, 125 of the most important immune relevant genes were summarized and analyzed by STRING analysis to identify gene interactions and relationships. Moreover, 10 genes were confirmed by PCR and analyzed. Of these 125 unigenes, 109 unigenes, approximately 87%, were not previously identified in the goose. Conclusion This de novo transcriptome analysis could provide important Chinese goose sequence information and highlights the value of new gene discovery, pathways investigation and immune system gene identification, and comparison with other avian species as useful tools to understand the goose immune system.
Collapse
Affiliation(s)
- Mansoor Tariq
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, The People’s Republic of China
- Department of Veterinary Pathology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam, Sindh, Pakistan
| | - Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, The People’s Republic of China
| | - Hongyu Yuan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, The People’s Republic of China
| | - Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, The People’s Republic of China
| | - Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, The People’s Republic of China
| | - Junya Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, The People’s Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, The People’s Republic of China
- Key Laboratory Zoonosis of Ministry of Agriculture of China, Beijing, The People’s Republic of China
- * E-mail:
| |
Collapse
|
6
|
Buehler DM, Verkuil YI, Tavares ES, Baker AJ. Characterization of MHC class I in a long-distance migrant shorebird suggests multiple transcribed genes and intergenic recombination. Immunogenetics 2012; 65:211-25. [PMID: 23239370 DOI: 10.1007/s00251-012-0669-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022]
Abstract
The major histocompatibility complex (MHC) includes highly polymorphic gene families encoding proteins crucial to the vertebrate acquired immune system. Classical MHC class I (MHCI) genes code for molecules expressed on the surfaces of most nucleated cells and are associated with defense against intracellular pathogens, such as viruses. These genes have been studied in a few wild bird species, but have not been studied in long-distance migrating shorebirds. Red Knots Calidris canutus are medium-sized, monogamous sandpipers with migratory routes that span the globe. Understanding how such long-distance migrants protect themselves from disease has gained new relevance since the emergence of avian-borne diseases, including intracellular pathogens recognized by MHCI molecules, such as avian influenza. In this study, we characterized MHCI genes in knots and found 36 alleles in eight individuals and evidence for six putatively functional and expressed MHCI genes in a single bird. We also found evidence for recombination and for positive selection at putative peptide binding sites in exons 2 and 3. These results suggest surprisingly high MHC diversity in knots, given their demographic history. This may be a result of selection from diverse pathogens encountered by shorebirds throughout their annual migrations.
Collapse
MESH Headings
- Amino Acid Sequence
- Animal Migration
- Animals
- Charadriiformes/genetics
- Charadriiformes/immunology
- DNA, Complementary/genetics
- DNA, Intergenic/genetics
- Ecosystem
- Exons/genetics
- Genes, MHC Class I
- Genetic Variation
- Introns/genetics
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction
- Polymorphism, Genetic
- RNA, Messenger/blood
- RNA, Messenger/genetics
- Recombination, Genetic
- Selection, Genetic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Species Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- Deborah M Buehler
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada.
| | | | | | | |
Collapse
|
7
|
[Advance in research of poultry major histocompatibility complex-structure]. YI CHUAN = HEREDITAS 2012; 34:673-8. [PMID: 22698737 DOI: 10.3724/sp.j.1005.2012.00673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The structure of poultry major histocompatibility complex(MHC) is closely associated with avianimmunology and avian disease control. This review summaried the structures of poultry MHC, including chicken, turkey, duck, goose, and quail. It was suggested that there were some common characteristics among these MHCs: all of them have conservative MHC region containing MHC I, MHC II, and unknown functional genes; they are simple and contracted; the lengths of introns of MHC I gene are shorter than those of mammals; all have 8 exons and 7 introns in MHC I genes in chicken, turkey, duck, and goose; all have 6 exons and 5 introns in MHC II genes; the structure patterns of BG genes in chicken, turkey, and quail are identical; and all have microsatellite repetitive motifs. However, there are differences among species: MHC I and MHC II genes are duplicated, while there are several copies in duck, goose, and quail; and the numbers of BG genes are different. It will be helpful to further study avian disease and avian immunologenetics through analysing MHC structures of the major poultrys.
Collapse
|
8
|
Li C, Chen L, Sun Y, Liang H, Yi K, Sun Y, Ma Y, Li X, Wu W, Zhou X. Molecular cloning, polymorphism and tissue distribution of the MHC class IIB gene in the Chinese goose (Anser cygnoides). Br Poult Sci 2011; 52:318-27. [PMID: 21732877 DOI: 10.1080/00071668.2011.581270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The goose major histocompatibility complex (MHC) class IIB cDNA (Ancy-MHCII) was cloned by homology cloning and rapid amplification of cDNA ends by polymerase chain reaction (RACE-PCR), and the genomic structure and tissue expression were investigated. 2. Three different 5'-RACE sequences (Ancy-MHC II5'-1, Ancy-MHC II5'-2, Ancy-MHC II5'-3), one 3'-RACE sequence (Ancy-MHC II-3') and two different full length Ancy-MHC IIB cDNA sequences (Ancy-CD01, Ancy-CD02), which came from different alleles at one locus or different loci, were determined. 3. The genomic organisation is composed of 6 exons and 5 introns, with a longer intron region than that of the chicken. The alleles encode 259 and 260 amino acids in the mature protein. 4. The number of non-synonymous substitutions (dN) in the peptide-binding region of exon 2 from 8 alleles was higher than that of the synonymous substitutions (dS). 5. Tissue-specific expression of Ancy-MHC II mRNA was detected in an adult goose using RT-PCR. These results showed that Ancy-MHC II mRNA was expressed in the lung, spleen, liver, intestine, heart, kidney, pancreas, brain, skin and muscle. This is consistent with the expression of MHC class IIB in various tissues from the chicken. 6. Sequences from goose, snipe and duck clustered together when compared with known MHC class IIB sequences from the other species, significantly differing from mammals and aquatic species, indicating a pattern consistent with accepted evolutionary pathways.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Science and Veterinary Medicine and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, 5333 Xi'an Avenue, Changchun, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liang Q, Wei L, Wang X, He H. MHC class I loci of the Bar-Headed goose (Anser indicus). Genet Mol Biol 2011; 33:573-7. [PMID: 21637434 PMCID: PMC3036124 DOI: 10.1590/s1415-47572010000300031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 03/17/2010] [Indexed: 11/22/2022] Open
Abstract
MHC class I proteins mediate functions in anti-pathogen defense. MHC diversity has already been investigated by many studies in model avian species, but here we chose the bar-headed goose, a worldwide migrant bird, as a non-model avian species. Sequences from exons encoding the peptide-binding region (PBR) of MHC class I molecules were isolated from liver genomic DNA, to investigate variation in these genes. These are the first MHC class I partial sequences of the bar-headed goose to be reported. A preliminary analysis suggests the presence of at least four MHC class I genes, which share great similarity with those of the goose and duck. A phylogenetic analysis of bar-headed goose, goose and duck MHC class I sequences using the NJ method supports the idea that they all cluster within the anseriforms clade.
Collapse
Affiliation(s)
- Qinglong Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, National Research Center For Wildlife-Borne Diseases, Chinese Academy of Sciences, Beijing China
| | | | | | | |
Collapse
|
10
|
Promerová M, Albrecht T, Bryja J. Extremely high MHC class I variation in a population of a long-distance migrant, the Scarlet Rosefinch (Carpodacus erythrinus). Immunogenetics 2009; 61:451-61. [PMID: 19452149 DOI: 10.1007/s00251-009-0375-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 04/20/2009] [Indexed: 11/25/2022]
Affiliation(s)
- M Promerová
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Studenec 122, 675 02 Konesín, Czech Republic.
| | | | | |
Collapse
|
11
|
Patterns of variation of the major histocompatibility complex class IIB loci in Chinese goose (Anser Cygnoides). Immunogenetics 2009; 61:443-50. [DOI: 10.1007/s00251-009-0374-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 04/15/2009] [Indexed: 11/26/2022]
|
12
|
Alcaide M, Edwards SV, Cadahía L, Negro JJ. MHC class I genes of birds of prey: isolation, polymorphism and diversifying selection. CONSERV GENET 2008. [DOI: 10.1007/s10592-008-9653-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Gao FS, Fang QM, Li YG, Li XS, Hao HF, Xia C. Reconstruction of a swine SLA-I protein complex and determination of binding nonameric peptides derived from the foot-and-mouth disease virus. Vet Immunol Immunopathol 2006; 113:328-38. [PMID: 16870265 DOI: 10.1016/j.vetimm.2006.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 05/16/2006] [Accepted: 06/12/2006] [Indexed: 11/23/2022]
Abstract
No experimental system to date is available to identify viral T-cell epitopes in swine. In order to reconstruct the system for identification of short antigenic peptides, the swine SLA-2 gene was linked to the beta(2)m gene via (G4S)3, a linker encoding a 15-amino acid glycine-rich sequence (G4S)3, using splicing overlap extension-PCR (SOE-PCR). The maltose binding protein (MBP)-SLA-2-(G4S)3-beta(2)m fusion protein was expressed and purified in a pMAL-p2X/Escherichia coli TB1 system. The purified MBP-SLA-2-(G4S)3-beta(2)m protein was cleaved by factor Xa protease, and further purified by DEAE-Sepharose chromatography. The conformation of the SLA-2-(G4S)3-beta(2)m protein was determined by circular dichroism (CD) spectrum. In addition, the refolded SLA-2-(G4S)3-beta(2)m protein was used to bind three nonameric peptides derived from the foot-and-mouth disease virus (FMDV) O subtype VP1. The SLA-2-(G4S)3-beta(2)m-associated peptides were detected by mass spectrometry. The molecular weights and amino acid sequences of the peptides were confirmed by primary and secondary spectra, respectively. The results indicate that the SLA-2-(G4S)3-beta(2)m was 41.6kDa, and its alpha-helix, beta-sheet, turn, and random coil by CD estimation were 78 aa, 149 aa, 67 aa, and 93 aa, respectively. SLA-2-(G4S)3-beta(2)m protein was able to bind the nonameric peptides derived from the FMDV VP1 region: 26-34 (RRQHTDVSF) and 157-165 (RTLPTSFNY). The experimental system demonstrated that the reconstructed SLA-2-(G4S)3-beta(2)m protein complex can be used to identify nonameric peptides, including T-cell epitopes in swine.
Collapse
Affiliation(s)
- Feng-Shan Gao
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | |
Collapse
|
14
|
SHIINA T, HOSOMICHI K, HANZAWA K. Comparative genomics of the poultry major histocompatibility complex. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00333.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|