1
|
Rainard P, Foucras G, Martins RP. Adaptive Cell-Mediated Immunity in the Mammary Gland of Dairy Ruminants. Front Vet Sci 2022; 9:854890. [PMID: 35464360 PMCID: PMC9019600 DOI: 10.3389/fvets.2022.854890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023] Open
Abstract
Mastitis is one of the greatest issues for the global dairy industry and controlling these infections by vaccination is a long-sought ambition that has remained unfulfilled so far. In fact, gaps in knowledge of cell-mediated immunity in the mammary gland (MG) have hampered progress in the rational design of immunization strategies targeting this organ, as current mastitis vaccines are unable to elicit a strong protective immunity. The objectives of this article are, from a comprehensive and critical review of available literature, to identify what characterizes adaptive immunity in the MG of ruminants, and to derive from this analysis research directions for the design of an optimal vaccination strategy. A peculiarity of the MG of ruminants is that it does not belong to the common mucosal immune system that links the gut immune system to the MG of rodents, swine or humans. Indeed, the MG of ruminants is not seeded by lymphocytes educated in mucosal epithelia of the digestive or respiratory tracts, because the mammary tissue does not express the vascular addressins and chemokines that would allow the homing of memory T cells. However, it is possible to elicit an adaptive immune response in the MG of ruminants by local immunization because the mammary tissue is provided with antigen-presenting cells and is linked to systemic mechanisms. The optimal immune response is obtained by luminal exposure to antigens in a non-lactating MG. The mammary gland can be sensitized to antigens so that a local recall elicits neutrophilic inflammation and enhanced defenses locally, resulting from the activation of resident memory lymphocytes producing IFN-γ and/or IL-17 in the mammary tissue. The rational exploitation of this immunity by vaccination will need a better understanding of MG cell-mediated immunity. The phenotypic and functional characterization of mammary antigen-presenting cells and memory T cells are amongst research priorities. Based on current knowledge, rekindling research on the immune cells that populate the healthy, infected, or immunized MG appears to be a most promising approach to designing efficacious mastitis vaccines.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | |
Collapse
|
2
|
Progress towards the Elusive Mastitis Vaccines. Vaccines (Basel) 2022; 10:vaccines10020296. [PMID: 35214754 PMCID: PMC8876843 DOI: 10.3390/vaccines10020296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/25/2023] Open
Abstract
Mastitis is a major problem in dairy farming. Vaccine prevention of mammary bacterial infections is of particular interest in helping to deal with this issue, all the more so as antibacterial drug inputs in dairy farms must be reduced. Unfortunately, the effectiveness of current vaccines is not satisfactory. In this review, we examine the possible reasons for the current shortcomings of mastitis vaccines. Some reasons stem from the peculiarities of the mammary gland immunobiology, others from the pathogens adapted to the mammary gland niche. Infection does not induce sterilizing protection, and recurrence is common. Efficacious vaccines will have to elicit immune mechanisms different from and more effective than those induced by infection. We propose focusing our research on a few points pertaining to either the current immune knowledge or vaccinology approaches to get out of the current deadlock. A possible solution is to focus on the contribution of cell-mediated immunity to udder protection based on the interactions of T cells with the mammary epithelium. On the vaccinology side, studies on the orientation of the immune response by adjuvants, the route of vaccine administration and the delivery systems are among the keys to success.
Collapse
|
3
|
Rainard P, Cunha P, Martins RP, Gilbert FB, Germon P, Foucras G. Type 3 immunity: a perspective for the defense of the mammary gland against infections. Vet Res 2020; 51:129. [PMID: 33059767 PMCID: PMC7559147 DOI: 10.1186/s13567-020-00852-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Type 3 immunity encompasses innate and adaptive immune responses mediated by cells that produce the signature cytokines IL-17A and IL-17F. This class of effector immunity is particularly adept at controlling infections by pyogenic extracellular bacteria at epithelial barriers. Since mastitis results from infections by bacteria such as streptococci, staphylococci and coliform bacteria that cause neutrophilic inflammation, type 3 immunity can be expected to be mobilized at the mammary gland. In effect, the main defenses of this organ are provided by epithelial cells and neutrophils, which are the main terminal effectors of type 3 immunity. In addition to theoretical grounds, there is observational and experimental evidence that supports a role for type 3 immunity in the mammary gland, such as the production of IL-17A, IL-17F, and IL-22 in milk and mammary tissue during infection, although their respective sources remain to be fully identified. Moreover, mouse mastitis models have shown a positive effect of IL-17A on the course of mastitis. A lot remains to be uncovered before we can safely harness type 3 immunity to reinforce mammary gland defenses through innate immune training or vaccination. However, this is a promising way to find new means of improving mammary gland defenses against infection.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France.
| | - Patricia Cunha
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France
| | | | | | - Pierre Germon
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
4
|
Mezzetti M, Bionaz M, Trevisi E. Interaction between inflammation and metabolism in periparturient dairy cows. J Anim Sci 2020; 98:S155-S174. [PMID: 32810244 DOI: 10.1093/jas/skaa134] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
5
|
Minuti A, Jahan N, Lopreiato V, Piccioli-Cappelli F, Bomba L, Capomaccio S, Loor JJ, Ajmone-Marsan P, Trevisi E. Evaluation of circulating leukocyte transcriptome and its relationship with immune function and blood markers in dairy cows during the transition period. Funct Integr Genomics 2019; 20:293-305. [DOI: 10.1007/s10142-019-00720-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 10/09/2019] [Indexed: 11/28/2022]
|
6
|
Hine BC, Hunt PW, Colditz IG. Production and active transport of immunoglobulins within the ruminant mammary gland. Vet Immunol Immunopathol 2019; 211:75-84. [DOI: 10.1016/j.vetimm.2019.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/07/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
|
7
|
Sordillo LM. Mammary Gland Immunobiology and Resistance to Mastitis. Vet Clin North Am Food Anim Pract 2019; 34:507-523. [PMID: 30316507 DOI: 10.1016/j.cvfa.2018.07.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The ability of dairy cattle to prevent infectious pathogens from causing mastitis is related to the efficiency of the mammary immune system. The primary roles of the bovine immune system are to prevent bacterial invasion of the mammary gland, eliminate existing infections, and restore mammary tissues to normal function. Mammary gland immunity uses a multifaceted network of physical, cellular, and soluble factors to protect the cow from the diverse array of mastitis-causing pathogens. Strategies to optimize mammary gland defenses can be an effective way to prevent the establishment of new intramammary infections and limit the use of antimicrobials to treat mastitis.
Collapse
Affiliation(s)
- Lorraine M Sordillo
- College of Veterinary Medicine, Michigan State University, 784 Wilson Road, G300 Veterinary Medical Center, East Lansing, MI 48824, USA.
| |
Collapse
|
8
|
Kuhn MJ, Mavangira V, Gandy JC, Sordillo LM. Production of 15-F 2t-isoprostane as an assessment of oxidative stress in dairy cows at different stages of lactation. J Dairy Sci 2018; 101:9287-9295. [PMID: 30077444 DOI: 10.3168/jds.2018-14669] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/08/2018] [Indexed: 01/13/2023]
Abstract
Oxidative stress contributes to dysfunctional immune responses and predisposes dairy cattle to several metabolic and inflammatory-based diseases. Although the negative effects of oxidative stress on transition cattle are well established, biomarkers that accurately measure oxidative damage to cellular macromolecules are not well defined in veterinary medicine. Measuring 15-F2t-isoprostane, a lipid peroxidation product, is the gold standard biomarker for quantifying oxidative stress in human medicine. The aim of our study was to determine whether changes in 15-F2t-isoprostane concentrations in plasma and milk could accurately reflect changes in oxidant status during different stages of lactation. Using liquid chromatography-tandem mass spectrometry, 15-F2t-isoprostane concentrations were quantified in milk and plasma of 12 multiparous Holstein-Friesian cows that were assigned to 3 different sampling periods, including the periparturient period (1-2 d in milk; n = 4), mid lactation (80-84 d in milk; n = 4), and late lactation (183-215 d in milk; n = 4). Blood samples also were analyzed for indicators of oxidant status, inflammation, and negative energy balance. Our data revealed that 15-F2t-isoprostane concentrations changed at different stages of lactation and coincided with changes in other gauges of oxidant status in both plasma and milk. Interestingly, milk 15-F2t-isoprostane concentrations and other indices of oxidant status did not follow the same trends as plasma values at each stage of lactation. Indeed, during the periparturient period, systemic 15-F2t-isoprostane increased significantly accompanied by an increase in the systemic oxidant status index. Milk 15-F2t-isoprostane was significantly decreased during the periparturient period compared with other lactation stages in conjunction with a milk oxidant status index that trended lower during this period. The results from this study indicate that changes in 15-F2t-isoprostane concentrations in both milk and plasma may be strong indicators of an alteration in redox status both systemically and within the mammary gland.
Collapse
Affiliation(s)
- Matthew J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Vengai Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Jeffery C Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
9
|
Dos Santos Ramos MA, Da Silva PB, Spósito L, De Toledo LG, Bonifácio BV, Rodero CF, Dos Santos KC, Chorilli M, Bauab TM. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine 2018; 13:1179-1213. [PMID: 29520143 PMCID: PMC5834171 DOI: 10.2147/ijn.s146195] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms.
Collapse
Affiliation(s)
- Matheus Aparecido Dos Santos Ramos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Biological Sciences, Araraquara, SP, Brazil
| | - Patrícia Bento Da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Drugs and Medicines. Araraquara, SP, Brazil
| | - Larissa Spósito
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Biological Sciences, Araraquara, SP, Brazil
| | - Luciani Gaspar De Toledo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Biological Sciences, Araraquara, SP, Brazil
| | - Bruna Vidal Bonifácio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Biological Sciences, Araraquara, SP, Brazil
| | - Camila Fernanda Rodero
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Drugs and Medicines. Araraquara, SP, Brazil
| | - Karen Cristina Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Drugs and Medicines. Araraquara, SP, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Drugs and Medicines. Araraquara, SP, Brazil
| | - Taís Maria Bauab
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Biological Sciences, Araraquara, SP, Brazil
| |
Collapse
|
10
|
Sordillo LM. Nutritional strategies to optimize dairy cattle immunity. J Dairy Sci 2016; 99:4967-4982. [PMID: 26830740 DOI: 10.3168/jds.2015-10354] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/25/2015] [Indexed: 01/16/2023]
Abstract
Dairy cattle are susceptible to increased incidence and severity of both metabolic and infectious diseases during the periparturient period. A major contributing factor to increased health disorders is alterations in bovine immune mechanisms. Indeed, uncontrolled inflammation is a major contributing factor and a common link among several economically important infectious and metabolic diseases including mastitis, retained placenta, metritis, displaced abomasum, and ketosis. The nutritional status of dairy cows and the metabolism of specific nutrients are critical regulators of immune cell function. There is now a greater appreciation that certain mediators of the immune system can have a reciprocal effect on the metabolism of nutrients. Thus, any disturbances in nutritional or immunological homeostasis can provide deleterious feedback loops that can further enhance health disorders, increase production losses, and decrease the availability of safe and nutritious dairy foods for a growing global population. This review will discuss the complex interactions between nutrient metabolism and immune functions in periparturient dairy cattle. Details of how either deficiencies or overexposure to macro- and micronutrients can contribute to immune dysfunction and the subsequent development of health disorders will be presented. Specifically, the ways in which altered nutrient metabolism and oxidative stress can interact to compromise the immune system in transition cows will be discussed. A better understanding of the linkages between nutrition and immunity may facilitate the design of nutritional regimens that will reduce disease susceptibility in early lactation cows.
Collapse
Affiliation(s)
- L M Sordillo
- College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
11
|
The CD markers of camel (Camelus dromedarius) milk cells during mastitis: the LPAM-1 expression is an indication of possible mucosal nature of the cellular trafficking. Res Vet Sci 2015; 99:77-81. [PMID: 25666226 DOI: 10.1016/j.rvsc.2015.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/20/2022]
Abstract
Studying the cellular populations of the camel mammary glands through the expression pattern of the CD markers and adhesion molecules is a mean to define whether the cellular trafficking pathway is peripheral or mucosal nature. Camel milk cells from 8 Gram-positive and 5 Gram-negative infected camels were examined with flow cytometry using cross-reacting antibodies like, anti-CD4(+), CD8(+), WC+1(+)γδ, CD62L, CD11a(+)/CD18, LPAM-1, CXCR2. The overall results indicated high flow cytometry output of most of the CD makers. The statistical analysis of the mean percentage of the expressed CD markers has shown that CD62L, CXCR-2, LPAM-1, CD11a/CD18, CD8(+), IL-6R and CD20(+) were expressed in significant differences in either type of the infection. The LPAM-1 expression has provided further support to the notion that the lymphocyte trafficking is of the mucosal nature. The mucosal origin of cellular trafficking has important implications on the vaccine design and therapeutical approaches to mastitis.
Collapse
|
12
|
Abstract
The mammary gland (MG) lacks a mucosa but is part of the mucosal immune system because of its role in passive mucosal immunity. The MG is not an inductive site for mucosal immunity. Rather, synthesis of immunoglobulin (Ig)A by plasma cells stimulated at distal inductive sites dominate in the milk of rodents, humans, and swine whereas IgG1 derived from serum predominates in ruminants. Despite the considerable biodiversity in the role of the MG, IgG passively transfers the maternal systemic immunological experience whereas IgA transfers the mucosal immunological experience. Although passive antibodies are protective, they and other lacteal constituents can be immunoregulatory. Immune protection of the MG largely depends on the innate immune system; the monocytes–macrophages group together with intraepithelial lymphocytes is dominant in the healthy gland. An increase in somatic cells (neutrophils) and various interleukins signal infection (mastitis) and a local immune response in the MG. The major role of the MG to mucosal immunity is the passive immunity supplied to the suckling neonate.
Collapse
|
13
|
Ballou MA. GROWTH AND DEVELOPMENT SYMPOSIUM: Inflammation: Role in the etiology and pathophysiology of clinical mastitis in dairy cows1. J Anim Sci 2012; 90:1466-78. [DOI: 10.2527/jas.2011-4663] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- M. A. Ballou
- Department of Animal Science and Food Sciences, Texas Tech University, Lubbock 79409
| |
Collapse
|
14
|
Badi FA, Haroon AIA, Alluwaimi AM. The γδ cells as marker of non-seroconverted cattle naturally infected with Mycobacterium avium subspecies paratuberculosis. Res Vet Sci 2010; 88:72-6. [DOI: 10.1016/j.rvsc.2009.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 04/09/2009] [Accepted: 06/07/2009] [Indexed: 10/20/2022]
|
15
|
Denis M, Wedlock DN, Lacy-Hulbert SJ, Hillerton JE, Buddle BM. Vaccines against bovine mastitis in the New Zealand context: what is the best way forward? N Z Vet J 2009; 57:132-40. [PMID: 19521461 DOI: 10.1080/00480169.2009.36892] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mastitis is an important animal health disease which constitutes a serious problem for the dairy industry in New Zealand. Mastitis reduces milk yield and quality, necessitates the use of antibiotic therapy, with associated risks of contaminating the raw milk supply, and imposes a serious economic burden, currently estimated at NZ$300 million per year. Mastitis is caused by a variety of infectious agents. In the New Zealand context, with cattle grazing on pasture, Streptococcus uberis is a major bacterial pathogen, responsible for a significant proportion of clinical cases, especially during early lactation and the dry period. Other pathogens of significance include Staphylococcus aureus, Streptococcus dysgalactiae and Escherichia coli, as well as so-called 'minor pathogens', namely coagulase-negative staphylococci(CNS). Current strategies aimed at reducing cases of mastitis include improved hygiene in the farm environment, particularly with regards to the health and cleanliness of teats. Once mastitis occurs, antibiotic therapy is a favoured option, and as a prophylactic tool, in the form of dry-cow therapy, has also shown value. Prevention of mastitis using immunological tools such as vaccines lags behind the major vaccine breakthroughs that have been achieved in preventing and/or reducing the severity of numerous infectious diseases in animals. In this review, the current state of research in the area of development of vaccines against mastitis is summarised, with particular emphasis on bacteria important to the dairy farming industry in New Zealand. Few, if any, effective vaccines have been designed to prevent or mitigate intramammary infections. It is argued that novel approaches must be considered to search for vaccine candidates, and vaccines need to be designed and constructed within the special framework of their uses, in the mammary gland which offers a unique immunological environment. In addition, effective vaccines against mastitis due to Strep. uberis may be more likely to emerge from strategies that target the cell-mediated arm of the immune response rather than strategies that target specific antibody responses.
Collapse
Affiliation(s)
- M Denis
- AgResearch Grasslands, Hopkirk Research Institute, Private Bag 11008, Palmerston North 4442, New Zealand.
| | | | | | | | | |
Collapse
|
16
|
Metabolic factors affecting the inflammatory response of periparturient dairy cows. Anim Health Res Rev 2009; 10:53-63. [DOI: 10.1017/s1466252309990016] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractDairy cattle are susceptible to increased incidence and severity of disease during the periparturient period. Increased health disorders have been associated with alterations in bovine immune mechanisms. Many different aspects of the bovine immune system change during the periparturient period, but uncontrolled inflammation is a dominant factor in several economically important disorders such as metritis and mastitis. In human medicine, the metabolic syndrome is known to trigger several key events that can initiate and promote uncontrolled systemic inflammation. Altered lipid metabolism, increased circulating concentrations of non-esterified fatty acids and oxidative stress are significant contributing factors to systemic inflammation and the development of inflammatory-based diseases in humans. Dairy cows undergo similar metabolic adaptations during the onset of lactation, and it was postulated that some of these physiological events may negatively impact the magnitude and duration of inflammation. This review will discuss how certain types of fatty acids may promote uncontrolled inflammation either directly or through metabolism into potent lipid mediators. The relationship of increased lipid metabolism and oxidative stress to inflammatory dysfunction will be reviewed as well. Understanding more about the underlying cause of periparturient health disorders may facilitate the design of nutritional regimens that will meet the energy requirements of cows during early lactation and reduce the susceptibility to disease as a function of compromised inflammatory responses.
Collapse
|
17
|
Hodgkinson AJ, Carpenter EA, Smith CS, Molan PC, Prosser CG. Effects on adhesion molecule expression and lymphocytes in the bovine mammary gland following intra-mammary immunisation. Vet Immunol Immunopathol 2009; 131:110-6. [PMID: 19376595 DOI: 10.1016/j.vetimm.2009.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/13/2009] [Accepted: 03/24/2009] [Indexed: 10/21/2022]
Abstract
Changes to adhesion molecule expression and lymphocyte populations were evaluated in alveolar mammary tissue collected from cows following an immunisation protocol that involved intra-mammary inoculation to induce an IgA response in mammary secretions. The right quarters of the udder were immunised; the left side acted as a control. Antibody titres in secretions showed that at least two animals responded with antigen-specific IgA. Numbers of T-lymphocytes were 4-fold higher in immunised glands compared with controls (P<0.05). IgA-, IgM- and IgG-positive cell numbers were significantly higher (P<0.01) in immunised glands compared with controls in three of the four cows. No mucosal addressin molecule-1 (MAdCAM-1), vascular cell-adhesion molecule-1 (VCAM-1) or peripheral node addressin (PNAd) protein expression was detected on smaller venules that stained positively for von Willebrand factor in alveolar mammary tissues, from either immunised or control glands. Both VCAM-1 and PNAd were detected on smaller venules in supramammary lymph nodes, however, there was no significant difference between immunised and control glands. Quantification of MAdCAM-1 mRNA showed very low expression in both immunised and control alveolar tissue compared with Peyer's patch positive-control tissue. These findings suggest that the bovine mammary gland is capable of a mucosal antibody response; however, MAdCAM-1 is not involved with lymphocyte homing to the mammary gland in this species.
Collapse
Affiliation(s)
- A J Hodgkinson
- AgResearch Ltd, Ruakura Research Centre, PB 3123, Hamilton, New Zealand.
| | | | | | | | | |
Collapse
|
18
|
Salmon H, Berri M, Gerdts V, Meurens F. Humoral and cellular factors of maternal immunity in swine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:384-93. [PMID: 18761034 DOI: 10.1016/j.dci.2008.07.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/10/2023]
Abstract
Immunoglobulins cannot cross the placenta in pregnant sows. Neonatal pigs are therefore agammaglobulinemic at birth and, although immunocompetent, they cannot mount rapid immune responses at systemic and mucosal sites. Their survival depends directly on the acquisition of maternal immunity via colostrum and milk. Protection by maternal immunity is mediated by a number of factors, including specific systemic humoral immunity, involving mostly maternal IgG transferred from blood to colostrum and typically absorbed within the first 36 h of life. Passive mucosal immunity involves local humoral immunity, including the production of secretory IgA (sIgA), which is transferred principally via milk until weaning. The mammary gland (MG) produces sIgA, which is, then secreted into the milk via the poly-Ig receptor (pIgR) of epithelial cells. These antibodies are produced in response to intestinal and respiratory antigens, including pathogens and commensal organisms. Protection is also mediated by cellular immunity, which is transferred via maternal cells present in mammary secretions. The mechanisms underlying the various immunological links between MG and the mucosal surfaces involve hormonally regulated addressins and chemokines specific to these compartments. The enhancement of colostrogenic immunity depends on the stimulation of systemic immunity, whereas the enhancement of lactogenic immunity depends on appropriate stimulation at induction sites, an increase in cell trafficking from the gut and upper respiratory tract to the MG and, possibly, enhanced immunoglobulin production at the effector site and secretion in milk. In addition, mammary secretions provide factors other than immunoglobulins that protect the neonate and regulate the development of mucosal immunity--a key element of postnatal adaptation to environmental antigens.
Collapse
MESH Headings
- Animals
- Cell Movement
- Colostrum/cytology
- Colostrum/immunology
- Colostrum/metabolism
- Cytokines/metabolism
- Female
- Histocompatibility Antigens Class I/immunology
- Hormones/immunology
- Immunity, Maternally-Acquired
- Immunity, Mucosal
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A, Secretory/metabolism
- Intercellular Signaling Peptides and Proteins/immunology
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/immunology
- Mammary Glands, Animal/metabolism
- Pregnancy
- Receptors, Fc/immunology
- Receptors, Polymeric Immunoglobulin/immunology
- Receptors, Polymeric Immunoglobulin/metabolism
- Swine/embryology
- Swine/immunology
Collapse
Affiliation(s)
- Henri Salmon
- Institut National de la Recherche Agronomique (INRA), Lymphocytes et Immunité des Muqueuses UR1282, Infectiologie Animale et Santé Publique F-37380, Nouzilly (Tours), France.
| | | | | | | |
Collapse
|
19
|
Aitken SL, Karcher EL, Rezamand P, Gandy JC, VandeHaar MJ, Capuco AV, Sordillo LM. Evaluation of antioxidant and proinflammatory gene expression in bovine mammary tissue during the periparturient period. J Dairy Sci 2009; 92:589-98. [PMID: 19164669 DOI: 10.3168/jds.2008-1551] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The incidence and severity of mastitis can be high during the period of transition from pregnancy to lactation when dairy cattle are susceptible to oxidative stress. Oxidative stress may contribute to the pathogenesis of mastitis by modifying the expression of proinflammatory genes. The overall goal of this study was to determine the relationship between critical antioxidant defense mechanisms and proinflammatory markers in normal bovine mammary tissue during the periparturient period. Mammary tissue samples were obtained from 12 cows at 35, 20, and 7 d before expected calving and during early lactation (EL, 15 to 28 d in milk). Enzyme activities for cytosolic glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase were relatively low during the dry period, but increased during EL, whereas activity of thioredoxin reductase 1 did not change significantly as a function of time. In contrast, gene expression for these antioxidant selenoproteins and for heme oxygenase-1 gradually decreased as parturition approached and then increased during EL. The expression of intercellular vascular adhesion molecule-1 and vascular cell adhesion molecule-1 followed a similar trend where mRNA abundance gradually declined as parturition approached with a slight rebound in EL. Gene expression of the pro-oxidant, 15-lipoxygenase 1, which is known to increase during times of oxidative stress, also increased dramatically in mammary tissue from EL cows. Expression of the proinflammatory cytokines, IL-1beta, IL-6, and IL-8 did not change significantly during the periparturient period. Strong positive correlations were found between several antioxidant enzymes (cytosolic glutathione peroxidase, thioredoxin reductase 1, and heme oxygenase-1) and vascular adhesion molecules (intercellular vascular adhesion molecule-1, vascular cell adhesion molecule-1) suggesting a protective response of these antioxidants to an enhanced proinflammatory state. Ability to control oxidative stress through manipulation of key antioxidant enzymes in the future may modify the proinflammatory state of periparturient cows and reduce incidence and severity of some diseases such as mastitis.
Collapse
Affiliation(s)
- S L Aitken
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Molecular imaging enables visualization of specific molecules in vivo and without substantial perturbation to the target molecule's environment. Glycans are appealing targets for molecular imaging but are inaccessible with conventional approaches. Classic methods for monitoring glycans rely on molecular recognition with probe-bearing lectins or antibodies, but these techniques are not well suited to in vivo imaging. In an emerging strategy, glycans are imaged by metabolic labeling with chemical reporters and subsequent ligation to fluorescent probes. This technique has enabled visualization of glycans in living cells and in live organisms such as zebrafish. Molecular imaging with chemical reporters offers a new avenue for probing changes in the glycome that accompany development and disease.
Collapse
|
21
|
Bourges D, Meurens F, Berri M, Chevaleyre C, Zanello G, Levast B, Melo S, Gerdts V, Salmon H. New insights into the dual recruitment of IgA+ B cells in the developing mammary gland. Mol Immunol 2008; 45:3354-62. [DOI: 10.1016/j.molimm.2008.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 04/18/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
|
22
|
Wheeler TT, Hodgkinson AJ, Prosser CG, Davis SR. Immune components of colostrum and milk--a historical perspective. J Mammary Gland Biol Neoplasia 2007; 12:237-47. [PMID: 17992474 DOI: 10.1007/s10911-007-9051-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022] Open
Abstract
Key developments in the understanding of the immune functions of milk and colostrum are reviewed, focusing on their proteinaceous components. The topics covered include the immunoglobulins, immune cells, immunomodulatory substances, and antimicrobial proteins. The contributions of new technologies and the introduction of fresh approaches from other fields are highlighted, as are the contributions that mammary biology research has made to the development of other fields. Finally, a summary of some current outstanding questions and likely future directions of the field are given.
Collapse
Affiliation(s)
- Thomas T Wheeler
- Dairy Science and Technologies Section, AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand.
| | | | | | | |
Collapse
|