1
|
Pinto N, Nissa MU, Yashwanth BS, Sathiyanarayanan A, Pai MGJ, Srivastava S, Goswami M. Proteomics analysis of differentially abundant proteins in the rohu kidney infected with Edwardsiella tarda. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101221. [PMID: 38430708 DOI: 10.1016/j.cbd.2024.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Edwardsiella tarda (Et) is a zoonotic gram-negative pathogen with a diverse host range, including fish. However, the in-depth molecular mechanisms underlying the response of Labeo rohita (rohu) kidney to Et are poorly understood. A proteomic and histopathological analysis was performed for the rohu kidney after Et infection. The histopathology of the infected rohu kidney showed vacuolation and necrosis. After LC-MS/MS analysis, ~1240 proteins were identified with ≥2 unique peptides. A total of 96 differentially abundant proteins (DAPs) were observed between the control and Et infected group (ET). Metascape and STRING analysis were used for the gene ontology (GO), and protein-protein interaction network (PPI) for the significant pathways of DAPs. In PPI, low-abundant proteins were mapped to metabolic pathways and oxidative phosphorylation (cox5ab, uqcrfs1). High-abundance proteins were mapped to ribosomes (rplp2), protein process in the ER (hspa8), and immune system (ptgdsb.1, muc2). Our label-free proteomic approach in the rohu kidney revealed abundant enriched proteins involved in vesicle coat (ehd4), complement activation (c3a.1, c9, c7a), phagosome (thbs4, mapk1), metabolic reprogramming (hao1, glud1a), wound healing (vim, alox5), and the immune system (psap) after Et infection. A targeted proteomics approach of multiple reaction monitoring (MRM) validated the DAPs (nprl3, ambp, vmo1a, hspg2, muc2, hao1 and glud1a) between control and ET. Overall, the current analysis of histology and proteome in the rohu kidney provides comprehensive data on pathogenicity and the potential immune proteins against Et.
Collapse
Affiliation(s)
- Nevil Pinto
- Indian Council of Agricultural Research - Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra 400061, India. https://twitter.com/pintonevil8
| | - Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - B S Yashwanth
- Indian Council of Agricultural Research - Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra 400061, India
| | - A Sathiyanarayanan
- Indian Council of Agricultural Research - Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra 400061, India
| | - Medha Gayathri J Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India. https://twitter.com/Sanjeeva_IITB
| | - Mukunda Goswami
- Indian Council of Agricultural Research - Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra 400061, India.
| |
Collapse
|
2
|
Lai CY, Yu GY, Luo Y, Xiang R, Chuang TH. Immunostimulatory Activities of CpG-Oligodeoxynucleotides in Teleosts: Toll-Like Receptors 9 and 21. Front Immunol 2019; 10:179. [PMID: 30800129 PMCID: PMC6375897 DOI: 10.3389/fimmu.2019.00179] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors that detect a wide variety of microbial pathogens for the initiation of host defense immunological responses. Thirteen TLRs have been identified in mammals, and teleosts contain 22 mammalian or non-mammalian TLRs. Of these, TLR9 and TLR21 are the cytosine-phosphate-guanosine-oligodeoxynucleotides (CpG-ODNs) recognition TLRs in teleosts. TLR9 is a mammalian TLR expressed in teleost but not in the avian species. TLR21 is a non-mammalian TLR expressed in both teleost and the avian species. Synthetic CpG-ODNs are potent immunostimulants that are being studied for their application against tumors, allergies, and infectious diseases, and as a vaccine adjuvant in humans. The immunostimulatory effects of CpG-ODNs as vaccine adjuvants and their antimicrobial function in domestic animals and teleosts are also being investigated. Most of our current knowledge about the molecular basis for the immunostimulatory activity of CpG-ODNs comes from earlier studies of the interaction between CpG-ODN and TLR9. More recent studies indicate that in addition to TLR9, TLR21 is another receptor for CpG-ODN recognition in teleosts to initiate immune responses. Whether these two receptors have differential functions in mediating the immunostimulatory activity of CpG-ODN in teleost has not been well-studied. Nevertheless, the existence of two recognition TLRs suggests that the molecular basis for the immunostimulatory activity of CpG-ODN in teleosts is different and more complex than in mammals. This article reviews the current knowledge of TLR9 and TLR21 activation by CpG-ODNs. The key points that need to be considered for CpG-ODNs as immunostimulants with maximum effectiveness in activation of immune responses in teleosts are discussed. This includes the structure/activity relationship of CpG-ODN activities for TLR9 and TLR21, the structure/functional relationship of these two TLRs, and differential expression levels and tissue distributions for these two TLRs.
Collapse
Affiliation(s)
- Chao-Yang Lai
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yunping Luo
- Deptartment of Immunology, Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Science, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Science, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,International Joint Center for Biomedical Research of the Ministry of Education, Tianjin, China
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.,Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Cha YJ, Lee CR, Kwon JY, Kang YJ. Protective effects of CpG-ODN 2007 administration against Edwardsiella tarda infection in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2017; 68:327-331. [PMID: 28732767 DOI: 10.1016/j.fsi.2017.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
In this study, we investigated the immunostimulatory and protective effects of CpG motif oligonucleotides (CpG-ODNs) against Edwardsiella tarda infection in olive flounder (Paralichthys olivaceus). Groups of fish injected with CpG-ODNs (1585, 1668, and 2007) or PBS (control) showed varying mortality rates in response to challenge with E. tarda. The survival rates of fish treated with CpG-ODN 1668 and 2007, which belonged to the same class type B, were 45% and 60%, respectively, with CpG-ODN 2007 showing the highest survival rate. Further analysis showed that the respiratory burst and bactericidal activities induced by CpG-ODN 2007 were higher than those in the control group (induced by non-CpG-ODNs) or in the group of fish induced by CpG-ODN 1585, which belonged to class type A. Additionally, the respiratory burst activity induced by CpG-ODN 2007 was higher than that induced by CpG-ODN 1668, despite similar bactericidal activity titers. In vivo experiments showed that CpG-ODN 2007 stimulation resulted in higher survival rates than CpG-ODN 1668 stimulation, possibly owing to differences in respiratory burst activity. In summary, we demonstrated that differences in CpG-motif or class type altered respiratory burst and bactericidal activities, resulting in differences in survival rates against E. tarda challenge in the olive flounder. Therefore, it is necessary to use CpG-ODNs optimized against E. tarda infection in olive flounder, because different CpG motifs belonging to the same class type have different effects.
Collapse
Affiliation(s)
- Ye Jin Cha
- Department of Aquatic Life and Medical Sciences, Sun Moon University, Asan-si, South Korea
| | - Chae Ryeong Lee
- Department of Aquatic Life and Medical Sciences, Sun Moon University, Asan-si, South Korea
| | - Joon Young Kwon
- Department of Aquatic Life and Medical Sciences, Sun Moon University, Asan-si, South Korea
| | - Yue Jai Kang
- Department of Aquatic Life and Medical Sciences, Sun Moon University, Asan-si, South Korea.
| |
Collapse
|
4
|
Sun M, Mu Y, Ding Y, Ao J, Chen X. Molecular and functional characterization of Toll-like receptor 21 in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2016; 59:179-188. [PMID: 27751918 DOI: 10.1016/j.fsi.2016.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptor 21 (TLR21) is a non-mammalian TLR that functions similar to mammalian TLR9 in recognizing CpG DNA. In the present study, we identified a TLR21 homologue, LycTLR21, from large yellow croaker (Larimichthys crocea). The complete coding sequence of LycTLR21 is 2946 nucleotides long, encoding a protein of 981 amino acids. The deduced LycTLR21 protein has typical TLR domain architecture, including a signal peptide, 13 leucine-rich repeats (LRRs) in the extracellular region, a transmembrane region, and a cytoplasmic Toll-Interleukin-1 receptor (TIR) domain. Phylogenetic analysis showed that LycTLR21 falls into a major clade formed by all fish TLR21 sequences and is closely related to TLR21 in Epinephelus coioides and Oplegnathus fasciatus. LycTLR21 mRNA was constitutively expressed in all tissues tested, with higher levels in immune-related tissues, such as spleen, head kidney, and gills. Upon stimulation with inactivated trivalent bacterial vaccine, LycTLR21 mRNA was significantly increased in these three tissues. Overexpression of a chimeric plasmid containing the extracellular domain of human cluster of differentiation 4 (CD4) and the transmembrane and cytoplasmic domains of LycTLR21 could activate NF-κB, but not IFN-β in Chinese hamster ovary (CHO) cells, suggesting that LycTLR21 could mediate activation of NF-κB. LycTLR21 could specifically recognize three CpG-oligodeoxynucleotides (CpG-ODNs), CpG-ODN 1826, 2006, and 2007, but not other CpG-ODNs detected, poly(I:C), lipopolysaccharide (LPS), and lipoteichoic acid (LTA-SA). These three CpG-ODNs were found to significantly up-regulate the expression of LycTLR21 and downstream proinflammatory cytokines IL-1β and IL-6 of NF-κB pathway in large yellow croaker head kidney (LYCK) cells. In addition, the expression levels of LycTLR21, c-Rel subunit of NF-κB, IL-1β and IL-6 genes were quickly increased in the spleen and head kidney by bacterial infection, suggesting that LycTLR21 signaling pathway may play a role in immune response to bacterial infection.
Collapse
Affiliation(s)
- Min Sun
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Yang Ding
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
5
|
U-Taynapun K, Chirapongsatonkul N, Itami T, Tantikitti C. CpG ODN mimicking CpG rich region of myxosporean Myxobolus supamattayai stimulates innate immunity in Asian sea bass (Lates calcarifer) and defense against Streptococcus iniae. FISH & SHELLFISH IMMUNOLOGY 2016; 58:116-124. [PMID: 27629917 DOI: 10.1016/j.fsi.2016.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanine CpG dinucleotides within specific sequence contexts (CpG motifs) have been reported as pathogen-associated molecular patterns (PAMPs). Its immunostimulatory effects have been demonstrated in diverse vertebrate models. CpG ODN is typically found in bacterial or viral genome and recognized by a non-self recognition receptor Toll-like receptor9 (TLR9). Here, a new CpG ODN 1013 which mimics sequence of SSU rDNA of early eukaryotic organism myxosporidia, Myxobolus supamattayai, was employed to stimulate the immune responses of Asian sea bass Lates calcarifer. Its immunostimulant potentiality was comparatively compared with that of CpG ODN 1668, a widely used as functional immunostimulant. Both unmethylated CpG ODNs with some modified phosphorothioated positions were intraperitoneally injection (5 μg/fish). Hematological examination, immunological assays and immune-related genes expression were evaluated 12 h, 1, 3 and 5 d after post CpG ODN challenge. The immunosimulatory effect of these CpG ODNs on fish immunity to protect the bacterial pathogen Streptococcus iniae was also determined. The results demonstrated that these two CpG ODNs could induce immune responses in Asian sea bass including the significant (P < 0.05) increase level of WBC, peroxidase activity and oxidative radicals in head kidney (HK) leukocyte, serum innate immune parameters and up-regulation of four immune responsive genes compared with the control group. Most of immune responses induced by ODN 1668 were strong within 1 d but lesser extended while ODN 1013 prolonged the stimulatory effects during the whole experimental period. After challenge with S. iniae, the survival proportion in ODN 1013-treated fish was apparently higher than that treated with ODN 1668 and PBS, respectively. The results together suggested that CpG ODN 1013 enhanced innate immune responses, including humoral and cellular responses, through TLR9 mediated signaling pathway which is mainly contribute to the protective immunity in Asian sea bass against S. iniae infection. These findings can lead to a new approach in immunostimulant development by using the novel CpG ODN originating from the parasite M. supamattayai, besides those from bacterial and viral genomes, for disease control in fish host.
Collapse
Affiliation(s)
- Kittichon U-Taynapun
- Aquatic Animal Health Management Research Unit, Department of Fisheries, Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, 80110, Thailand; Aquatic Animal Health Research Center, Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Nion Chirapongsatonkul
- Aquatic Animal Health Management Research Unit, Department of Fisheries, Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, 80110, Thailand; Department of Biochemistry, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Toshiaki Itami
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 889-2192, Japan
| | - Chutima Tantikitti
- Aquatic Animal Health Research Center, Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla, 90110, Thailand.
| |
Collapse
|
6
|
Su H, Yuan G, Su J. A specific CpG oligodeoxynucleotide induces protective antiviral responses against grass carp reovirus in grass carp Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:218-227. [PMID: 26972738 DOI: 10.1016/j.dci.2016.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
CpG oligodeoxynucleotides (ODNs) show strong immune stimulatory activity in vertebrate, however, they possess specific sequence feature among species. In this study, we screened out an optimal CpG ODN sequence for grass carp (Ctenopharyngodon idella), 1670A 5'-TCGAACGTTTTAACGTTTTAACGTT-3', from six published sequences and three sequences designed by authors based on grass carp head kidney mononuclear cells and CIK (C. idella kidney) cells proliferation. VP4 mRNA expression was strongly inhibited by CpG ODN 1670A in CIK cells with GCRV infection, showing its strong antiviral activity. The mechanism via toll-like receptor 9 (TLR9)-mediated signaling pathway was measured by real-time quantitative RT-PCR, and TLR21 did not play a role in the immune response to CpG ODN. The late up-regulation of CiRIG-I mRNA expression indicated that RIG-I-like receptors (RLRs) signaling pathway participated in the immune response to CpG ODN which is the first report on the interaction between CpG and RLRs. We also found that the efficient CpG ODN can activates interferon system. Infected with GCRV, type I interferon expression was reduced and type II interferon was induced by the efficient CpG ODN in CIK cells, especially IFNγ2, suggesting that IFNγ2 played an important role in response to the efficient CpG ODN. These results provide a theoretical basis and new development trend for further research on CpG and the application of CpG vaccine adjuvant in grass carp disease control.
Collapse
Affiliation(s)
- Hang Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Gailing Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
7
|
Zhou ZX, Zhang J, Sun L. C7: a CpG oligodeoxynucleotide that induces protective immune response against megalocytivirus in Japanese flounder (Paralichthys olivaceus) via Toll-like receptor 9-mediated signaling pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:124-132. [PMID: 24333437 DOI: 10.1016/j.dci.2013.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Megalocytivirus is the causative agent of severe disease outbreaks in farmed fish. Currently there is no effective control against megalocytivirus in aquaculture. Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs are known to possess marked immunostimulatory properties. In this study, we investigated the potentials of ten CpG ODNs as antiviral agents in a model of Japanese flounder (Paralichthys olivaceus). We found that, when administered into flounder, three of the ten CpG ODNs inhibited viral replication in kidney, spleen, and liver. ODN C7, which exhibited the strongest inhibitory activity, was able to promote proliferation of peripheral blood leukocytes and enhance activation of head kidney mononuclear adherent phagocytes. When the expression of toll-like receptor 9 (TLR9) was knocked down in vivo by small interfering RNA, C7-mediated immune response and antiviral activity were significantly blocked. Moreover, when C7 was co-administered with pCN86, a DNA vaccine against megalocytivirus, a significant increase in vaccine-induced protection was observed compared to administration with pCN86 alone. Further analysis showed that compared to fish immunized with pCN86, fish immunized with pCN86 plus C7 exhibited significantly upregulated expression of a wide range of genes involved in innate and adaptive immunity. Taken together, these results indicate that ODN C7 activates TLR9-mediated immune response and possesses antiviral and adjuvant potentials that may be exploited for the control of megalocytivirus infection in farmed flounder.
Collapse
Affiliation(s)
- Zhi-xia Zhou
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jian Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
8
|
Pridgeon JW, Klesius PH. G-protein coupled receptor 18 (GPR18) in channel catfish: expression analysis and efficacy as immunostimulant against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1070-1078. [PMID: 23891864 DOI: 10.1016/j.fsi.2013.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
The objectives of this study were: 1) to determine the transcriptional profiles of G-protein coupled receptor 18 (GPR18) in channel catfish after infection with Aeromonas hydrophila compared to that in healthy catfish; 2) to determine whether over-expression of GPR18 in catfish gill cells will offer protection against infection of A. hydrophila; 3) to determine whether recombinant pcDNA-GPR18 could be used as an immunostimulant to protect channel catfish against A. hydrophila infection. Quantitative PCR revealed that the transcription levels of GPR18 in all tissues of infected catfish were significantly (P < 0.05) induced except in the intestine. When pcDNA3.2-vectored recombinant GPR18 was transfected in catfish gill cells G1B, the over-expression of pcDNA-GPR18 offered significant (P < 0.05) protection to G1B cells against A. hydrophila infection. When channel catfish were intraperitoneally injected with QCDCR adjuvant formulated pcDNA-GPR18 and challenged with a highly virulent A. hydrophila strain at 1-, 2-, 14-, and 28-days post treatment, pcDNA-GPR18 offered 50%, 100%, 57%, and 55% protection to channel catfish, respectively. Macrophages of fish treated with pcDNA-GPR18 produced significantly (P < 0.05) higher amounts of reactive oxygen species and nitric oxide than that of fish treated with pcDNA vector alone. In addition, serum lysozyme activity of catfish injected with pcDNA-GPR18 was significantly (P < 0.08) increased. Taken together, our results suggest that pcDNA-GPR18 could be used as a novel immunostimulant to provide immediate protection to channel catfish against A. hydrophila infection.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | |
Collapse
|
9
|
Pridgeon JW, Klesius PH. Apolipoprotein A1 in channel catfish: transcriptional analysis, antimicrobial activity, and efficacy as plasmid DNA immunostimulant against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1129-1137. [PMID: 23954697 DOI: 10.1016/j.fsi.2013.07.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 06/02/2023]
Abstract
The objectives of this study were to: 1) determine transcriptional profiles of apolipoprotein A1 (ApoA1) in collected channel catfish tissues after infection with Aeromonas hydrophila by bath immersion; 2) investigate whether recombinant channel catfish apolipoprotein A1 produced in Escherichia coli expression system possesses any antimicrobial activity against A. hydrophila; 3) evaulate whether recombinant channel catfish apolipoprotein A1 plasmid DNA could be used as immunostimulant to protect fish against A. hydrophila infection. Quantitative PCR revealed that the transcription levels of ApoA1 in infected catfish were significantly (P < 0.05) more induced in the anterior kidney. Recombinant apoA1 produced in E. coli expression system exhibited lytic activity against Gram-positive Micrococcus lysodeikticus and Gram-negative A. hydrophila. When pcDNA3.2-vectored recombinant apoA1 was transfected in channel catfish gill cells G1B, the over-expression of pcDNA-ApoA1 offered significant (P < 0.05) protection to G1B cells against A. hydrophila infection. When channel catfish were intraperitoneally injected with QCDCR adjuvant formulated pcDNA-ApoA1 and challenged with a highly virulent A. hydrophila strain AL-09-71 at two days post injection, pcDNA-ApoA1 injection offered 100% protection to channel catfish. Macrophages of fish injected with pcDNA-ApoA1 produced significantly (P < 0.05) higher amounts of reactive oxygen species and nitric oxide than that of fish injected with pcDNA vector alone. Our results suggest that pcDNA-ApoA1 could be used as a novel immunostimulant to offer immediate protection to catfish against A. hydrophila infection.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | |
Collapse
|
10
|
Pridgeon JW, Klesius PH, Dominowski PJ, Yancey RJ, Kievit MS. Recombinant goose-type lysozyme in channel catfish: lysozyme activity and efficacy as plasmid DNA immunostimulant against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1309-1319. [PMID: 23978564 DOI: 10.1016/j.fsi.2013.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
The objectives of this study were: 1) to investigate whether recombinant channel catfish lysozyme-g (CC-Lys-g) produced in Escherichia coli expression system possesses any lysozyme activity; and 2) to evaluate whether channel catfish lysozyme-g plasmid DNA could be used as an immunostimulant to protect channel catfish against Aeromonas hydrophila infection. Recombinant CC-Lys-g produced in E. coli expression system exhibited significant (P < 0.05) lytic activity against Gram-positive Micrococcus lysodeikticus and Gram-negative A. hydrophila. When pcDNA3.2-vectored recombinant channel catfish lysozyme-g (pcDNA-Lys-g) was transfected in channel catfish gill cells G1B, the over-expression of pcDNA-Lys-g offered significant (P < 0.05) protection to G1B cells against A. hydrophila infection. When channel catfish were intraperitoneally injected with pcDNA-Lys-g along with an adjuvant QCDCR, the transcriptional level of Lys-g was significantly (P < 0.05) increased. When pcDNA-Lys-g injected fish was challenged with a highly virulent A. hydrophila strain AL-09-71, pcDNA-Lys-g offered 100% protection to channel catfish at two days post DNA injection. Macrophages of fish injected with pcDNA-Lys-g produced significantly (P < 0.05) higher amounts of reactive oxygen species and nitric oxide than that of fish injected with pcDNA vector alone at two days post DNA injection. Taken together, our results suggest that pcDNA-Lys-g could be used as a novel immunostimulant to offer immediate protection to channel catfish against A. hydrophila infection.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | | | | | | | |
Collapse
|
11
|
Pridgeon JW, Klesius PH, Dominowski PJ, Yancey RJ, Kievit MS. Chicken-type lysozyme in channel catfish: expression analysis, lysozyme activity, and efficacy as immunostimulant against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2013; 35:680-688. [PMID: 23732847 DOI: 10.1016/j.fsi.2013.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
To understand whether chicken-type lysozyme (Lys-c) in channel catfish was induced by infection of Aeromonas hydrophila, the transcriptional levels of Lys-c in skin, gut, liver, spleen, posterior kidney, and blood cells in healthy channel catfish was compared to that in channel catfish infected with A. hydrophila by bath immersion. Quantitative PCR revealed that the transcription levels of Lys-c in infected catfish were significantly (P < 0.05) induced in all five tissues tested as well as in blood cells. Recombinant CC-Lys-c produced in Escherichia coli expression system (R-CC-Lys-c) exhibited significant (P < 0.05) lytic activity to Gram-positive Micrococcus lysodeikticus and Gram-negative A. hydrophila. When pcDNA3.2-vectored recombinant channel catfish lysozyme-c (pcDNA-Lys-c) was transfected in channel catfish gill cells G1B, the over-expression of pcDNA-Lys-c offered significant (P < 0.05) protection to G1B against A. hydrophila infection. When channel catfish were intraperitoneally injected with QCDCR adjuvant formulated pcDNA-Lys-c and challenged with a highly virulent A. hydrophila strain AL-09-71 at 1-, 2-, 14-, and 28-days post treatment, pcDNA-Lys-c offered 75%, 100%, 60%, and 77% protection to channel catfish, respectively. Macrophages of fish treated with pcDNA-Lys-c produced significantly (P < 0.05) higher amounts of reactive oxygen species and nitric oxide than that of fish treated with pcDNA vector alone. Taken together, our results suggest that pcDNA-Lys-c could be used as a novel immunostimulant to protect channel catfish against A. hydrophila infection.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | | | | | | | |
Collapse
|
12
|
Poly D,L-lactide-co-glycolic acid-liposome encapsulated ODN on innate immunity in Epinephelus bruneus against Vibrio alginolyticus. Vet Immunol Immunopathol 2012; 147:77-85. [PMID: 22551979 DOI: 10.1016/j.vetimm.2012.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/26/2012] [Accepted: 04/04/2012] [Indexed: 11/23/2022]
Abstract
The efficacy of poly D,L-lactide-co-glycolic acid (PLGA)-liposome (L) encapsulated oligodeoxynucleotides with unmethylated deoxycytidyl-deoxyguanosine motifs (CpG-ODNs) on innate and adaptive immune response and disease resistance in kelp grouper (Epinephelus bruneus) against Vibrio alginolyticus at weeks 1, 2, and 4 is reported. The superoxide dismutase (SOD), respiratory burst, and lysozyme activities significantly increased in E. bruneus when immunized with ODN, PLGA+ODN, L+ODN, and PLGA+L+ODN on weeks 2 and 4. The serum complement activity was significantly enhanced with L+ODN and PLGA+L+ODN on week 1 while it increased with PLGA+ODN, L+ODN, and PLGA+L+ODN on weeks 2 and 4. The antibody titre consistently was increased with PLGA or L encapsulated with ODN (PLGA+ODN, L+ODN, and PLGA+L+ODN) from weeks 1 to 4. The cumulative mortality was 20% each in PLGA+ODN administered groups and 15% each in ODN, L+ODN, and PLGA+L+ODN groups during a period of 30 days. The present study suggests that PLGA-liposome encapsulated ODN has the potential to modulate the immune system and can serve as a useful tool for further design of immunoprophylatic nano drug formulations against bacterial diseases.
Collapse
|