1
|
Nakazawa M, Nagao I, Ambrosini YM. Canine intestinal organoids as a platform for studying MHC class II expression in epithelial cells. BMC Mol Cell Biol 2025; 26:11. [PMID: 40200149 PMCID: PMC11980282 DOI: 10.1186/s12860-025-00536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUNDS The interplay between intestinal epithelial cells (IECs), the immune system, and the gut microbiome is pivotal for maintaining gastrointestinal homeostasis and mediating responses to ingested antigens. IECs, capable of expressing Major Histocompatibility Complex (MHC) class II molecules, are essential in modulating immune responses, especially CD4 + T cells, in both physiological and pathological contexts. The expression of MHC class II on IECs, regulated by the class II transactivator (CIITA) and inducible by cytokine IFN-γ, has been traditionally associated with professional antigen-presenting cells but is now recognized in the context of inflammatory conditions such as inflammatory bowel disease (IBD). In veterinary medicine, particularly among canine populations, MHC (or Dog Leukocyte Antigen, DLA) expression on IECs underlines its significance in intestinal immune pathologies, yet remains underexplored. This study aims to leverage canine intestinal organoids as a novel in vitro model to elucidate MHC class II expression dynamics and their implications in immune-mediated gastrointestinal diseases, bridging the gap between basic research and clinical application in canine health. RESULTS Canine colonoids derived from healthy dogs showed significant expression of MHC class II and its promoter gene, CIITA, after IFN-γ treatment. This MHC class II induction was even more pronounced in differentiated colonoids cultured in Wnt-3a-depleted medium. CONCLUSIONS This study provides insights into the role of IECs as antigen-presenting cells and demonstrates the use of intestinal organoids for investigating epithelial immune responses in inflammatory conditions.
Collapse
Affiliation(s)
- Meg Nakazawa
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Itsuma Nagao
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoko M Ambrosini
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
2
|
Rohdin C, Ljungvall I, Jäderlund KH, Svensson A, Lindblad-Toh K, Häggström J. Assessment of glial fibrillary acidic protein and anti-glial fibrillary acidic protein autoantibody concentrations and necrotising meningoencephalitis risk genotype in dogs with pug dog myelopathy. Vet Rec 2024; 194:e3895. [PMID: 38704817 DOI: 10.1002/vetr.3895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Pugs commonly present with thoracolumbar myelopathy, also known as pug dog myelopathy (PDM), which is clinically characterised by progressive signs involving the pelvic limbs, no apparent signs of pain and, often, incontinence. In addition to meningeal fibrosis and focal spinal cord destruction, histopathology has confirmed lymphohistiocytic infiltrates in the central nervous system (CNS) in a considerable number of pugs with PDM. Lymphohistiocytic CNS inflammation also characterises necrotising meningoencephalitis (NME) in pugs. This study aimed to investigate the potential contribution of an immunological aetiology to the development of PDM. METHODS The concentrations of glial fibrillary acidic protein (GFAP) in serum and CSF and of anti-GFAP autoantibodies in CSF were measured with an ELISA. In addition, a commercial test was used for genetic characterisation of the dog leukocyte antigen class II haplotype, which is associated with NME susceptibility. RESULTS This study included 87 dogs: 52 PDM pugs, 14 control pugs, four NME pugs and 17 dogs of breeds other than pugs that were investigated for neurological disease (neuro controls). Anti-GFAP autoantibodies were present in 15 of 19 (79%) of the PDM pugs tested versus six of 16 (38%) of the neuro controls tested (p = 0.018). All 18 PDM pugs evaluated had detectable CSF GFAP. Serum GFAP was detected in two of three (67%) of the NME pugs and in two of 11 (18%) of the control pugs but not in any of the 40 tested PDM pugs. Male pugs heterozygous for the NME risk haplotype had an earlier onset of clinical signs (70 months) compared to male pugs without the risk haplotype (78 months) (p = 0.036). LIMITATIONS The study was limited by the lack of healthy dogs of breeds other than pugs and the small numbers of control pugs and pugs with NME. CONCLUSIONS The high proportion of PDM pugs with anti-GFAP autoantibodies and high CSF GFAP concentrations provide support for a potential immunological contribution to the development of PDM.
Collapse
Affiliation(s)
- Cecilia Rohdin
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Anicura, Albano Small Animal Hospital, Danderyd, Sweden
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Hultin Jäderlund
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Anna Svensson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute, Cambridge, Massachusetts, USA
| | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Kojima K, Chambers JK, Nakashima K, Uchida K. Pro-inflammatory cytokine expression and the STAT1/3 pathway in canine chronic enteropathy and intestinal T-cell lymphoma. Vet Pathol 2024; 61:382-392. [PMID: 37906531 DOI: 10.1177/03009858231207017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The accumulation of intraepithelial lymphocytes (IELs) is a histopathological feature of canine chronic enteropathy (CE), and IELs are considered the cells of origin of intestinal T-cell lymphoma (ITCL). However, the pathogenic mechanism of IEL activation in CE remains unclear. This study hypothesized that the expression of proinflammatory cytokines, associated with cytotoxic T/NK-cell activation, is upregulated in CE and ITCL, and examined the expression of IFN-γ, IL-2, IL-12p35, IL-12p40, IL-15, and IL-21 and the downstream signal transducers and activators of transcription (STAT) pathway in the duodenal mucosa of dogs without lesions (n = 11; NC), with IEL-CE (n = 19; CE without intraepithelial lymphocytosis), IEL+CE (n = 29; CE with intraepithelial lymphocytosis), and with ITCL (n = 60). Quantitative polymerase chain reaction (PCR) revealed that IFN-γ and IL-21 were higher in IEL+CE than in IEL-CE or NC. Western blot revealed upregulation of STAT1 and STAT3 in IEL+CE. Double-labeling immunohistochemistry revealed a positive correlation between the Ki67 index of CD3+ T-cells and IFN-γ expression levels. Immunohistochemistry revealed a higher ratio of p-STAT1-positive villi in IEL+CE and ITCL than IEL-CE and NC, which positively correlated with IFN-γ expression levels. Among the 60 ITCL cases, neoplastic lymphocytes were immunopositive for p-STAT1 in 28 cases and p-STAT3 in 29 cases. These results suggest that IFN-γ and IL-21 contribute to the pathogenesis of IEL+CE, and IFN-γ may be involved in T-cell activation and mucosal injury in CE. STAT1 and STAT3 activation in ITCL cells suggests a role for the upregulation of the STAT pathway in the pathogenesis of ITCL.
Collapse
Affiliation(s)
| | | | - Ko Nakashima
- Japan Small Animal Medical Center, Tokorozawa, Japan
| | | |
Collapse
|
4
|
Silva C, Requicha J, Dias I, Bastos E, Viegas C. Genomic Medicine in Canine Periodontal Disease: A Systematic Review. Animals (Basel) 2023; 13:2463. [PMID: 37570272 PMCID: PMC10417655 DOI: 10.3390/ani13152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Genomic medicine has become a growing reality; however, it is still taking its first steps in veterinary medicine. Through this approach, it will be possible to trace the genetic profile of a given individual and thus know their susceptibility to certain diseases, namely periodontal disease. This condition is one of the most frequently diagnosed in companion animal clinics, especially in dogs. Due to the limited existing information and the lack of comprehensive studies, the objective of the present study was to systematically review the existing scientific literature regarding genomic medicine in canine periodontal disease and determine which genes have already been studied and their probable potential. This study followed the recommendations of the PRISMA 2020 methodology. Canine periodontal disease allied to genomic medicine were the subjects of this systematic review. Only six articles met all of the inclusion criteria, and these were analyzed in detail. These studies described genetic variations in the following genes: interleukin-6, interleukin-10, interleukin-1, lactotransferrin, toll-like receptor 9, and receptor activator of nuclear factor-kappa B. Only in two of them, namely interleukin-1 and toll-like receptor 9 genes, may the identified genetic variations explain the susceptibility that certain individuals have to the development of periodontal disease. It is necessary to expand the studies on the existing polymorphic variations in genes and their relationship with the development of periodontal disease. Only then will it be possible to fully understand the biological mechanisms that are involved in this disease and that determine the susceptibility to its development.
Collapse
Affiliation(s)
- Carolina Silva
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João Requicha
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Isabel Dias
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Estela Bastos
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carlos Viegas
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
OSHIMA A, ITO D, KATAKURA F, MIYAMAE J, OKANO M, NAKAZAWA M, KANAZONO S, MORITOMO T, KITAGAWA M. Dog leukocyte antigen class II alleles and haplotypes associated with meningoencephalomyelitis of unknown origin in Chihuahuas. J Vet Med Sci 2023; 85:62-70. [PMID: 36418080 PMCID: PMC9887217 DOI: 10.1292/jvms.22-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Idiopathic non-infectious meningoencephalomyelitis (NIME), which is thought to be an immune-mediated disease, is a common inflammatory disease in dogs. Meningoencephalomyelitis of unknown origin (MUO), a subgroup of NIME, consists of necrotizing meningoencephalitis (NME), necrotizing leukoencephalitis, and granulomatous meningoencephalomyelitis. Recent studies have shown associations between disease development and dog leukocyte antigen (DLA) class II genes in NME in Pugs and in NIME in Greyhounds. This study focused on Chihuahuas, which have a high incidence of MUO and are one of the most common dog breeds in Japan. Because the development of MUO seems to be associated with DLA class II genes, we aimed to evaluate the association between DLA class II genes and MUO development in Chihuahuas. Blood samples were obtained from 22 Chihuahuas with MUO (MUO group) and 46 without neurological diseases (control). The allele sequences of three DLA class II loci were determined, and haplotypes were estimated from these data. In total, 23 haplotypes were detected. The frequency of one haplotype (DLA-DRB1*015:01--DQA1*006:01--DQB1*023:01) was significantly higher in the MUO group than in the control group (odds ratio, 7.11; 95% confidence interval, 1.37-36.81; P=0.0141). The results suggest that the development of MUO in Chihuahuas may be associated with DLA class II genes. Because the identified risk haplotypes differed from those of other breeds, the pathogenesis of NIME-related diseases may differ among dog breeds.
Collapse
Affiliation(s)
- Ayaka OSHIMA
- Laboratory of Veterinary Neurology, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - Daisuke ITO
- Laboratory of Veterinary Neurology, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kanagawa, Japan,Correspondence to: Ito D: , Laboratory of Veterinary Neurology, Department
of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Fumihiko KATAKURA
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - Jiro MIYAMAE
- Faculty of Medicine, Okayama University of Science, Ehime, Japan
| | - Masaharu OKANO
- Department of Legal Medicine, Nihon University School of Dentistry, Tokyo, Japan
| | - Megu NAKAZAWA
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - Shinichi KANAZONO
- Neurology and Neurosurgery Service, Veterinary Specialists and Emergency Center, Saitama, Japan
| | - Tadaaki MORITOMO
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - Masato KITAGAWA
- Laboratory of Veterinary Neurology, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kanagawa, Japan
| |
Collapse
|
6
|
Nakazawa M, Miyamae J, Okano M, Kanemoto H, Katakura F, Shiina T, Ohno K, Tsujimoto H, Moritomo T, Watari T. Dog leukocyte antigen (DLA) class II genotypes associated with chronic enteropathy in French bulldogs and miniature dachshunds. Vet Immunol Immunopathol 2021; 237:110271. [PMID: 34044267 DOI: 10.1016/j.vetimm.2021.110271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/01/2021] [Accepted: 05/19/2021] [Indexed: 01/02/2023]
Abstract
Canine chronic enteropathy (CE) is a group of immunogenetic disorders of unclear etiology characterized by chronic or recurrent gastrointestinal signs and inflammation. Diagnosis of CE subtypes by treatment response is a lengthy and challenging process, particularly in refractory cases of the disease. Given known association of dog leukocyte antigen (DLA) class II genotype and various immunogenetic disorders between and across breeds, this study was designed to examine the potential of determining susceptibility to refractory CE through identification of risk and protective genotypes in French bulldogs and miniature dachshunds-two popular dog breeds in Japan. Sequence-based genotyping of three DLA class II genes in 29 French bulldogs and 30 miniature dachshunds with refractory CE revealed a protective haplotype DLA-DRB1*002:01-DQA1*009:01-DQB1*001:01 against CE in French bulldogs (OR 0.09, 95 % CI 0.01-0.71, p = 0.0084). No statistical difference was noted between miniature dachshund cases and controls. These findings, largely disparate from a previous study on German shepherd dogs in the UK, were taken as possible indication of etiological differences in the refractory CE noted between and within breeds, and by extension, the potential of identifying such disease heterogeneity by DLA typing. The DLA-DQA1/DQB1 haplotype, protective against CE in our French bulldogs, has been reported as protective in various immune-mediated disorders such as Doberman hepatitis (Dyggve et al., 2011). Likewise, the DLA-DRB1*006:01 risk allele for Doberman hepatitis was noted in more French bulldogs with CE compared to controls, in line with reports on genotypes associated with both risk and protection being shared across various autoimmune diseases and breeds. These findings support an immunogenetic basis to the French bulldog-CE in our analysis, calling for further DLA studies working with larger samples and different breeds towards phenotypic clarification that may aid in early diagnosis, treatment, and prophylaxis through epigenetic approaches and breeding.
Collapse
Affiliation(s)
- Meg Nakazawa
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan
| | - Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Hideyuki Kanemoto
- DVMs Animal Medical Center Yokohama, 966-5 Kawamuko, Tsuzuki, Yokohama, Kanagawa, 224-0044, Japan; Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1143, Japan
| | - Koichi Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Toshihiro Watari
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
7
|
Peiravan A, Bertolini F, Rothschild MF, Simpson KW, Jergens AE, Allenspach K, Werling D. Genome-wide association studies of inflammatory bowel disease in German shepherd dogs. PLoS One 2018; 13:e0200685. [PMID: 30028859 PMCID: PMC6054420 DOI: 10.1371/journal.pone.0200685] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Canine Inflammatory Bowel Disease (IBD) is considered a multifactorial disease caused by complex interactions between the intestinal immune system, intestinal microbiota and environmental factors in genetically susceptible individuals. Although IBD can affect any breed, German shepherd dogs (GSD) in the UK are at increased risk of developing the disease. Based on previous evidence, the aim of the present study was to identify single nucleotide polymorphisms (SNPs), which may confer genetic susceptibility or resistance to IBD using a genome-wide association study (GWAS). Genomic DNA was extracted from EDTA blood or saliva samples of 96 cases and 98 controls. Genotyping of cases and controls was performed on the Canine Illumina HD SNP array and data generated was analyzed using PLINK. Several SNPs and regions on chromosomes 7,9,11 and 13 were detected to be associated with IBD using different SNP-by-SNP association methods and FST windows approach. Searching one Mb up-and down-stream of the most significant SNPs, as identified by single SNP analysis as well as 200Kb before and after the start and the end position of the associated regions identified by FST windows approach, we identified 63 genes. Using a combination of pathways analysis and a list of genes that have been reported to be involved in human IBD, we identified 16 candidate genes potentially associated with IBD in GSD.
Collapse
Affiliation(s)
- Atiyeh Peiravan
- Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Francesca Bertolini
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Max F. Rothschild
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Kenneth W. Simpson
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Albert E. Jergens
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Karin Allenspach
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Dirk Werling
- Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, North Mymms, United Kingdom
| |
Collapse
|
8
|
Mochel JP, Jergens AE, Kingsbury D, Kim HJ, Martín MG, Allenspach K. Intestinal Stem Cells to Advance Drug Development, Precision, and Regenerative Medicine: A Paradigm Shift in Translational Research. AAPS JOURNAL 2017; 20:17. [PMID: 29234895 PMCID: PMC6044282 DOI: 10.1208/s12248-017-0178-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022]
Abstract
Recent advances in our understanding of the intestinal stem cell niche and the role of key signaling pathways on cell growth and maintenance have allowed the development of fully differentiated epithelial cells in 3D organoids. Stem cell-derived organoids carry significant levels of proteins that are natively expressed in the gut and have important roles in drug transport and metabolism. They are, therefore, particularly relevant to study the gastrointestinal (GI) absorption of oral medications. In addition, organoids have the potential to serve as a robust preclinical model for demonstrating the effectiveness of new drugs more rapidly, with more certainty, and at lower costs compared with live animal studies. Importantly, because they are derived from individuals with different genotypes, environmental risk factors and drug sensitivity profiles, organoids are a highly relevant screening system for personalized therapy in both human and veterinary medicine. Lastly, and in the context of patient-specific congenital diseases, orthotopic transplantation of engineered organoids could repair and/or replace damaged epithelial tissues reported in various GI diseases, such as inflammatory bowel disease, cystic fibrosis, and tuft enteropathy. Ongoing translational research on organoids derived from dogs with naturally occurring digestive disorders has the potential to improve the predictability of preclinical models used for optimizing the therapeutic management of severe chronic enteropathies in human patients.
Collapse
Affiliation(s)
- Jonathan P Mochel
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, 2448 Lloyd, 1809 S Riverside Dr., Ames, Iowa, 50011-1250, USA.
| | - Albert E Jergens
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, 50011-1250 Ames, Iowa, USA
| | - Dawn Kingsbury
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, 50011-1250 Ames, Iowa, USA
| | - Hyun Jung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Martín G Martín
- Department of Pediatrics, University of California Los Angeles, California, Los Angeles, 90095-1782, USA
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, 50011-1250 Ames, Iowa, USA
| |
Collapse
|
9
|
O’Neill DG, Coulson NR, Church DB, Brodbelt DC. Demography and disorders of German Shepherd Dogs under primary veterinary care in the UK. Canine Genet Epidemiol 2017; 4:7. [PMID: 28770095 PMCID: PMC5532765 DOI: 10.1186/s40575-017-0046-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The German Shepherd Dog (GSD) has been widely used for a variety of working roles. However, concerns for the health and welfare of the GSD have been widely aired and there is evidence that breed numbers are now in decline in the UK. Accurate demographic and disorder data could assist with breeding and clinical prioritisation. The VetCompassTM Programme collects clinical data on dogs under primary veterinary care in the UK. This study included all VetCompassTM dogs under veterinary care during 2013. Demographic, mortality and clinical diagnosis data on GSDs were extracted and reported. RESULTS GSDs dropped from 3.5% of the annual birth cohort in 2005 to 2.2% in 2013. The median longevity of GSDs was 10.3 years (IQR 8.0-12.1, range 0.2-17.0). The most common causes of death were musculoskeletal disorder (16.3%) and inability to stand (14.9%). The most prevalent disorders recorded were otitis externa (n = 131, 7.89, 95% CI: 6.64-9.29), osteoarthritis (92, 5.54%, 95% CI: 4.49-6.75), diarrhoea (87, 5.24%, 95% CI: 4.22-6.42), overweight/obesity (86, 5.18%, 95% CI: 4.16-6.36) and aggression (79, 4.76%, 95% CI: 3.79-5.90). CONCLUSIONS This study identified that GSDs have been reducing in numbers in the UK in recent years. The most frequent disorders in GSDs were otitis externa, osteoarthritis, diarrhoea, overweight/obesity and aggression, whilst the most common causes of death were musculoskeletal disorders and inability to stand. Aggression was more prevalent in males than in females. These results may assist veterinarians to offer evidence-based advice at a breed level and help to identify priorities for GSD health that can improve the breed's health and welfare.
Collapse
Affiliation(s)
- Dan G. O’Neill
- Pathobiology and Population Science, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| | - Noel R. Coulson
- The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| | - David B. Church
- Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| | - Dave C. Brodbelt
- Pathobiology and Population Science, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| |
Collapse
|