1
|
Oncolytic avian reovirus σA-modulated fatty acid metabolism through the PSMB6/Akt/SREBP1/acetyl-CoA carboxylase pathway to increase energy production for virus replication. Vet Microbiol 2022; 273:109545. [PMID: 35998542 DOI: 10.1016/j.vetmic.2022.109545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022]
Abstract
We have demonstrated previously that the σA protein of avian reovirus (ARV) functions as an activator of cellular energy, which upregulates glycolysis and the TCA cycle for virus replication. To date, there is no report with respect to σA-modulated regulation of cellular fatty acid metabolism. This study reveals that the σA protein of ARV inhibits fatty acids synthesis and enhance fatty acid oxidation by upregulating PSMB6, which suppresses Akt, sterol regulatory element-binding protein 1 (SREBP1), acetyl-coA carboxylase α (ACC1), and acetyl-coA carboxylase β (ACC2). SREBP1 is a transcription factor involved in fatty acid and cholesterol biosynthesis. Overexpression of SREBP1 reversed σA-modulated suppression of ACC1 and ACC2. In this work, a fluorescence resonance energy transfer-based genetically encoded indicator, Ateams, was used to study σA-modulated inhibition of fatty acids synthesis which enhances cellular ATP levels in Vero cells and human cancer cell lines (A549 and HeLa). By using Ateams, we demonstrated that σA-modulated inhibition of Akt, SREBP1, ACC1, and ACC2 leads to increased levels of ATP in mammalian and human cancer cells. Furthermore, knockdown of PSMB6 or overexpression of SREBP1 reversed σA-modulated increased levels of ATP in cells, indicating that PSMB6 and SREBP1 play important roles in ARV σA-modulated cellular fatty acid metabolism. Furthermore, we found that σA R155/273A mutant protein loses its ability to enter the nucleolus, which impairs its ability to regulate fatty acid metabolism and does not increase ATP formation, suggesting that nucleolus entry of σA is critical for regulating cellular fatty acid metabolism to generate more energy for virus replication. Collectively, this study provides novel insights into σA-modulated inhibition of fatty acid synthesis and enhancement of fatty acid oxidation to produce more energy for virus replication through the PSMB6/Akt/SREBP1/ACC pathway.
Collapse
|
2
|
Chi PI, Huang WR, Chiu HC, Li JY, Nielsen BL, Liu HJ. Avian reovirus σA-modulated suppression of lactate dehydrogenase and upregulation of glutaminolysis and the mTOC1/eIF4E/HIF-1α pathway to enhance glycolysis and the TCA cycle for virus replication. Cell Microbiol 2018; 20:e12946. [PMID: 30156372 DOI: 10.1111/cmi.12946] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022]
Abstract
Adenosine triphosphate (ATP) is an energy source for many types of viruses for facilitating virus replication. This is the first report to demonstrate that the structural protein σA of avian reovirus (ARV) functions as an activator of cellular energy. Three cellular factors, isocitrate dehydrogenase 3 subunit beta (IDH3B), lactate dehydrogenase A (LDHA), and vacuolar-type H+-ATPase (vATPase) co-immunoprecipitated with ARV σA and were identified by 2D-LC/MS/MS. ARV enhances glycolytic flux through upregulation of glycolytic enzymes. Increased ATP levels in both ARV-infected and σA-transfected cells were observed by a fluorescence resonance energy transfer-based genetically encoded indicator, Ateams. Furthermore, σA upregulates IDH3B and glutamate dehydrogenase (GDH) to promote glutaminolysis, activating HIF-1α. Both HIF-1α level and viral yield in IDH3B-depleted and glutamine-deprived cells, and inhibition of glutaminolysis was significantly reduced. The σAR155/273A mutant loses its ability to enter the nucleolus, impairing its ability to regulate glycolysis. In addition, we have identified the conserved untranslated regions (UTR) of the 5'- and 3'-termini of the ARV genome segments that are required for viral protein synthesis in an ATP-dependent manner. Deletion of either the 5'- or 3'-UTR impaired viral protein synthesis. Knockdown of σA reduced the ATP level and significantly decreased virus yield, suggesting that σA enhances ATP formation to promote virus replication. Collectively, this study provides novel insights into σA-modulated suppression of LDHA and activation of IDH3B and GDH to activate the mTORC1/eIF4E/HIF-1α pathways to upregulate glycolysis and the TCA cycle for virus replication.
Collapse
Affiliation(s)
- Pei-I Chi
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Chuan Chiu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jyun-Yi Li
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,PhD Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Significant inhibition of Tembusu virus envelope and NS5 gene using an adenovirus-mediated short hairpin RNA delivery system. INFECTION GENETICS AND EVOLUTION 2017; 54:387-396. [PMID: 28780191 DOI: 10.1016/j.meegid.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022]
Abstract
Tembusu virus (TMUV) is a mosquito-borne flavivirus, which was first isolated in the tropics during the 1970s. Recently, a disease characterized by ovarian haemorrhage and neurological symptoms was observed in ducks in China, which threatens poultry production. However, there is no suitable vaccination strategy or effective antiviral drugs to combat TMUV infections. Consequently, there is an urgent need to develop a new anti-TMUV therapy. In this study, we report an efficient short hairpin RNA (shRNA) delivery strategy for the inhibition of TMUV production using an adenovirus vector system. Using specifically designed shRNAs based on the E and NS5 protein genes of TMUV, the vector-expressed viral genes, TMUV RNA replication and infectious virus production were downregulated at different levels in Vero cells, where the shRNA (NS52) was highly effective in inhibiting TMUV. Using the human adenovirus type 5 shRNA delivery system, the recombinant adenovirus (rAd-NS52) inhibited TMUV multiplication with high efficiency. Furthermore, the significant dose-dependent inhibition of viral RNA copies induced by rAd-NS52 was found in TMUV-infected cells, which could last for at least 96h post infection. Our results indicated that the adenovirus-mediated delivery of shRNAs could play an active role in future TMUV antiviral therapeutics.
Collapse
|
4
|
Huang WR, Chi PI, Chiu HC, Hsu JL, Nielsen BL, Liao TL, Liu HJ. Avian reovirus p17 and σA act cooperatively to downregulate Akt by suppressing mTORC2 and CDK2/cyclin A2 and upregulating proteasome PSMB6. Sci Rep 2017; 7:5226. [PMID: 28701787 PMCID: PMC5507987 DOI: 10.1038/s41598-017-05510-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 05/31/2017] [Indexed: 12/19/2022] Open
Abstract
Although we have shown that avian reovirus (ARV) p17-mediated inhibition of Akt leads to induction of autophagy, the precise mechanisms remain largely unknown. This study has identified a specific mechanism by which ARV coordinately regulates the degradation of ribosomal proteins by p17-mediated activation of E3 ligase MDM2 that targets ribosomal proteins and by σA-mediated upregulation of proteasome PSMB6. In addition to downregulating ribosomal proteins, p17 reduces mTORC2 assembly and disrupts mTORC2-robosome association, both of which inactivate mTORC2 leading to inhibition of Akt phosphorylation at S473. Furthermore, we discovered that p17 binds to and inhibits the CDK2/cyclin A2 complex, further inhibiting phosphorylation of Akt S473. The negative effect of p17 on mTORC2 assembly and Akt phosphorylation at S473 is reversed in cells treated with insulin or overexpression of CDK2. The carboxyl terminus of p17 is necessary for interaction with CDK2 and for induction of autophagy. Furthermore, p17-mediated upregulation of LC3-II could be partially reversed by overexpression of CDK2. The present study provides mechanistic insights into cooperation between p17 and σA proteins of ARV to negatively regulate Akt by downregulating complexes of mTORC2 and CDK2/cyclin A2 and upregulating PSMB6, which together induces autophagy and cell cycle arrest and benefits virus replication.
Collapse
Affiliation(s)
- Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Pei-I Chi
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hung-Chuan Chiu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Tsai-Ling Liao
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan. .,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
5
|
A possible strategy to produce pigs resistant to porcine reproductive and respiratory syndrome virus. Antiviral Res 2013; 99:158-64. [PMID: 23732571 DOI: 10.1016/j.antiviral.2013.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 12/24/2022]
Abstract
The purpose of this study was to enhance the production of transgenic cloned embryos with porcine reproductive and respiratory syndrome virus (PRRSV) shRNA expression cassettes. To construct transgenic vector with expression targeting against PRRSV, PRRSV shRNA expression cassettes were inserted into pEGFP-N1 and the ability of resulting recombinant plasmid pEGFP-G1 inhibiting virus replication was examined in Marc-145 cells. Results showed that PRRSV replication could be significantly inhibited by pEGFP-G1 in Marc-145 cells compared with the control. The pEGFP-G1 plasmid was used to deliver a transgene expressing EGFP and the PRRSV shRNA into porcine fetal fibroblasts (PFF). Fluorescent-positive cells were used as nuclear donors for somatic cell nuclear transfer (SCNT) to produce shRNA-EGFP transgenic cloned embryos. The effects of trichostatin A (TSA) on production of transgenic cloned embryos were investigated. Reconstructed embryos were designed into 4 groups: Donor cells of Group A were treated with 50nM TSA for 24h before SCNT. Reconstructed embryos of Group B were treated with 50nM TSA for 24h after activation. Both donor cells and reconstructed embryos in Group C were treated with TSA and Group D were the control without TSA treatment. The results showed no difference (p>0.05) in cleavage rates among the 4 groups; however, blastocyst developmental rates of Group B and C (30.9% and 42.0%, respectively) were higher than for Group A and D (21.2% and 22.1%, respectively) with Group C highest among groups (p<0.05). Interestingly, EGFP expression intensity of transgenic cloned blastocysts of Group A was the highest. Our results provide promising evidence toward a new approach for production of transgenic cloned pigs with resistance to PRRSV and possibly a wide variety of other porcine diseases.
Collapse
|
6
|
Chi PI, Huang WR, Lai IH, Cheng CY, Liu HJ. The p17 nonstructural protein of avian reovirus triggers autophagy enhancing virus replication via activation of phosphatase and tensin deleted on chromosome 10 (PTEN) and AMP-activated protein kinase (AMPK), as well as dsRNA-dependent protein kinase (PKR)/eIF2α signaling pathways. J Biol Chem 2012; 288:3571-84. [PMID: 23233667 DOI: 10.1074/jbc.m112.390245] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autophagy has been shown to facilitate replication or production of avian reovirus (ARV); nevertheless, how ARV induces autophagy remains largely unknown. Here, we demonstrate that the nonstructural protein p17 of ARV functions as an activator of autophagy. ARV-infected or p17-transfected cells present a fast and strong induction of autophagy, resulting in an increased level of autophagic proteins Beclin 1 and LC3-II. Although autophagy was suppressed by 3-methyladenine or shRNAs targeting autophagic proteins (Beclin 1, ATG7, and LC3) as well as by overexpression of Bcl-2, viral transcription, σC protein synthesis, and virus yield were all significantly reduced, suggesting a key role of autophagosomes in supporting ARV replication. Furthermore, we revealed for the first time that p17 positively regulates phosphatase and tensin deleted on chromosome 10 (PTEN), AMP-activated protein kinase (AMPK), and dsRNA dependent protein kinase RNA (PKR)/eIF2α signaling pathways, accompanied by down-regulation of Akt and mammalian target of rapamycin complex 1, thereby triggering autophagy. By using p53, PTEN, PKR, AMPK, and p17 short hairpin RNA (shRNA), activation of signaling pathways and LC3-II levels was significantly suppressed, suggesting that p17 triggers autophagy through activation of p53/PTEN, AMPK, and PKR signaling pathways. Furthermore, colocalization of LC3 with viral proteins (p17 and σC), p62 with LAMP2 and LC3 with Rab7 was observed under a fluorescence microscope. The expression level of p62 was increased at 18 h postinfection and then slightly decreased 24 h postinfection compared with mock infection and thapsigargin treatment. Furthermore, disruption of autophagosome-lysosome fusion by shRNAs targeting LAMP2 or Rab7a resulted in inhibition of viral protein synthesis and virus yield, suggesting that formation of autolysosome benefits virus replication. Taken together, our results suggest that ARV induces formation of autolysosome but does not induce complete autophagic flux.
Collapse
Affiliation(s)
- Pei I Chi
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
7
|
Guo S, Xu D, Xu HX, Wang T, Li JL, Lu LQ. Suppression of RNA interference pathway in vitro by Grass carp reovirus. Virol Sin 2012; 27:109-19. [PMID: 22492002 DOI: 10.1007/s12250-012-3230-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/13/2012] [Indexed: 12/25/2022] Open
Abstract
The means of survival of genomic dsRNA of reoviruses from dsRNA-triggered and Dicer-initiated RNAi pathway remains to be defined. The present study aimed to investigate the effect of Grass carp reovirus (GCRV) replication on the RNAi pathway of grass carp kidney cells (CIK). The dsRNA-triggered RNAi pathway was demonstrated unimpaired in CIK cells through RNAi assay. GCRV-specific siRNA was generated in CIK cells transfected with purified GCRV genomic dsRNA in Northern blot analysis; while in GCRV-infected CIK cells, no GCRV-specific siRNA could be detected. Infection and transfection experiments further indicated that replication of GCRV correlated with the increased transcription level of the Dicer gene and functional inhibition of in vitro synthesized egfp-siRNA in silencing the EGFP reporter gene. These data demonstrated that although only the genomic dsRNA of GCRV was sensitive to the cellular RNAi pathway, unidentified RNAi suppressor protein(s) might contribute to the survival of the viral genome and efficient viral replication.
Collapse
Affiliation(s)
- Shuai Guo
- Key Laboratory of Aquatic Genetic Resources and Utilization /Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | | | | | | | | | | |
Collapse
|
8
|
Ji WT, Lin FL, Wang YC, Shih WL, Lee LH, Liu HJ. Intracellular cleavage of sigmaA protein of avian reovirus. Virus Res 2010; 149:71-7. [PMID: 20079780 DOI: 10.1016/j.virusres.2010.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 01/01/2010] [Accepted: 01/02/2010] [Indexed: 10/19/2022]
Abstract
By Western blot analyzes of expression of avian reovirus proteins, one unknown fragment was detected by an anti-sigmaA monoclonal antibody in virus-infected cells lysate. It was interesting to note that RNA interference against sigmaA resulted in the suppression of the unknown fragment. Using various lengths of sigmaA constructs conjugated with different tags, we present evidences to demonstrate that the fragment comes from the cleavage of sigmaA and is the larger carboxyl-terminus, termed sigmaAC. Cleavage of sigmaA simultaneously produces a smaller amino-terminus, named sigmaAN. sigmaAC could be seen early in viral infection and accumulated with time and dose of infection, indicating that the derived products are not just transient intermediates of protein degradation. The same type of cleaved products were also observed in different genotypes and serotypes of ARV as well as in different cell lines, suggesting that this intracellular modification of sigmaA is common to all ARVs. Similar localization of sigmaAC in both cytosol and nucleus with sigmaA suggested that further modification of sigmaA may be important for its function. Our evidences suggest that besides the outer capsid protein muB, sigmaA may also have post-translational cleavage which has never been reported before even in related mammalian reovirus.
Collapse
Affiliation(s)
- Wen T Ji
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Wang Y, Sun H, Shen P, Zhang X, Xia X. Effective inhibition of infectious bursal disease virus replication by recombinant avian adeno-associated virus-delivered microRNAs. J Gen Virol 2009; 90:1417-1422. [PMID: 19264609 DOI: 10.1099/vir.0.010520-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) is a novel antiviral strategy against a variety of virus infections. Infectious bursal disease virus (IBDV) causes an economically important disease in young chickens. This study demonstrated efficient inhibition of IBDV replication by recombinant avian adeno-associated virus (rAAAV)-delivered anti-VP1 and anti-VP2 microRNAs (miRNAs). In the viral vector-transduced cells, sequence-specific miRNA expression was detected by poly(A)-tailed RT-PCR. Reporter assays using a pVP2-EGFP vector showed significant and long-lasting inhibition of VP2-EGFP expression in cells transduced with anti-VP2 miRNA-expressing rAAAV-RFPmiVP2E, but not with the control miRNA-expressing rAAAV-RFPmiVP2con or anti-VP1 miRNA-expressing rAAAV-RFPmiVP1. Semi-quantitative RT-PCR and/or virus titration assays showed a significant inhibitory effect on homologous IBDV replication in cells transduced with rAAAV-RFPmiVP1 or rAAAV-RFPmiVP2E. For two heterologous IBDV isolates, transduction with rAAAV-RFPmiVP1 led to slightly weaker but similar inhibitory effects, whereas transduction with rAAAV-RFPmiVP2E resulted in significantly weaker and different inhibitory effects. These results suggest that rAAAV could act as an efficient vector for miRNA delivery into avian cells and that VP1 is the more suitable target for interfering with IBDV replication using RNAi technology.
Collapse
Affiliation(s)
- Yongjuan Wang
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui Road, Yangzhou 225009, PR China
| | - Huaichang Sun
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui Road, Yangzhou 225009, PR China
| | - Pengpeng Shen
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui Road, Yangzhou 225009, PR China
| | - Xinyu Zhang
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui Road, Yangzhou 225009, PR China
| | - Xiaoli Xia
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui Road, Yangzhou 225009, PR China
| |
Collapse
|
10
|
Li G, Jiang P, Li Y, Wang X, Huang J, Du Y, Zeshan B. Effective suppression of replication of porcine reproductive and respiratory syndrome virus by adenovirus-mediated small interfering RNAs targeting ORF1b, 5 and 7 genes. J Virol Methods 2009; 157:40-6. [PMID: 19118577 DOI: 10.1016/j.jviromet.2008.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/27/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
Abstract
Porcine reproductive and respiratory syndrome virus has caused hundreds of thousands of deaths in pig farms in many swine-producing areas in the world in recent years. However, at present there is no effective method to prevent and control the disease, and there is a need to develop new antiviral strategies. In this study, four recombinant adenoviruses expressing shRNAs targeting ORF1b, ORF5 and ORF7 were constructed, and it was found that they could down-regulate effectively specific gene expression and inhibit viral replication in MARC-145 cells when compared to the controls. They could also inhibit effectively PRRSV replication in porcine alveolar macrophages. The inhibition effect was dose-dependent and could be sustained for at least 96h in macrophages. In addition, PRRSV replication could be suppressed significantly by shRNA in cells infected previously or simultaneously with PRRSV. The results indicated that the shRNA-expressing rAd5 targeting to various gene regions of PRRSV might be a potential anti-PRRSV strategy.
Collapse
Affiliation(s)
- Guangming Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agriculture University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|