1
|
Burrai GP, Hawko S, Dei Giudici S, Polinas M, Angioi PP, Mura L, Alberti A, Hosri C, Hassoun G, Oggiano A, Antuofermo E. The Synergic Role of Emerging and Endemic Swine Virus in the Porcine Respiratory Disease Complex: Pathological and Biomolecular Analysis. Vet Sci 2023; 10:595. [PMID: 37888547 PMCID: PMC10611356 DOI: 10.3390/vetsci10100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Porcine respiratory disease complex (PRDC) represents a significant threat to the swine industry, causing economic losses in pigs worldwide. Recently, beyond the endemic viruses PRRSV and PCV2, emerging viruses such as TTSuV, PCV3, and PPV2, have been associated with PRDC, but their role remains unclear. This study investigates the presence of PCV2 and PRRSV and emerging viruses (PCV3, TTSuV, and PPV2) in the lungs of swine belonging to different age groups by histopathology and real-time PCR. The prevalent lung lesion was interstitial pneumonia with increased severity in post-weaning pigs. PRRSV was detected in 33% of piglets' lungs and in 20% of adults and post-weaning pigs with high Ct, while PCV2 was found in 100% of adult pigs, 33% of post-weaning pigs, and 22% of piglets, with low Ct in post-weaning pigs. PCV3 was present in all categories and coexisted with other viruses. TTSuV was detected in all swine in combination with other viruses, possibly influencing the disease dynamics, while PPV2 was detected in 100% of adults' and 90% of piglets' lungs. The detection of TTSuV, PCV3, and PPV2 in affected pigs prioritizes the need for comprehensive approaches in implementing appropriate control measures and minimizing economic losses associated with PRDC.
Collapse
Affiliation(s)
- Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Salwa Hawko
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Chadi Hosri
- Department of Veterinary Medicine, Faculty of Agricultural Sciences and Veterinary Medicine, Lebanese University, Beirut 1487, Lebanon; (C.H.); (G.H.)
| | - Georges Hassoun
- Department of Veterinary Medicine, Faculty of Agricultural Sciences and Veterinary Medicine, Lebanese University, Beirut 1487, Lebanon; (C.H.); (G.H.)
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| |
Collapse
|
2
|
Xin W, Guo Z, Wang L, Li Y, Shangguan H, Xue K, Chen H, Yang H, Zhao L, Ge J. Multiple genotypes infection and molecular characterization of Torque teno neovison virus: A novel Anelloviridae of mink in China. Res Vet Sci 2023; 161:145-155. [PMID: 37384973 DOI: 10.1016/j.rvsc.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
A novel Torque teno neovison virus (TTVs) was identified in specimens collected from dead mink during an outbreak of the Aleutian mink disease virus. Eighteen complete genomic sequences were obtained, ranging from 2109 to 2158 nucleotides in length and consisting of an untranslated region and three open reading frames. The genomic organization of mink TTVs is similar to previously reported anelloviruses. However, the deduced amino acid sequence of its ORF1 protein shows genetic diversity compared to related anelloviruses, suggesting that it represents a putative new species within the Anelloviridae family. This study provides a detailed molecular characterization of the novel mink anelloviruses, including its codon usage pattern, origin, and evolution. Analysis of the viral genomic sequences reveals the existence of multiple genotypes of co-infection. Principal component analysis and phylogenetic trees confirm the coexistence of multiple genotypes. Furthermore, the codon usage analyses indicate that mink TTVs have a genotype-specific codon usage pattern and show a low codon usage bias. Host-specific adaptation analysis suggests that TTVs are less adapted to mink. The possible origin and evolutionary history of mink TTVs were elucidated. Mink TTVs was genetically closely related to giant panda anellovirus, representing a new species. The observed incongruence between the phylogenetic history of TTVs and that of their hosts suggests that the evolution of anellovirus is largely determined by cross-species transmission. The study provides insights into the co-infection and genetic evolution of anellovirus in China.
Collapse
Affiliation(s)
- Weizhi Xin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Kun Xue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Hongliang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal, Pathogen Biology, Harbin 150030, China.
| |
Collapse
|
3
|
Histopathological Changes and Inflammatory Response in Specific Pathogen-Free (SPF) with Porcine Circovirus Type 3 Infection. Animals (Basel) 2023; 13:ani13030530. [PMID: 36766419 PMCID: PMC9913417 DOI: 10.3390/ani13030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Since the first report of PCV3 virus infection in 2016, it has been linked to multisystemic inflammation, reproductive failure, cardiac pathology, and clinical indications resembling porcine dermatitis and nephropathy syndrome (PDNS). However, the pathogenesis and clinical significance of PCV3 is still unclear. In this study, a PCV3 infection model was created using SPF pigs, and histopathology and fluorescence quantitative PCR were utilized to examine PCV3's pathogenicity. Reductions in body weight gain and fever were observed during this study. However, other clinical signs such as Dermatitis and Nephropathy Syndrome were not observed through the study. Viremia was detected in the PCV3-inoculated group from 17 days post-inoculation (p.i.) until the end of the study. Nasal shedding was detected from 21 to 35 dpi and fecal shedding was detected during 25-33 days and 39 days, respectively. Gross lesions and histological evaluation were detected in various tissues and organs, including the lung, heart, kidney, lymph nodes, spleen, liver, small intestine, and testis. The heart, lung, liver, kidney, lymph nodes, and spleen showed pathological changes. The pathological features include swelling, inflammation, cell degeneration, necrosis, and hemorrhage. The lesions are consistent with multisystemic inflammation. Tissue viral load results showed only heart, lung, liver, kidney, lymph nodes, and spleen was positive by qRT-PCR. Moreover, the pro-inflammation cytokines in serum increased a lot in the PCV3-inoculated group compared to the control group, demonstrating that the induced inflammation response may be the cause of tissue damage in PCV3-infection. This study demonstrated that PCV3 can produce mild pathological damage to multiple organs, especially multisystemic inflammatory cell infiltration and prolonged viremia, viral shedding in nasal secretions. This is the first in vivo characterization of PCV3 infection in the SPF piglets model using isolated PCV3 strain, and this is also the first time to show the gross and pathological lesion with all tissue and organs in the PCV3-inoculated group. Our findings might serve as a starting point for more investigation into PCV3's pathogenic mechanism.
Collapse
|
4
|
Five years of porcine circovirus 3: what have we learned about the clinical disease, immune pathogenesis, and diagnosis. Virus Res 2022; 314:198764. [PMID: 35367483 DOI: 10.1016/j.virusres.2022.198764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022]
|
5
|
Ruiz A, Saporiti V, Huerta E, Balasch M, Segalés J, Sibila M. Exploratory Study of the Frequency of Detection and Tissue Distribution of Porcine Circovirus 3 (PCV-3) in Pig Fetuses at Different Gestational Ages. Pathogens 2022; 11:118. [PMID: 35215062 PMCID: PMC8877316 DOI: 10.3390/pathogens11020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Porcine circovirus 3 (PCV-3) has been associated with several pig diseases. Despite the pathogenicity of this virus has not been completely clarified, reproductive disorders are consistently associated with its infection. The aim of the present work was to analyze the presence of PCV-3 DNA in tissues from pig fetuses from different gestational timepoints. The fetuses were obtained either from farms with no reproductive problems (NRP, n = 249; all of them from the last third of gestation) or from a slaughterhouse (S, n = 51; 49 of the second-third of gestation and 2 from the third one). Tissues collected included brain, heart, lung, kidney, and/or spleen. Overall, the frequency of detection of PCV-3 was significantly higher in fetuses from the last third of the gestation (69/251, 27.5%) when compared to those from the second-third (5/49, 10.2%), although the viral loads were not significantly different. Moreover, the frequency of detection in NRP fetuses (69/249, 27.7%) was significantly higher than in S ones (5/51, 9.8%). Furthermore, PCV-3 DNA was detected in all tissue types analyzed. In conclusion, the present study demonstrates a higher frequency of PCV-3 DNA detection in fetuses from late periods of the gestation and highlights wide organ distributions of the virus in pig fetuses.
Collapse
Affiliation(s)
- Albert Ruiz
- Zoetis Manufacturing & Research Spain S.L., Ctra. Camprodon s/n, La Riba, 17813 Girona, Spain; (A.R.); (M.B.)
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| | - Viviane Saporiti
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| | - Eva Huerta
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| | - Mònica Balasch
- Zoetis Manufacturing & Research Spain S.L., Ctra. Camprodon s/n, La Riba, 17813 Girona, Spain; (A.R.); (M.B.)
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, UAB, 08193 Barcelona, Spain
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| |
Collapse
|
6
|
Epidemiology and evolutionary analysis of Torque teno sus virus. Vet Microbiol 2020; 244:108668. [PMID: 32402339 DOI: 10.1016/j.vetmic.2020.108668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/20/2022]
Abstract
Single stranded (ss) DNA viruses are increasingly being discovered due to the ongoing development of modern technologies in exploring the virosphere. Characterized by high rates of recombination and nucleotide substitutions, it could be comparable to RNA virus ones. Torque teno sus virus (TTSuV) is a standard ssDNA virus with a high population diversity, whose evolution is still obscure, further, it is frequently found in co-infections with other viruses threatening the porcine industry and therefore share the same host and epidemiological context. Here, we implement and describe approach to integrate viral nucleotide sequence analysis, surveillance data, and a structural approach to examine the evolution of TTSuVs, we collected samples from pigs displaying respiratory signs in China and revealed a high prevalence of TTSuV1 and TTSuVk2, frequently as part of co-infections with porcine circoviruses (PCVs), especially in spleen and lung. In addition, thirty six strains sequenced were obtained to investigate their genetic diversity in China. The evolutionary history of TTSuVs were unveiled as following: At the nucleotide sequence level, TTSuVs ORF1 was confirmed to be a robust phylogenetic maker to study evolution comparably to full genomes. Additionally, extensive recombination discovered within TTSuVk2a (also 5 out of the 36 sequenced strains in this study revealed to be recombination). Then, pairwise distance, phylogenetic trees, and amino acid analysis confirmed TTSuVs species, and allowed to define circulating genotypes (TTSuV1a-1, 1a-2, 1b-1, 1b-2, 1b-3, and k2a-1, k2a-2, k2b). Selection analysis uncovered seven and six positive selected sites in TTSuV1 and TTSuVk2, respectively. At the protein structure level, mapping of sites onto the three-dimensional structure revealed that several positive selected sites locate into potential epitopes, which might related to the potential escaping from host immune response. Our result could assist future studies on swine ssDNA virus classification, surveillance and control.
Collapse
|
7
|
Li G, Zhang W, Wang R, Xing G, Wang S, Ji X, Wang N, Su S, Zhou J. Genetic Analysis and Evolutionary Changes of the Torque teno sus Virus. Int J Mol Sci 2019; 20:E2881. [PMID: 31200479 PMCID: PMC6628323 DOI: 10.3390/ijms20122881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 01/03/2023] Open
Abstract
The torque teno sus virus (TTSuV) is an emerging virus threating the Suidae species of unclear pathogenicity, although it was previously reported as a worsening factor of other porcine diseases, in particular, porcine circovirus associated disease (PCVAD). Here, a comprehensive codon usage analysis of the open reading frame 1 (ORF1), which encodes the viral capsid protein, was undertaken for the first time to reveal its evolutionary history. We revealed independent phylogenetic processes for the two genera during TTSuV evolution, which was confirmed by principal component analysis (PCA). A low codon usage bias was observed in different genera and different species, with Kappatorquevirus a (TTSuVk2a) displaying the highest, which was mainly driven by mutation pressure and natural selection, especially natural selection. Overall, ATs were more abundant than GCs, along with more A-ended synonymous codons in relative synonymous codon usage (RSCU) analysis. To further confirm the role of natural selection and TTSuV adaptation to the Suidae species, codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses were performed, which showed different adaptations for different TTSuVs. Importantly, we identified a more dominant role of Sus scrofa in the evolution of Iotatorquevirus (TTSuV1), with the highest CAI values and lowest RCDI values compared to Sus scrofa domestica. However, in TTSuVk2, the roles of Sus scrofa and Sus scrofa domestica were the same, regarding codon usage, with similar CAI and RCDI values. Our study provides a new perspective of the evolution of TTSuV and valuable information to develop control measures against TTSuV.
Collapse
Affiliation(s)
- Gairu Li
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Wenyan Zhang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Ruyi Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Gang Xing
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310027, China.
| | - Shilei Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Xiang Ji
- Department of Biomathematics, University of California, Los Angeles, CA 90095, USA.
| | - Ningning Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Klaumann F, Correa-Fiz F, Sibila M, Núñez JI, Segalés J. Infection dynamics of porcine circovirus type 3 in longitudinally sampled pigs from four Spanish farms. Vet Rec 2019; 184:619. [PMID: 31040218 DOI: 10.1136/vr.105219] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/25/2019] [Accepted: 03/10/2019] [Indexed: 12/23/2022]
Abstract
Porcine circovirus type 3 (PCV-3) is a recently discovered virus in domestic pigs and wild boar. The virus has been described in pigs with different clinical/pathological presentations and healthy animals, but the dynamics of infection is currently unknown. The aim of this study was to longitudinally monitor PCV-3 infection in 152 pigs from four different healthy farms (A, B, C and D) by means of PCR in serum. The selected animals were sampled five (farm A) or six (farms B-D) times from weaning until the end of the fattening period. PCV-3 genome was found in pigs from all tested ages and farms; few animals had an apparent long-term infection (4-23 weeks). PCV-3 frequency of detection remained fairly uniform along tested ages within farms A and C, but was more variable among sampling times in farms B and D. Eight partial genome sequences were obtained from six different animals. Phylogenetic tree and pairwise distance analysis showed high similarity among sequences and with available genomes from different countries. This is the first study on PCV-3 infection dynamics in longitudinally sampled pigs. Most pigs got infection during their life, although PCV-3 did not appear to be linked with any specific age.
Collapse
Affiliation(s)
- Francini Klaumann
- CAPES Foundation, Ministry of Education of Brazil, Brazilia, DF, Brazil.,IRTA, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Bellaterra, Barcelona, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Bellaterra, Barcelona, Spain
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Bellaterra, Barcelona, Spain
| | - José Ignacio Núñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Bellaterra, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Vargas-Ruiz A, Ramírez-Álvarez H, Sánchez-Betancourt JI, Quintero-Ramírez V, Rangel-Rodríguez IC, Vázquez-Perez JA, García-Camacho LA. Retrospective study of the relationship of Torque teno sus virus 1a and Torque teno sus virus 1b with porcine circovirus associated disease. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2017; 81:178-185. [PMID: 28725107 PMCID: PMC5508382 DOI: pmid/28725107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/20/2017] [Indexed: 02/08/2023]
Abstract
Genus Iotatorquevirus consists of 2 species, Torque teno sus virus 1a and Torque teno sus virus 1b, which are ubiquitous in swine populations, and are widely reported in association with porcine circovirus associated disease (PCVAD). To evaluate the relationship with PCVAD, 100 formalin-fixed paraffin-embedded tissue samples were used to detect both Iotatorquevirus species by nested PCR and sequencing. Sixty-eight PCVAD cases were selected as well as 32 porcine circovirus type 2 (PCV2) non-affected cases. Overall, 33 of the 100 cases were positive for Torque teno sus virus 1a and 8 of 100 were positive for Torque teno sus virus 1b. Only 24 of 68 (35%) PCVAD cases were positive for Torque teno sus virus 1a; 39% (9/23) of post-weaning multisystemic wasting syndrome, and 33% (15/45) of PCV2-associated reproductive failure cases. Among PCV2 non-affected cases, 28% were positive for Torque teno sus virus 1a and 6% were positive for Torque teno sus virus 1b. Torque teno sus virus 1b was not detected in PCV2-associated reproductive failure cases. Regardless of the PCV2-status, a lower frequency of both Iotatorquevirus species was found than depicted in other reports and there was no statistical relationship with PCVAD (χ 2 < 0.01). Given the worldwide genomic variability of Iotatorquevirus species, it is feasible that species prevalent in Mexico share a lower nucleotide sequence identity, leading to different pathogenic potential.
Collapse
Affiliation(s)
- Alejandro Vargas-Ruiz
- Department of Biological Sciences, College of Superior Studies (FESC), National University of Mexico (UNAM), Carretera Cuautitlán–Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México (Vargas-Ruiz, Ramírez-Álvarez, Quintero-Ramírez, Rangel-Rodríguez, García-Camacho); Department of Swine Production, College of Veterinary Medicine, National University of Mexico (UNAM), Av. Universidad 3000, Col. Cd. Universitaria, Del. Coyoacán, CP 04510, Distrito Federal (Sánchez-Betancourt); Infectious Diseases Research Center, National Institute of Respiratory Diseases, Mexico City, Mexico (Vázquez-Perez)
| | - Hugo Ramírez-Álvarez
- Department of Biological Sciences, College of Superior Studies (FESC), National University of Mexico (UNAM), Carretera Cuautitlán–Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México (Vargas-Ruiz, Ramírez-Álvarez, Quintero-Ramírez, Rangel-Rodríguez, García-Camacho); Department of Swine Production, College of Veterinary Medicine, National University of Mexico (UNAM), Av. Universidad 3000, Col. Cd. Universitaria, Del. Coyoacán, CP 04510, Distrito Federal (Sánchez-Betancourt); Infectious Diseases Research Center, National Institute of Respiratory Diseases, Mexico City, Mexico (Vázquez-Perez)
| | - José I. Sánchez-Betancourt
- Department of Biological Sciences, College of Superior Studies (FESC), National University of Mexico (UNAM), Carretera Cuautitlán–Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México (Vargas-Ruiz, Ramírez-Álvarez, Quintero-Ramírez, Rangel-Rodríguez, García-Camacho); Department of Swine Production, College of Veterinary Medicine, National University of Mexico (UNAM), Av. Universidad 3000, Col. Cd. Universitaria, Del. Coyoacán, CP 04510, Distrito Federal (Sánchez-Betancourt); Infectious Diseases Research Center, National Institute of Respiratory Diseases, Mexico City, Mexico (Vázquez-Perez)
| | - Víctor Quintero-Ramírez
- Department of Biological Sciences, College of Superior Studies (FESC), National University of Mexico (UNAM), Carretera Cuautitlán–Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México (Vargas-Ruiz, Ramírez-Álvarez, Quintero-Ramírez, Rangel-Rodríguez, García-Camacho); Department of Swine Production, College of Veterinary Medicine, National University of Mexico (UNAM), Av. Universidad 3000, Col. Cd. Universitaria, Del. Coyoacán, CP 04510, Distrito Federal (Sánchez-Betancourt); Infectious Diseases Research Center, National Institute of Respiratory Diseases, Mexico City, Mexico (Vázquez-Perez)
| | - Ignacio C. Rangel-Rodríguez
- Department of Biological Sciences, College of Superior Studies (FESC), National University of Mexico (UNAM), Carretera Cuautitlán–Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México (Vargas-Ruiz, Ramírez-Álvarez, Quintero-Ramírez, Rangel-Rodríguez, García-Camacho); Department of Swine Production, College of Veterinary Medicine, National University of Mexico (UNAM), Av. Universidad 3000, Col. Cd. Universitaria, Del. Coyoacán, CP 04510, Distrito Federal (Sánchez-Betancourt); Infectious Diseases Research Center, National Institute of Respiratory Diseases, Mexico City, Mexico (Vázquez-Perez)
| | - Joel A. Vázquez-Perez
- Department of Biological Sciences, College of Superior Studies (FESC), National University of Mexico (UNAM), Carretera Cuautitlán–Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México (Vargas-Ruiz, Ramírez-Álvarez, Quintero-Ramírez, Rangel-Rodríguez, García-Camacho); Department of Swine Production, College of Veterinary Medicine, National University of Mexico (UNAM), Av. Universidad 3000, Col. Cd. Universitaria, Del. Coyoacán, CP 04510, Distrito Federal (Sánchez-Betancourt); Infectious Diseases Research Center, National Institute of Respiratory Diseases, Mexico City, Mexico (Vázquez-Perez)
| | - Lucia A. García-Camacho
- Department of Biological Sciences, College of Superior Studies (FESC), National University of Mexico (UNAM), Carretera Cuautitlán–Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México (Vargas-Ruiz, Ramírez-Álvarez, Quintero-Ramírez, Rangel-Rodríguez, García-Camacho); Department of Swine Production, College of Veterinary Medicine, National University of Mexico (UNAM), Av. Universidad 3000, Col. Cd. Universitaria, Del. Coyoacán, CP 04510, Distrito Federal (Sánchez-Betancourt); Infectious Diseases Research Center, National Institute of Respiratory Diseases, Mexico City, Mexico (Vázquez-Perez)
| |
Collapse
|
10
|
Sun W, Xie C, Liang C, Zheng M, Zhao G, Zhang P, Han J, Jing J, Wen S, Xiao P, Cui Z, Zhang J, Ren J, Liu H, Lu H, Jin N. Molecular detection and genomic characterization of Torque teno canis virus in domestic dogs in Guangxi Province, China. J Biotechnol 2017; 252:50-54. [PMID: 28483442 DOI: 10.1016/j.jbiotec.2017.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
The Torque teno canis virus (TTCaV) is a small virus with circular single-stranded DNA that has been reported to cause infections in dogs. The present study aimed to identify the presence of TTCaV in blood samples obtained from domestic dogs, and examine its diversity and evolution of the genomes. Five strains of TTCaV were detected, and the overall prevalence was found to be 7% (28/400). Phylogenetic analysis showed that the five genomes were closely clustered with the previously known Cf-TTV10 and LDL strains and formed a Thetatorque virus. Homology analysis of the whole genome showed a sequence identity of 94.6%-96.8% among the five genomes. The percent sequence similarity among the five complete genomes ranged from 95.3% to 97.4% and from 95.1% to 97% compared to the Cf-TTV10 and LDL strains respectively. The ORF1-encoded amino acid sequences showed 94.4%-97.2% identity among the five isolates. Our findings suggest that the TTCaV has a large genetic diversity and showed that TTCaV and canine parvovirus (CPV) co-infection exists in China. Further studies on the pathogenicity of TTCaV are required.
Collapse
Affiliation(s)
- Wenchao Sun
- College of Animal Science and Technology, Guangxi University, No.100 East Daxue Road, Nanning, Guangxi 530004, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Changzhan Xie
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Cao Liang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Min Zheng
- Guangxi Center for Animal Disease Control and Prevention, No. 51 North You'ai Road, Nanning, Guangxi 530001, China
| | - Guanyu Zhao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Ping Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jicheng Han
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jie Jing
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Shubo Wen
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Pengpeng Xiao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Zhuodong Cui
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jinyong Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jingqiang Ren
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Hao Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Huijun Lu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Ningyi Jin
- College of Animal Science and Technology, Guangxi University, No.100 East Daxue Road, Nanning, Guangxi 530004, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Rogers AJ, Huang YW, Heffron CL, Opriessnig T, Patterson AR, Meng XJ. Prevalence of the NovelTorque Teno Sus VirusSpecies k2b from Pigs in the United States and Lack of Association with Post-Weaning Multisystemic Wasting Syndrome or Mulberry Heart Disease. Transbound Emerg Dis 2016; 64:1877-1883. [DOI: 10.1111/tbed.12586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- A. J. Rogers
- Department of Biomedical Sciences and Pathobiology; Virginia-Maryland College of Veterinary Medicine; Virginia Polytechnic Institute and State University; Blacksburg VA USA
| | - Y.-W. Huang
- College of Animal Sciences; Zhejiang University; Hangzhou China
| | - C. L. Heffron
- Department of Biomedical Sciences and Pathobiology; Virginia-Maryland College of Veterinary Medicine; Virginia Polytechnic Institute and State University; Blacksburg VA USA
| | - T. Opriessnig
- The Roslin Institute; University of Edinburgh; Midlothian Edinburgh UK
| | | | - X.-J. Meng
- Department of Biomedical Sciences and Pathobiology; Virginia-Maryland College of Veterinary Medicine; Virginia Polytechnic Institute and State University; Blacksburg VA USA
| |
Collapse
|
12
|
Charest AJ, Plummer JD, Long SC, Carducci A, Verani M, Sidhu JPS. Global occurrence of Torque teno virus in water systems. JOURNAL OF WATER AND HEALTH 2015; 13:777-789. [PMID: 26322763 DOI: 10.2166/wh.2015.254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacterial indicator organisms are used globally to assess the microbiological safety of waters. However, waterborne viral outbreaks have occurred in drinking water systems despite negative bacterial results. Using viral markers may therefore provide more accurate health risk assessment data. In this study, fecal, wastewater, stormwater, surface water (fresh and salt), groundwater, and drinking water samples were analyzed for the presence or concentration of traditional indicators, innovative indicators and viral markers. Samples were obtained in the United States, Italy, and Australia and results compared to those reported for studies conducted in Asia and South America as well. Indicators included total coliforms, Escherichia coli, enterococci, male-specific coliphages, somatic coliphages and microviradae. Viral markers included adenovirus, polyomavirus, and a potential new surrogate, Torque teno virus (TTV). TTV was more frequently found in wastewaters (38-100%) and waters influenced by waste discharges (25%) than in surface waters used as drinking water sources (5%). TTV was also specific to human rather than animal feces. While TTV numbers were strongly correlated to other viral markers in wastewaters, suggesting its utility as a fecal contamination marker, data limitations and TTV presence in treated drinking waters demonstrates that additional research is needed on this potential viral indicator.
Collapse
Affiliation(s)
- A J Charest
- Department of Civil Engineering, Wentworth Institute of Technology, 550 Huntington Avenue, Boston, MA 02115, USA
| | - J D Plummer
- Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA E-mail:
| | - S C Long
- Department of Soil Science and Wisconsin State Laboratory of Hygiene, 2601 Agricultural Drive, Madison, WI 53718, USA
| | - A Carducci
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - M Verani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - J P S Sidhu
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| |
Collapse
|
13
|
Nieto D, Martínez-Guinó L, Jiménez-Melsió A, Segalés J, Kekarainen T. Development of an indirect ELISA assay for the detection of IgG antibodies against the ORF1 of Torque teno sus viruses 1 and 2 in conventional pigs. Vet Microbiol 2015; 180:22-7. [PMID: 26358897 DOI: 10.1016/j.vetmic.2015.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/15/2015] [Accepted: 08/27/2015] [Indexed: 11/26/2022]
Abstract
Torque teno sus viruses (TTSuV, family Anelloviridae) cause long lasting and persistent infection in pigs under subclinical scenarios, and are potentially linked to several economically important swine diseases. Currently, little is known about swine immune response against TTSuV infections. In this study, an ELISA assay was developed based on the ORF1-A recombinant protein of two known TTSuVs, namely TTSuV1 (genus Iotatorquevirus) and TTSuV2 (genus Kappatorquevirus). The assay was used to study the development of the humoral immune response against TTSuV1 and TTSuV2 in longitudinally sampled clinically healthy pigs and their dams. Anti ORF1-A IgG was found in serum of pigs and sows for both TTSuVs. From 15 sows, 15 (100%) and 13 (83%) had anti ORF1-A IgG against TTSuV1 and TTSuV2, respectively. Pig sero-prevalences at the first sampling (4 weeks of age) were 65% (24/37) and 5% (2/37) for TTSuV1 and TTSuV2, respectively. For TTSuV1, the highest anti ORF1-A IgG prevalence was observed at weeks 21 and 25, with 68% (25/37) sero-positive pigs. Quantitative PCR (qPCR) results at week 21 revealed that 26 out of 32 (81%) pigs were positive for TTSuV1. In the case of TTSuV2, the highest anti ORF1-A IgG prevalence was observed at week 21, with 84% (31/37) pigs being sero-positive. At the same week, 92% (34/37) of pigs were qPCR positive. In summary, anti ORF1-A IgGs were detected in both sows and piglets at different ages, indicating that these animals could mount a humoral immune response against both TTSuVs. However, the high percentage of viremic pigs in presence of anti ORF1-A IgG suggests that these antibodies are not able to remove TTSuVs from circulation.
Collapse
Affiliation(s)
- David Nieto
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Laura Martínez-Guinó
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Alexandra Jiménez-Melsió
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Deparment de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
14
|
Lee Y, Lin CM, Jeng CR, Chang HW, Chang CC, Pang VF. The pathogenic role of torque teno sus virus 1 and 2 and their correlations with various viral pathogens and host immunocytes in wasting pigs. Vet Microbiol 2015; 180:186-95. [PMID: 26390821 DOI: 10.1016/j.vetmic.2015.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 11/28/2022]
Abstract
The pathogenic role of torque teno sus virus (TTSuV) in swine is controversial among different studies. The present study intended to evaluate the potential pathogenicity of TTSuV based on its correlations with the histopathological changes, various common concurrently infected viral pathogens including porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine parvovirus (PPV), as well as changes in the distribution and population of host immunocytes such as B lymphocytes, T lymphocytes, and macrophages by using the superficial inguinal lymph nodes (siLNs) of wasting pigs. A tissue microarray consisting of 270 available siLNs collected from 262 clinically wasting and 8 healthy pigs, respectively, were used for the detection of TTSuV1, TTSuV2, PCV2, PRRSV, and PPV by either in situ hybridization (ISH) or immunohistochemical (IHC) staining, and for the detection of various subsets of immunocytes by IHC staining with monoclonal antibodies to CD3, CD79a, and lysozyme. The slides were then subject to digital scanning followed by a semi-quantitative positive pixel evaluation for further statistical analysis. Although a high prevalence of TTSuV1 and/or TTSuV2 infection was noted in both wasting and healthy pigs, the wasting pigs had a significantly higher intensity in both TTSuV1 and TTSuV2 ISH-positive signals than healthy ones did. In the wasting pigs, a significant positive correlation in the tissue viral load was noted between TTSuV1 and TTSuV2 and between TTSuV2 and PCV2, but not between TTSuV1 and PCV2. Conversely, a significant negative correlation in the tissue viral load was revealed between TTSuV2, but not TTSuV1, and PRRSV. The tissue viral load of TTSuV1 was significantly correlated with B cell hyperplasia, while the tissue viral load of TTSuV2 was significantly correlated with increased macrophage population. The ISH positivity of TTSuV2 was significantly correlated with lymphoid depletion and granulomatous inflammation, which are the characteristic histopathological findings in postweaning multisystemic wasting syndrome-affected pigs. These findings suggest that both TTSuV species may have the potential involving the development of porcine circovirus-associated lymphoid lesions via alternating the host immune system.
Collapse
Affiliation(s)
- Yao Lee
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Chun-Ming Lin
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chih-Cheng Chang
- Department of Veterinary Medicine, National Chiayi University, Chiayi 60054, Taiwan, ROC.
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
15
|
Teixeira TF, Cibulski SP, dos Santos HF, Wendlant A, de Sales Lima FE, Schmidt C, Franco AC, Roehe PM. Torque teno sus virus 1 (TTSuV1) and 2 (TTSuV2) viral loads in serum of postweaning multisystemic wasting syndrome (PMWS)-affected and healthy pigs in Brazil. Res Vet Sci 2015; 101:38-41. [DOI: 10.1016/j.rvsc.2015.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/21/2015] [Accepted: 05/30/2015] [Indexed: 10/23/2022]
|
16
|
Jiménez-Melsió A, Rodriguez F, Darji A, Segalés J, Cornelissen-Keijsers V, van den Born E, Kekarainen T. Vaccination of pigs reduces Torque teno sus virus viremia during natural infection. Vaccine 2015; 33:3497-503. [DOI: 10.1016/j.vaccine.2015.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
17
|
Phylogeny, spatio-temporal phylodynamics and evolutionary scenario of Torque teno sus virus 1 (TTSuV1) and 2 (TTSuV2) in wild boars: Fast dispersal and high genetic diversity. Vet Microbiol 2013; 166:200-13. [DOI: 10.1016/j.vetmic.2013.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/29/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023]
|
18
|
Leme RDA, Alfieri AF, Alfieri AA. Torque teno sus virus (TTSuV) infection at different stages of pig production cycle. PESQUISA VETERINARIA BRASILEIRA 2013. [DOI: 10.1590/s0100-736x2013000700002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Torque teno sus virus (TTSuV) infection is present in pig herds worldwide. It has been demonstrated that TTSuV might increase the severity of other important viral diseases with economic and public health impacts. At present, there is no information on the age distribution of pigs infected with TTSuV in Brazilian herds. This study evaluated the frequency of TTSuV infection in pigs at different stages of production. Fecal samples (n=190) from pigs at 1 to 24 weeks of age and from breeders at 6 farrow-to-weaning (up to 8 weeks of age) and 9 grower-to-finish (9 weeks of age onwards) farms in the western region of Paraná state, Brazil, were evaluated by PCR. Fragments of the 5' UTRs of TTSuV1 and/or TTSuVk2 DNAs were identified in 126 (66.3%) of the fecal samples. Significant differences were found with the percentages of positive samples for TTSuV1, TTSuVk2, and mixed infections by both genera between and within the different pig production stages. Fecal samples from the grower-to-finish farms had TTSuV detection rates (90.1%; 64/71) that were significantly (p<0.05) higher than those from the farrow-to-weaning farms (52.1%; 62/119). TTSuV detection was significantly (p<0.05) more frequent in finisher pigs than in the animals from the other stages. The UTR nucleotide sequences in this study presented higher similarities to strains from Norway (96%, TTSuV1), and Argentina and China (97.1%, TTSuVk2). These results suggest that TTSuV infection has spread to pigs of all production stages and that the viral infection rate increases with the age of the animals. In the western region of Paraná state, Brazil, TTSuV1 and TTSuVk2-induced infections were more frequently observed in suckling piglets and finisher pigs, respectively. Phylogenetic analysis pointed out the possibility of different strains of TTSuV1 and TTSuVk2 circulating in pig herds of Brazil.
Collapse
|
19
|
Torque teno sus virus (TTSuV) in tissues of pigs and its relation with the occurrence of postweaning multisystemic wasting syndrome. Virus Genes 2013; 47:276-81. [DOI: 10.1007/s11262-013-0940-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/11/2013] [Indexed: 11/25/2022]
|
20
|
Jarosova V, Celer V. Preliminary epitope mapping of Torque teno sus virus 1 and 2 putative capsid protein and serological detection of infection in pigs. J Gen Virol 2013; 94:1351-1356. [DOI: 10.1099/vir.0.050500-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this work is to identify antigenic regions within the ORF1 protein of Torque teno sus virus 1 (TTSuV1) and Torque teno virus sus 2 (TTSuV2) that could be used as antigens to detect virus-specific antibodies following infection in pigs. Protein sequences of TTSuV ORF1 genes were analysed to predict linear antigenic epitopes. Synthesized peptides were analysed for serological reactivity with swine sera. Such an antigenic region was identified at the C terminus of the ORF1 protein of both viruses and showed serological reactivity with 78 % (TTSuV1) and 88 % (TTSuV2) of swine sera. An ELISA with an immunodominant peptide as antigen was used to examine the sera of piglets, aged 4–20 weeks, and adults. Results indicated that TTSuV1- and TTSuV2-specific antibodies were detectable at 4 weeks. Antibody titres increased from week 10 and peaked at week 20. A relatively high antibody titre persisted to adulthood.
Collapse
Affiliation(s)
- Veronika Jarosova
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Vladimír Celer
- CEITEC – Central European Institute of Technology, Veterinary and Pharmaceutical University, Brno, Czech Republic
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
21
|
Mei M, Zhu L, Xu Z, Zhao L, Zhou Y, Wu Y, Li S, Wei H, Guo W. Molecular investigation of Torque teno sus virus in geographically distinct porcine breeding herds of Sichuan, China. Virol J 2013; 10:161. [PMID: 23705989 PMCID: PMC3679838 DOI: 10.1186/1743-422x-10-161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/18/2013] [Indexed: 01/10/2023] Open
Abstract
Background Torque teno sus virus (TTSuV), infecting domestic swine and wild boar, is a non-enveloped virus with a circular, single-stranded DNA genome. which has been classified into the genera Iotatorquevirus (TTSuV1) and Kappatorquevirus (TTSuV2) of the family Anelloviridae. A molecular study was conducted to detect evidence of a phylogenic relationship between these two porcine TTSuV genogroups from the sera of 244 infected pigs located in 21 subordinate prefectures and/or cities of Sichuan. Results Both genogroups of TTSuV were detected in pig sera collected from all 21 regions examined. Of the 244 samples, virus from either genogroup was detected in 203 (83.2%), while 44 animals (18.0%) were co-infected with viruses of both genogroups. Moreover, TTSuV2 (186/244, 76.2%) was more prevalent than TTSuV1 (61/244, 25%). There was statistically significant difference between the prevalence of genogroups 1 infection alone (9.4%, 23/244) and 2 alone (64.8%, 158/244), and between the prevalence of genogroups 2 (76.2%, 186/244) and both genogroups co-infection (18.0%, 44/244). The untranslated region of the swine TTSuV genome was found to be an adequate molecular marker of the virus for detection and surveillance. Phylogenetic analysis indicated that both genogroups 1 and 2 could be further divided into two subtypes, subtype a and b. TTSuV1 subtype b and the two TTSuV2 subtypes are more prevalent in Sichuan Province. Conclusions Our study presents detailed geographical evidence of TTSuV infection in China.
Collapse
Affiliation(s)
- Miao Mei
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Molecular detection and genomic characterization of Torque teno sus virus 1 and 2 from domestic pigs in central China. Virus Genes 2013; 46:479-86. [PMID: 23468229 DOI: 10.1007/s11262-013-0897-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
In the present study, Torque teno sus viruses (TTSuVs) were detected in tissue and blood samples obtained from domestic pigs in central China, and complete genomes of TTSuVs were characterized. A total of three tissue samples (3/20, 15 %) from post-weaning multisystemic wasting syndrome-affected pigs and 30 blood samples (30/40, 75 %) from healthy pigs were positive for Torque teno sus virus 1 (TTSuV1) and/or 2 (TTSuV2). Two TTSuV strains (TTV1Hn54 and TTV2Hn93) comprising 2,794 and 2,875 nucleotides, respectively, each had four open reading frames (ORFs) and the untranslated region with TATA box and GC-rich region. Genomic sequence of TTV2Hn93 strain was unique in length compared with other TTSuV2 genomic sequences. Interestingly, three rolling-circle replication (RCR) motif-IIIs (YXXK) which were located at amino acid (aa) position 166-169, 328-331, and 379-382, respectively, were found in the ORF1 of TTV1Hn54. Two RCR motif-IIIs (YXXK) at the aa position 105-108 and 480-483 respectively, were also identified in the ORF1 of TTV2Hn93. Phylogenetic tree based on complete genomes showed that TTV1Hn54 strain was designated into type TTSuV1b and had a slight high sequence identity of 91 % with the Canada strain (JQ120664). TTV2Hn93 strain was classified into subtype TTSuV2d and shared the highest identity (97 %) with the Spain strain (GU570207).
Collapse
|
23
|
Zhai SL, Long JX, Wei WK, Chen QL, Luo ML, Lv DH, Wu DC, Gao F, Yuan SS, Tong GZ, Wei ZZ. High prevalence of torque teno sus virus in China and genetic diversity of the 5’ non-coding region. Arch Virol 2013; 158:1567-73. [DOI: 10.1007/s00705-013-1644-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|
24
|
Zhang Z, Dai W, Wang Y, Lu C, Fan H. Analysis of synonymous codon usage patterns in torque teno sus virus 1 (TTSuV1). Arch Virol 2012; 158:145-54. [PMID: 23011310 PMCID: PMC7086873 DOI: 10.1007/s00705-012-1480-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/07/2012] [Indexed: 11/14/2022]
Abstract
Torque teno sus virus 1 (TTSuV1) is a novel virus that has been found widely distributed in the swine population in recent years. Analysis of codon usage can reveal much about the molecular evolution of TTSuV1. In this study, synonymous codon usage patterns and the key determinants in the coding region of 29 available complete TTSuV1 genome sequences were examined. By calculating the nucleotide content and relative synonymous codon usage (RSCU) of TTSuV1 coding sequences, we found that the preferentially used codons were mostly those ending with A or C nucleotides; less-used codons were mostly codons ending with U or G nucleotides, and these were mainly affected by composition constraints. Although there was a variation in codon usage bias among different TTSuV1 genomes, the codon usage bias and GC content in the TTSuV1 coding region was lower, which was mainly determined by the base composition in the third codon position and the effective number of codons (ENC) value. Moreover, the results of correspondence analysis (COA) indicated that the codon usage patterns of TTSuV1 isolated from different countries varied greatly and had significant differences. In addition, Spearman’s rank correlation analysis and an ENC plot revealed that apart from mutation pressure, which was critical in determining the codon usage pattern, other factors were involved in shaping the evolution of codon usage bias in TTSuV1, such as natural selection. Those results suggested that synonymous codon usage patterns of TTSuV1 genomes were the result of interaction between mutation pressure and natural selection. The information from this study not only provides important insights into the synonymous codon usage pattern of TTSuV1, but also helps to identify the main factors affecting codon usage by this virus.
Collapse
|
25
|
Xiao CT, Giménez-Lirola L, Huang YW, Meng XJ, Halbur PG, Opriessnig T. The prevalence of Torque teno sus virus (TTSuV) is common and increases with the age of growing pigs in the United States. J Virol Methods 2012; 183:40-4. [DOI: 10.1016/j.jviromet.2012.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/17/2012] [Accepted: 03/21/2012] [Indexed: 11/25/2022]
|
26
|
Natural co-infection of torque teno virus and porcine circovirus 2 in the reproductive apparatus of swine. Res Vet Sci 2012; 92:519-23. [DOI: 10.1016/j.rvsc.2011.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 03/15/2011] [Accepted: 04/04/2011] [Indexed: 11/19/2022]
|
27
|
Nieto D, Aramouni M, Sibila M, Fraile L, Kekarainen T, Segalés J. Lack of effect of piglet vaccination against Porcine circovirus type 2 (PCV2) on serum viral loads of Torque teno sus virus 2 (TTSuV2). Vet Microbiol 2012; 157:8-12. [DOI: 10.1016/j.vetmic.2011.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/21/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
|
28
|
Torque teno sus virus infection in suckling piglets from Brazilian pig herds. Trop Anim Health Prod 2012; 44:1885-90. [PMID: 22532076 DOI: 10.1007/s11250-012-0152-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
Torque teno sus virus (TTSuV) is responsible for the infection of pig herds around the world. The aim of this study was to analyse the presence of natural infection by both species of TTSuV in suckling piglets from major pig-producing regions of Brazil. Faecal samples (n = 135) from 1 to 3-week-old suckling piglets from the Southern, Southeast and Midwest regions of Brazil were analysed by PCR assay to detect TTSuV1 and 2. TTSuV1 and 2 DNA was identified in 65 (48.1 %) and 23 (17 %) of piglet faecal samples, respectively. Co-infection by both species of TTSuV was detected in 17 (12.6 %) samples. Detection of TTSuV1 was significantly higher than that of TTSuV2 in the three Brazilian regions together (p < 0.05). Based on age of animals, TTSuV1 infection was statistically higher than TTSuV2 in each age group (p < 0.05). For all of the age groups together, no statistical difference was detected in the number of TTSuV1 and 2 positive results (p > 0.05). These findings revealed that TTSuV infection has disseminated in pig herds from different geographic Brazilian regions, and the presence of TTSuV in suckling piglet faecal samples suggested the early infection by the virus and the potential of these animals in spreading the virus.
Collapse
|
29
|
Cortey M, Pileri E, Segalés J, Kekarainen T. Globalisation and global trade influence molecular viral population genetics of Torque Teno Sus Viruses 1 and 2 in pigs. Vet Microbiol 2012; 156:81-7. [DOI: 10.1016/j.vetmic.2011.10.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 09/13/2011] [Accepted: 10/21/2011] [Indexed: 11/27/2022]
|
30
|
Zhang Z, Wang Y, Fan H, Lu C. Natural infection with torque teno sus virus 1 (TTSuV1) suppresses the immune response to porcine reproductive and respiratory syndrome virus (PRRSV) vaccination. Arch Virol 2012; 157:927-33. [PMID: 22327391 DOI: 10.1007/s00705-012-1249-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
To evaluate the effect of natural infection with TTSuV1 on the antibody response to vaccination with PRRS vaccine and clinical signs when co-infected with virulent PRRSV, 15 4-week-old TTSuV1-positive piglets and 20 TTSuV1-negative piglets were selected by PCR from two pig farms in Jiangsu province. TTSuV1-negative pigs were divided into four groups, and TTSuV1-positive pigs were divided into three groups. Experimental pigs were vaccinated with a PRRSV modified live virus (MLV) at 6 weeks of age and subsequently challenged with a virulent strain of PRRSV at 10 weeks of age. A TTSuV1-negative control group and an unvaccinated PRRS MLV control group were tested at the same time. The levels of antibody/cytokine and protective efficiency against PRRS MLV vaccine were evaluated. TTSuV1-infected/PRRSV-vaccinated pigs had lower levels of PRRSV antibody, as well as IFN-γ, IL-10 and T lymphocyte proliferation, than the TTSuV1-uninfected/PRRSV-vaccinated group (P < 0.05, except IL-10) after vaccination at only one time point. TTSuV1-infected/PRRS MLV-vaccinated/PRRSV-challenged pigs had more severe clinical signs (P > 0.05), more macroscopic lung lesions (P < 0.05) and lower levels of PRRSV antibody (P < 0.05 at 7 to 14 days post-PRRSV-challenge) than TTSuV1-uninfected/PRRSV-vaccinated/PRRSV-challenged pigs. These data indicate that TTSuV1 natural infection has an adverse effect on the development of host immune responses, suppresses immunization by the PRRS MLV vaccine, and exacerbates PRRS to a certain extent in pigs.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | |
Collapse
|
31
|
Abstract
The newly established family Anelloviridae includes a number of viruses infecting humans (Torque teno viruses) and other animal species. The ones infecting domestic swine and wild boar are nowadays named Torque teno sus viruses (TTSuV), which are small circular single-stranded DNA viruses highly prevalent in the pig population. So far, two genetically distinct TTSuV species are infecting swine. Both TTSuVs appear to efficiently spread by vertical and horizontal transmission routes; in fact, foetuses may be infected and the prevalence and viral loads increase by age of the animals. Detailed immunological studies on TTSuVs are still lacking, but it seems that there are no efficient immunological responses limiting viraemia. These viruses are currently receiving more attention due to the latest results on disease association. Torque teno sus viruses have been circulating unnoticed in pigs for a long time, and even considered non-pathogenic by themselves; there is increasing evidence that points to influence the development of some diseases or even affect their outcome. Such link has been mainly established with porcine circovirus diseases.
Collapse
Affiliation(s)
- T Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
32
|
Abstract
In the past two decades or so, a number of viruses have emerged in the global swine population. Some, such as porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), cause economically important diseases in pigs, whereas others such as porcine torque teno virus (TTV), now known as Torque teno sus virus (TTSuV), porcine bocavirus (PBoV) and related novel parvoviruses, porcine kobuvirus, porcine toroviruses (PToV) and porcine lymphotropic herpesviruses (PLHV), are mostly subclinical in swine herds. Although some emerging swine viruses such as swine hepatitis E virus (swine HEV), porcine endogenous retrovirus (PERV) and porcine sapovirus (porcine SaV) may have a limited clinical implication in swine health, they do pose a potential public health concern in humans due to zoonotic (swine HEV) or potential zoonotic (porcine SaV) and xenozoonotic (PERV, PLHV) risks. Other emerging viruses such as Nipah virus, Bungowannah virus and Menangle virus not only cause diseases in pigs but some also pose important zoonotic threat to humans. This article focuses on emerging and re-emerging swine viruses that have a limited or uncertain clinical and economic impact on pig health. The transmission, epidemiology and pathogenic potential of these viruses are discussed. In addition, the two economically important emerging viruses, PRRSV and PCV2, are also briefly discussed to identify important knowledge gaps.
Collapse
Affiliation(s)
- X J Meng
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.
| |
Collapse
|
33
|
TSHERING C, TAKAGI M, DEGUCHI E. Detection of Torque Teno Sus Virus Types 1 and 2 by Nested Polymerase Chain Reaction in Sera of Sows at Parturition and of Their Newborn Piglets Immediately after Birth Without Suckling Colostrum and at 24 hr after Suckling Colostrum. J Vet Med Sci 2012; 74:315-9. [DOI: 10.1292/jvms.11-0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Chenga TSHERING
- United Graduate School of Veterinary Medicine, Yamaguchi University
- Laboratory of Farm Animal Production Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
| | - Mitsuhiro TAKAGI
- Laboratory of Farm Animal Production Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
| | - Eisaburo DEGUCHI
- Laboratory of Farm Animal Production Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
- Transboundary Animal Disease Control and Research Center, Faculty of Agriculture, Kagoshima University
| |
Collapse
|
34
|
Histopathological investigation in porcine infected with torque teno sus virus type 2 by inoculation. Virol J 2011; 8:545. [PMID: 22171963 PMCID: PMC3275549 DOI: 10.1186/1743-422x-8-545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/15/2011] [Indexed: 11/29/2022] Open
Abstract
Background Porcine torque teno sus virus (TTSuV) is a small icosahedral and non-enveloped virus which contains a single-stranded (ssDNA), circular and negative DNA genome and infects mainly vertebrates and is currently classified into the 'floating' genus Anellovirus of Circoviridae with two species. Viral DNA of both porcine TTSuV species has a high prevalence in both healthy and diseased pigs worldwide and multiple infections of TTSuV with distinct genotypes or subtypes of the same species has been documented in the United States, Europe and Asia. However, there exists no information about histopathological lesions caused by infection with porcine TTSuV2. Methods Porcine liver tissue homogenate with 1 ml of 6.91 × 107genomic copies viral loads of porcine TTSuV2 that had positive result for torque teno sus virus type 2 and negative result for torque teno sus virus type 1 and porcine pseudorabies virus type 2 were used to inoculate specific pathogen-free piglets by intramuscular route and humanely killed at 3,7,10,14,17,21 and 24 days post inoculation (dpi), the control pigs were injected intramuscularly with 1 ml of sterile DMEM and humanely killed the end of the study for histopathological examination routinely processed, respectively. Results All porcine TTSuV2 inoculated piglets were clinic asymptomatic but developed myocardial fibroklasts and endocardium, interstitial pneumonia, membranous glomerular nephropathy, and modest inflammatory cells infiltration in portal areas in the liver, foci of hemorrhage in some pancreas islet, a tiny amount red blood cells in venule of muscularis mucosae and outer longitudinal muscle, rarely red blood cells in the microvasculation and infiltration of inflammatory cells (lymphocytes and eosinophils) of tonsil and hilar lymph nodes, infiltration of inflammatory lymphocytes and necrosis or degeneration and focal gliosis of lymphocytes in the paracortical zone after inoculation with porcine TTSuV2-containing tissue homogenate. Conclusions Analysis of these presentations revealed that porcine TTSuV2 was readily transmitted to TTSuV-negative swine and that infection was associated with characteristic pathologic changes in specific pathogen-free piglets inoculated with porcine TTSuV2. Those results indicated no markedly histopathological changes happened in those parenchymatous organs, especially the digestive system and immune system when the specific pathogen-free pigs were infected with porcine TTSuV2, hence, to some extent, it was not remarkable pathological agent for domestic pigs at least. So, porcine TTSuV2 could be an unrecognized pathogenic viral infectious etiology of swine. This study indicated a directly related description of lesions responsible for TTSuV2 infection in swine.
Collapse
|
35
|
Langohr IM, Stevenson GW, Nelson EA, Lenz SD, Wei H, Pogranichniy RM. Experimental co-infection of pigs with Bovine viral diarrhea virus 1 and Porcine circovirus-2. J Vet Diagn Invest 2011; 24:51-64. [DOI: 10.1177/1040638711417142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The role of Bovine viral diarrhea virus (BVDV) in the development of Porcine circovirus-2 (PCV-2)-associated disease (PCVAD) was investigated in 2 experimental studies. In the first, separate groups of germ-free pigs were inoculated with filtered tissue homogenate (from diseased pigs) containing PCV-2b + BVDV-1–like virus (group 1), PCV-2a + BVDV-1–like virus (group 4), BVDV-1–like virus only (group 3), or PCV-2b + BVDV-1–like virus following a BVDV vaccination protocol (group 2). This last group was used to test if BVDV vaccination would prevent clinical PCVAD in this model. Many of the inoculated pigs had mild multisystemic inflammation consistent with classic PCVAD. One vaccinated, dually inoculated pig had acute respiratory distress followed by death at 21 days postinfection. Lesions in this pig resembled the severe form of PCVAD observed in the field since the fall of 2004, suggesting a role of ruminant pestiviruses and/or vaccination in the development of this disease. In the second study, cesarean-derived, colostrum-deprived pigs were inoculated with PCV-2b and a cytopathic strain of BVDV-1 (cpBVDV-NADL) either alone or in combination. Clinical signs of PCVAD were seen in a single animal inoculated only with PCV-2b. This pig had growth retardation followed by acute respiratory distress leading to death 30 days postinfection. Pulmonary lesions in this animal were similar to those seen in the pig that died in the first study. Infection with cpBVDV-NADL did not enhance PCV-2b replication or lesion formation.
Collapse
Affiliation(s)
- Ingeborg M. Langohr
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI (Langohr)
- Department of Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Stevenson)
- Department of Veterinary Science, South Dakota State University, Brookings, SD (Nelson)
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN (Lenz, Wei, Pogranichniy)
| | - Gregory W. Stevenson
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI (Langohr)
- Department of Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Stevenson)
- Department of Veterinary Science, South Dakota State University, Brookings, SD (Nelson)
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN (Lenz, Wei, Pogranichniy)
| | - Eric A. Nelson
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI (Langohr)
- Department of Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Stevenson)
- Department of Veterinary Science, South Dakota State University, Brookings, SD (Nelson)
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN (Lenz, Wei, Pogranichniy)
| | - Stephen D. Lenz
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI (Langohr)
- Department of Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Stevenson)
- Department of Veterinary Science, South Dakota State University, Brookings, SD (Nelson)
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN (Lenz, Wei, Pogranichniy)
| | - Huiling Wei
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI (Langohr)
- Department of Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Stevenson)
- Department of Veterinary Science, South Dakota State University, Brookings, SD (Nelson)
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN (Lenz, Wei, Pogranichniy)
| | - Roman M. Pogranichniy
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI (Langohr)
- Department of Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Stevenson)
- Department of Veterinary Science, South Dakota State University, Brookings, SD (Nelson)
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN (Lenz, Wei, Pogranichniy)
| |
Collapse
|
36
|
Nieto D, Aramouni M, Grau-Roma L, Segalés J, Kekarainen T. Dynamics of Torque teno sus virus 1 (TTSuV1) and 2 (TTSuV2) DNA loads in serum of healthy and postweaning multisystemic wasting syndrome (PMWS) affected pigs. Vet Microbiol 2011; 152:284-90. [DOI: 10.1016/j.vetmic.2011.05.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
37
|
Torque teno sus virus 1 and 2 viral loads in postweaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS) affected pigs. Vet Microbiol 2011; 153:377-81. [PMID: 21719215 DOI: 10.1016/j.vetmic.2011.05.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 11/22/2022]
Abstract
Torque teno viruses (TTV) are small, non-enveloped viruses with a circular single-stranded DNA genome, which are considered non-pathogenic. However, TTVs have been eventually linked to human diseases. TTVs infecting pigs, Torque teno sus virus 1 (TTSuV1) and 2 (TTSuV2), have been recently associated to porcine circovirus diseases (PCVD). To get more insights into such potential disease association, the aim of this study was to quantify TTSuV1 and TTSuV2 viral loads in serum of pigs affected by two PCVDs, postweaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS). Such study was carried out by means of a newly developed real-time quantitative PCR (qPCR) method. Both TTSuVs were highly prevalent among studied pigs. TTSuV2 viral loads were significantly higher in PMWS affected animals, further supporting the previously suggested association between TTSuV2 and PMWS. On the contrary, TTSuV1 prevalence and loads were not related with the studied PCVDs.
Collapse
|
38
|
Liu X, Gu W, Guo X, Ge X, Chen Y, Yang H. Prevalence of torque teno virus infection in pig herds in China. Vet Rec 2011; 168:410. [PMID: 21493453 DOI: 10.1136/vr.c6864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- X. Liu
- Key Laboratory of Zoonosis, Ministry of Agriculture; College of Veterinary Medicine; State Key Laboratory for Agrobiotechnology; China Agricultural University; 2 Yuanmingyuan West Road, Haidian District Beijing 100193 China
| | - W. Gu
- Key Laboratory of Zoonosis, Ministry of Agriculture; College of Veterinary Medicine; State Key Laboratory for Agrobiotechnology; China Agricultural University; 2 Yuanmingyuan West Road, Haidian District Beijing 100193 China
| | - X. Guo
- Key Laboratory of Zoonosis, Ministry of Agriculture; College of Veterinary Medicine; State Key Laboratory for Agrobiotechnology; China Agricultural University; 2 Yuanmingyuan West Road, Haidian District Beijing 100193 China
| | - X. Ge
- Key Laboratory of Zoonosis, Ministry of Agriculture; College of Veterinary Medicine; State Key Laboratory for Agrobiotechnology; China Agricultural University; 2 Yuanmingyuan West Road, Haidian District Beijing 100193 China
| | - Y. Chen
- Key Laboratory of Zoonosis, Ministry of Agriculture; College of Veterinary Medicine; State Key Laboratory for Agrobiotechnology; China Agricultural University; 2 Yuanmingyuan West Road, Haidian District Beijing 100193 China
| | - H. Yang
- Key Laboratory of Zoonosis, Ministry of Agriculture; College of Veterinary Medicine; State Key Laboratory for Agrobiotechnology; China Agricultural University; 2 Yuanmingyuan West Road, Haidian District Beijing 100193 China
| |
Collapse
|
39
|
Martínez-Guinó L, Kekarainen T, Maldonado J, Aramouni M, Llorens A, Segalés J. Torque teno sus virus (TTV) detection in aborted and slaughterhouse collected foetuses. Theriogenology 2010; 74:277-81. [DOI: 10.1016/j.theriogenology.2010.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
|
40
|
Aramouni M, Segalés J, Cortey M, Kekarainen T. Age-related tissue distribution of swine Torque teno sus virus 1 and 2. Vet Microbiol 2010; 146:350-3. [PMID: 20646878 DOI: 10.1016/j.vetmic.2010.05.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/15/2010] [Accepted: 05/21/2010] [Indexed: 11/19/2022]
Abstract
Torque teno viruses (TTVs) are small, non-enveloped viruses with a circular single-stranded DNA genome, belonging to the family Anelloviridae. In swine, two genetically distinct species have been identified, Torque teno sus virus 1 (TTSuV1) and 2 (TTSuV2). The aim of the present work was to study the tissue distribution of TTSuV1 and TTSuV2 in pigs of different ages, including foetuses at the second and last thirds of gestation, and animals at 5 days and 5, 15 and 24 weeks of age. Investigated tissues included brain, lung, mediastinal and mesenteric lymph nodes, heart, liver, spleen, kidney and bone marrow. Viral DNA from tissue extractions were tested by a comparative PCR for the presence of TTSuVs. Overall, TTSuV1 and TTSuV2 species were found in all tissues tested, with variations depending on age, and following similar infection dynamics in all tissues, increasing progressively in prevalence and virus load over time. The highest prevalence was found at 5 weeks of age and maintained afterwards, and the highest loads of virus in the different tissues were seen in the oldest animals (15 and 24 weeks of age). No animals were negative to TTV, including foetuses. In conclusion, the present study indicated that swine TTSuV1 and TTSuV2 can be found virtually in all body tissues of the pig. Both swine TTV species were present in high levels in almost all older animals, while viral negative tissues were only found in 5-week-old and 5-day-old pigs, and foetuses.
Collapse
Affiliation(s)
- M Aramouni
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
41
|
Gallei A, Pesch S, Esking WS, Keller C, Ohlinger VF. Porcine Torque teno virus: determination of viral genomic loads by genogroup-specific multiplex rt-PCR, detection of frequent multiple infections with genogroups 1 or 2, and establishment of viral full-length sequences. Vet Microbiol 2009; 143:202-12. [PMID: 20031342 DOI: 10.1016/j.vetmic.2009.12.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/30/2009] [Accepted: 12/03/2009] [Indexed: 12/26/2022]
Abstract
Torque teno virus (TTV) is a non-enveloped virus with a circular, single-stranded DNA genome. TTV is currently classified in the unassigned genus Anellovirus, and distinct TTVs of tentative species-status infect a wide range of vertebrates. In domestic pigs and wild boars, porcine TTV occurs in two genogroups, TTV1 and TTV2, which are currently detected using only conventional PCR assays. To allow high-throughput testing, the present study describes development of a multiplex real-time (rt)-PCR assay for efficient simultaneous detection of TTV1 and TTV2. To demonstrate usefulness of this rt-PCR assay for large-scale testing, 203 serum samples from domestic pigs were screened for TTV infection. The detected rates of single TTV1, single TTV2, and double TTV1/TTV2 infections were 32, 17, and 32% and represent the first report on the occurrence of porcine TTV in Germany. In addition, 100 wild boar lung samples were tested that confirmed high prevalences of TTV infection. Moreover, establishment of genogroup-specific rt-PCR standards allowed the determination of mean viral genomic loads in sera from TTV-infected swine to about 10(4.5)/ml, respectively. To verify the specificity of the rt-PCR assay, conventional PCR assays that amplify genogroup-specific, size-distinguishable products from the TTV untranslated regions were designed. In total, 50 clones derived from 24 PCR products obtained from 19 TTV1 and TTV2 single- or double-infected animals were sequenced. Phylogenetic analyses of these sequences demonstrated the frequent occurrence of multiple infections with distinct porcine TTVs of the same genogroup. Moreover, two porcine TTV full-length sequences were established, one for each genogroup.
Collapse
Affiliation(s)
- Andreas Gallei
- BioScreen European Veterinary Disease Management Center GmbH, Mendelstrasse 11, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
42
|
Sibila M, Martínez-Guinó L, Huerta E, Llorens A, Mora M, Grau-Roma L, Kekarainen T, Segalés J. Swine torque teno virus (TTV) infection and excretion dynamics in conventional pig farms. Vet Microbiol 2009; 139:213-8. [PMID: 19559548 DOI: 10.1016/j.vetmic.2009.05.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/15/2009] [Accepted: 05/28/2009] [Indexed: 11/27/2022]
Abstract
Torque teno virus (TTV) is a non-enveloped, single-stranded DNA (ssDNA) virus infecting human and non-primate species. Two genogroups of TTV (TTV1 and TTV2) have been described in swine so far. In the present study, TTV1 and TTV2 prevalences in serum, and nasal as well as rectal swabs of 55 randomly selected piglets from seven Spanish multi-site farms, were monitored from 1 to 15 weeks of age. Also, blood from their dams (n=41) were taken at 1 week post-farrowing. Samples were tested by means of two TTV genogroup specific PCRs. Although prevalence of TTV1 and TTV2 in sows was relatively high (54% and 32%, respectively), it was not directly associated to their prevalence in the offspring. Percentage of viremic pigs for both TTV genogroups followed similar dynamics, increasing progressively over time, with the highest rate of detection at 11 weeks of age for TTV1 and at 15 weeks for TTV2. Forty-two (76%) and 33 (60%) of the 55 studied pigs were TTV1 and TTV2 PCR positive in serum, respectively, in more than one sampling time. TTV1 and TTV2 viremia lasted in a number of animals up to 15 and 8 weeks, respectively. Co-infection with both TTV genogroups in serum was detected at all sampling points, but at 1 week of age. On the contrary, there were animals PCR negative to both genogroups in serum at all sampling times but at 15 weeks of age. During the study period, TTV1 and TTV2 nasal shedding increased also over time and faecal excretion was intermittent and of low percentage (<20%). In conclusion, the present study describes for the first time the infection dynamics of TTV1 and TTV2 as well as the nasal and faecal excretion throughout the life of pigs from conventional, multi-site farms. Moreover, results indicate that both swine TTV genogroups are able to establish persistent infections in a number of pigs.
Collapse
Affiliation(s)
- M Sibila
- Centre de Recerca en Sanitat Animal, UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|