1
|
Tang J, Wang L, Fang W, Su CM, Kim J, Du Y, Yoo D. Coinfection with bacterial pathogens and genetic modification of PRRSV-2 for suppression of NF-κB and attenuation of proinflammatory responses. Virology 2025; 606:110484. [PMID: 40086205 DOI: 10.1016/j.virol.2025.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infects pulmonary alveolar macrophages and induces inflammation in the respiratory system. In swine farms, coinfection with PRRSV and bacterial pathogens is common and can result in clinically complicated outcomes, including porcine respiratory disease complex. Coinfection can cause excessive expressions of proinflammatory mediators and may lead to cytokine-storm-like syndrome. An immunological hallmark of PRRSV-2 is the bidirectional regulation of NF-κB with the nucleocapsid (N) protein identified as the NF-κB activator. We generated an NF-κB-silencing mutant PRRSV-2 by mutating the N gene to block its binding to PIAS1 [protein inhibitor of activated STAT-1 (signal transducer and activator of transcription 1)]. PIAS1 functions as an NF-κB repressor, and thus, the PIAS1-binding modified N-mutant PRRSV-2 became NF-κB activation-resistant in its phenotype. During coinfection of pigs with PRRSV-2 and Streptococcus suis, the N-mutant PRRSV-2 decreased the expression of proinflammatory cytokines and showed clinical attenuation. This review describes the coinfection of pigs with various pathogens, the generation of mutant PRRSV for NF-κB suppression, inflammatory profiles during bacterial coinfection, and the potential application of these findings to designing a new vaccine candidate for PRRSV-2.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leyi Wang
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chia-Ming Su
- Department of Biochemistry and Cell Biology, School of Medicine, Boston University, Boston, MA, USA
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yijun Du
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Yang K, Wang Z, Wang X, Bi M, Hu S, Li K, Pan X, Wang Y, Ma D, Mo X. Epidemiological investigation and analysis of the infection of porcine circovirus in Xinjiang. Virol J 2024; 21:230. [PMID: 39334389 PMCID: PMC11428415 DOI: 10.1186/s12985-024-02504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Porcine circoviruses, particularly porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3), significantly impact the global pig industry due to their high prevalence and pathogenicity. Conversely, porcine circovirus type 1 (PCV1) and porcine circovirus type 4 (PCV4) currently have low positivity rates. This study aimed to characterize the distribution and epidemiology of porcine circoviruses in Xinjiang, while also analyzing the genetic diversity and evolution of PCV2 and PCV3, which pose the greatest threats to the industry. In this study, we collected blood and tissue samples from 453 deceased pigs across eight regions in Xinjiang Province from 2022 to 2024. We utilized real-time PCR to detect the presence of PCV1, PCV2, PCV3, and PCV4. The positive rates were 15%, 71%, 25%, and 17%, respectively. Genetic analysis showed 9 PCV2 sequences and 12 PCV3 sequences. The capsid protein of PCV2 showed significant variability. In contrast, the amino acid sequences of capsid in PCV3 were relatively stable. Moreover, we predicted antigenic epitopes for PCV3 capsid using IEDB and ElliPro. The findings from this study provide valuable epidemiological data on PCV coinfection in the Xinjiang region and enhance the understanding of virus diversity nationwide. This research may serve as an important reference for the development of strategies to prevent and control porcine circovirus infections.
Collapse
Affiliation(s)
- Kai Yang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Zunbao Wang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Xinyu Wang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Mingfang Bi
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Suhua Hu
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Kaijie Li
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaomei Pan
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Yuan Wang
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Dan Ma
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaobing Mo
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Tuo T, Chen D, Wang L, Zhang Y, Zhou L, Ge X, Han J, Guo X, Yang H. Infection of PRRSV inhibits CSFV C-strain replication by inducing macrophages polarization to M1. Vet Microbiol 2024; 289:109957. [PMID: 38160508 DOI: 10.1016/j.vetmic.2023.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
It is a common sense that porcine reproductive and respiratory syndrome virus (PRRSV) infection could cause immune failure of classical swine fever (CSF) vaccine, and porcine alveolar macrophages (PAMs) are the target cells of both. To elucidate the role of macrophage polarization in PRRSV infection induced CSF vaccine failure, an immortal porcine alveolar macrophage line PAM39 cell line was used to investigate the effect of PRRSV or/and CSFV C-strain (CSFV-C) infection on macrophage polarization in vitro. Interestingly, PRRSV single infection or PRRSV co-infection with CSFV-C promoted PAM39 cells to M1, while CSFV-C single infection induced PAM39 cells to M2. After the construction of M1 and M2 PAM39 cells polarization models, M1 polarized PAM39 cells were found to inhibit the replication of CSFV-C, and Chinese medicine such as matrine, ginsenosides and astragalus polysaccharides could alleviate the polarization of PAM39 cells and the replication of CSFV-C. Furthermore, interferon (IFN)-γ and lipopolysaccharide (LPS) co-stimulation induced NF-κB activation while matrine treatment blocked M1 polarization-induced NF-κB pathway activation. These findings provided a theoretical basis for designing a new strategy to improve the immune effect of CSFV-C based on porcine alveolar macrophage polarization subtypes.
Collapse
Affiliation(s)
- Tianbei Tuo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Dengjin Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lihong Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
4
|
Burgher-Pulgaron Y, Provost C, Alvarez F, Meza-Serrano E, Pesant MJ, Price CA, Gagnon CA. DUSP1 mRNA modulation during porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus co-infection regulates viruses replication. Virus Res 2024; 339:199282. [PMID: 37995964 PMCID: PMC10711501 DOI: 10.1016/j.virusres.2023.199282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
The effects of porcine circovirus type 2b (PCV2b) and porcine reproductive and respiratory syndrome virus (PRRSV) co-infection in epithelial cells of the swine respiratory tract is unknown. In the present study, the newborn pig trachea cell line NPTr-CD163, which is permissive to both viruses, was persistently infected with PCV2b and then with PRRSV. Viral replication, cell viability, cytokines' mRNA expression, and modulation of cellular genes expression were evaluated in infected cells. In NPTr-CD163 co-infection model, PCV2b replication was enhanced while PRRSV replication was suppressed. Cell viability was significantly decreased during PCV2b single infection and co-infection compared to mock-infected and PRRSV single infected cells. However, no difference was observed in cell viability between PCV2b and PCV2b/PRRSV infected cells. The IL6, IL8 and IL10 mRNA expression was significantly higher in co-infected cells compared to PCV2b and PRRSV single infected cells. Moreover, the IFN-α/β expression was significantly reduced in co-infected cells compared to PCV2b infected cells whereas it remained higher compared to PRRSV infected cells. The differential gene expression analysis revealed that the mRNA expression level of the cellular gene DUSP1 was significantly higher in all PRRSV infection models compared to PCV2b single infected cells. Knockdown of DUSP1 expression in co-infected cells significantly reduced PCV2b replication, suggesting a role for DUSP1 in PCV2b/PRRSV pathogenesis.
Collapse
Affiliation(s)
- Yaima Burgher-Pulgaron
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA-FRQNT), Faculté de Médecine Vétérinaire (FMV), Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, Québec, Canada, J2S 2M2
| | - Chantale Provost
- Molecular Diagnostic Laboratory, Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), FMV, Canada
| | - Fernando Alvarez
- Infectious Diseases and Immunity in Global Health (IDIGH), McGill University, 1001 Décarie, Montréal, Québec, Canada, H4A 3J1
| | - Europa Meza-Serrano
- Centre de Recherche en Reproduction Animale, FMV, Université de Montréal, Canada
| | - Marie-Jeanne Pesant
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA-FRQNT), Faculté de Médecine Vétérinaire (FMV), Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, Québec, Canada, J2S 2M2
| | - Christopher A Price
- Centre de Recherche en Reproduction Animale, FMV, Université de Montréal, Canada
| | - Carl A Gagnon
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA-FRQNT), Faculté de Médecine Vétérinaire (FMV), Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, Québec, Canada, J2S 2M2; Molecular Diagnostic Laboratory, Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), FMV, Canada.
| |
Collapse
|
5
|
Burgher Pulgaron Y, Provost C, Pesant MJ, Gagnon CA. Porcine Circovirus Modulates Swine Influenza Virus Replication in Pig Tracheal Epithelial Cells and Porcine Alveolar Macrophages. Viruses 2023; 15:v15051207. [PMID: 37243291 DOI: 10.3390/v15051207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The pathogenesis of porcine circovirus type 2b (PCV2b) and swine influenza A virus (SwIV) during co-infection in swine respiratory cells is poorly understood. To elucidate the impact of PCV2b/SwIV co-infection, newborn porcine tracheal epithelial cells (NPTr) and immortalized porcine alveolar macrophages (iPAM 3D4/21) were co-infected with PCV2b and SwIV (H1N1 or H3N2 genotype). Viral replication, cell viability and cytokine mRNA expression were determined and compared between single-infected and co-infected cells. Finally, 3'mRNA sequencing was performed to identify the modulation of gene expression and cellular pathways in co-infected cells. It was found that PCV2b significantly decreased or improved SwIV replication in co-infected NPTr and iPAM 3D4/21 cells, respectively, compared to single-infected cells. Interestingly, PCV2b/SwIV co-infection synergistically up-regulated IFN expression in NPTr cells, whereas in iPAM 3D4/21 cells, PCV2b impaired the SwIV IFN induced response, both correlating with SwIV replication modulation. RNA-sequencing analyses revealed that the modulation of gene expression and enriched cellular pathways during PCV2b/SwIV H1N1 co-infection is regulated in a cell-type-dependent manner. This study revealed different outcomes of PCV2b/SwIV co-infection in porcine epithelial cells and macrophages and provides new insights on porcine viral co-infections pathogenesis.
Collapse
Affiliation(s)
- Yaima Burgher Pulgaron
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Chantale Provost
- Molecular Diagnostic Laboratory, Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Jeanne Pesant
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Molecular Diagnostic Laboratory, Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
6
|
Chen D, Kang H, Tuo T, Wang L, Xia Y, Zhang Y, Zhou L, Ge X, Han J, Guo X, Yang H. Astragalus polysaccharide alleviated the inhibition of CSFV C-strain replication caused by PRRSV via the TLRs/NF‑κB/TNF-α pathways. Virus Res 2022; 319:198854. [PMID: 35788015 DOI: 10.1016/j.virusres.2022.198854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022]
Abstract
It is a common phenomenon that PRRSV infection can interfere with the protective efficacy of the CSFV vaccine in clinical settings, and no effective treatment is available. In our previous study, we found that PRRSV infection could inhibit the replication of CSFV-C by promoting the high expression of inflammatory cytokines. In order to further investigate whether Chinese medicine could alleviate the inhibition effect, the PAM39 cells model, which was co-infected with PRRSV and CSFV-C, was established. The effects of Chinese medicine on this co-infection model, as well as the effect of astragalus polysaccharide on the TLRs/NF-κB/TNF-α pathways, were investigated. Our results demonstrated that PAM39 cells inoculated with different pathogenic PRRSV significantly inhibited the replication of CSFV-C and up-regulated the major inflammatory mediators, including TNF-α. For the following studies, 50 µM of astragalus polysaccharide was selected from six kinds of representative Chinese medicine based on their cytotoxicity, viral titers, and inflammatory mediators. Further experiments indicated that astragalus polysaccharide could alleviate the inhibition of CSFV-C replication in the co-infection group with no influence on cell viability. In addition, astragalus polysaccharide treatment clearly reduced P65 phosphorylation and down-regulated the expression of TLR7, TLR9, and TNF-α in co-infection group, implying that the TLRs/NF-κB/TNF-α pathways may play an important role in astragalus polysaccharide's anti-inflammatory response. In conclusion, astragalus polysaccharide treatment alleviated PRRSV-mediated inhibition of CSFV-C replication via the TLRs/NF-κB/TNF-α pathways, and the molecular mechanism of PRRSV co-infection leading to the failure of CSFV vaccine immunization was partially elucidated, providing a scientific basis for effective CSF prevention and control in pig farms.
Collapse
Affiliation(s)
- Dengjin Chen
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Haoran Kang
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Tianbei Tuo
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Lihong Wang
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Yidan Xia
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Yongning Zhang
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Lei Zhou
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Xinna Ge
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Jun Han
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Xin Guo
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Hanchun Yang
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
7
|
Synergistic pathogenicity by coinfection and sequential infection with JXA1-like HP-PRRSV and PCV2d in PCV2 antibody-positive post-weaned pigs. Microb Pathog 2022; 173:105810. [PMID: 36183959 DOI: 10.1016/j.micpath.2022.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and Porcine circovirus (PCV) are two important pathogens, which caused respiratory disease in pigs. PRRSV and PCV2 had caused great economic losses to the pig industry. Pigs coinfection with PCV2 and PRRSV were common in the clinic, PCV2 antibodies can be detected in most of the pigs. PCV2d and HP-PRRSV(JXA1-like) were two major viruses circulating in the pigs in China. In this study, HP-PRRSV (JXA1-like) and PCV2d were used to coinfect and (or) sequential infect 5-week-old weaned PCV2-antibody positive pigs and the clinical indications, pathological, virus load, and specific antibodies of the challenged post-weaned piglets were evaluated. Thirty 5-week-old post-weaned pigs were divided into six groups infected with PBS, PCV2, PRRSV, PCV2-PRRSV, PRRSV-PCV2, and Co-PRRSV-PCV2 according to the PCV2 specific antibodies. Pigs infected with PRRSV can experience diarrhea, increased body temperature, weight loss, and even death. The pigs in PRRSV and PRRSV-PCV2 infected groups showed severe clinical symptoms, high mortality, and low average daily gain. The main pathological changes were widening of the lung interstitium, lung adhesion, and so on. The PRRSV-PCV2-infected group showed high levels of TNF-α and IL-2. In conclusion, PRRSV and PRRSV-PCV2 sequential infected pigs showed most pathogenic signs, and PCV2-PRRSV sequential infected pigs showed less pathogenicity than pigs of PCV2 and PRRSV coinfection and PRRSV monoinfection from day 10-14, partially suppressing the cytokine storm produced by PRRSV.
Collapse
|
8
|
Madapong A, Saeng-chuto K, Tantituvanont A, Nilubol D. Using a concurrent challenge with porcine circovirus 2 and porcine reproductive and respiratory syndrome virus to compare swine vaccination programs. Sci Rep 2022; 12:15524. [PMID: 36109529 PMCID: PMC9477171 DOI: 10.1038/s41598-022-19529-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The objectives of the present study were to evaluate the immune response of six commercial vaccines against PRRSV-2 and PCV2, administered as monovalent or combined products via intramuscular (IM) or intradermal (ID) routes. Seventy-two, 3-week-old pigs were randomly allocated into 8 treatments with 9 pigs each: IMPP0/PCVMH7, IDPP0/PCVMH7, IMING0/PCVMH7, IMPP0/PCVMH0, IDPP0/PCVMH0, IMTRF0, NV/CH, and NV/NC. IMPP0/PCVMH0 and IMPP0/PCVMH7 groups were IM vaccinated once with Prime Pac PRRS (MSD Animal Health, The Netherlands) at 0 days post-vaccination (DPV), followed by single IM vaccination with Porcilis PCV M Hyo (MSD Animal Health, The Netherlands) either at 0 or 7 DPV, respectively. IDPP0/PCVMH0 and IDPP0/PCVMH7 groups were ID vaccinated once with Prime Pac PRRS (MSD Animal Health, The Netherlands) at 0 DPV, followed by a single concurrent ID injection of Porcilis PCV ID (MSD Animal Health, The Netherlands) and Porcilis M Hyo ID ONCE (MSD Animal Health, The Netherlands) either at 0 or 7 DPV, respectively. The IMING0/PCVMH7 group was IM vaccinated once with Ingelvac PRRS MLV (Boehringer Ingelheim, Germany) at 0 DPV, and subsequently IM vaccinated with Ingelvac CircoFLEX (Boehringer Ingelheim, Germany) and Ingelvac MycoFLEX (Boehringer Ingelheim, Germany) at 7 DPV. The IMTRF0 group was IM vaccinated once with combined products of Ingelvac PRRS MLV (Boehringer Ingelheim, Germany), Ingelvac CircoFLEX (Boehringer Ingelheim, Germany), and Ingelvac MycoFLEX (Boehringer Ingelheim, Germany) at 0 DPV. The NV/CH and NV/NC groups were left unvaccinated. At 28 DPV (0 days post-challenge, DPC), pigs were intranasally inoculated with a 4 ml of mixed cell culture inoculum containing HP-PRRSV-2 (105.6 TCID50/ml) and PCV2d (105.0 TCID50/ml). Antibody response, IFN-γ-secreting cells (SC), and IL-10 secretion in supernatants of stimulated PBMC were monitored. Sera were collected and quantified for the PRRSV RNA and PCV2 DNA using qPCR. Three pigs from each group were necropsied at 7 DPC, lung lesions were evaluated. Tissues were collected and performed immunohistochemistry (IHC). Our study demonstrated that concurrent vaccination via the ID or the IM route did not introduce additional reactogenicity. We found no interference with the induction of immune response between vaccination timing. In terms of an immune response, ID vaccination resulted in significantly lower IL-10 levels and higher IFN-γ-SC values compared to the IM-vaccinated groups. In terms of clinical outcomes, only one IM-vaccinated group showed significantly better efficacy when antigens were injected separately compared with concurrently. While the vaccines were ID delivered, these effects disappeared. Our findings confirm that concurrent vaccination of PRRSV-2 MLV and PCV2 via either the IM or the ID routes could be a viable immunization strategy to assist with the control of PRDC. In situations where maximal efficacy is required, over all other factors, concurrent vaccination is possible with the ID route but might not be an ideal strategy if using the IM route.
Collapse
|
9
|
Tang Q, Ge L, Tan S, Zhang H, Yang Y, Zhang L, Deng Z. Epidemiological Survey of Four Reproductive Disorder Associated Viruses of Sows in Hunan Province during 2019–2021. Vet Sci 2022; 9:vetsci9080425. [PMID: 36006340 PMCID: PMC9416293 DOI: 10.3390/vetsci9080425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive disorders have been considered as the major factors that threaten pig industries worldwide. In this study, 407 aborted-fetus samples were obtained from 89 pig farms in Hunan province, to investigate the prevalence of four viruses associated with porcine reproductive disease, including porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), pseudorabies virus (PRV), and classical swine fever virus (CSFV). Meanwhile, the target gene sequences of representative PRRSV (ORF5), PCV2 (ORF2), CSFV (E2), and PRV (gE) strains were amplified, sequenced, and analyzed. The results showed that the positive rates of PRRSV, PCV2, PRV, and CSFV among the collected samples were 26.29% (107/407), 52.83% (215/407), 6.39% (26/407), and 12.29% (50/407), respectively. Moreover, co-infection with two and three pathogens were frequently identified, with PCV2/PRRSV, PRRSV/CSFV, PRRSV/PRV, PCV2/CSFV, PCV2/PRV, and PRRSV/PCV2/CSFV mix infection rates of 9.09%, 3.19%, 2.95%, 3.69%, 2.21%, and 0.49%, respectively. Moreover, ORF5-based phylogenetic analysis showed that 9, 4, and 24 of 37 PRRSV strains belonged to the PRRSV2 lineages 1, 5, and 8, respectively. ORF2-based phylogenetic analysis revealed that PCV2d and PCV2b were prevalent in Hunan province, with the proportions of 87.5% (21/24) and 12.5% (3/24), respectively. An E2-based phylogenetic tree showed that all 13 CSFV strains were clustered with 2.1 subgenotypes, these isolates were composed of 2.1b (10/13) and 2.1c (3/13) sub-subgenotypes. A gE-based phylogenetic tree showed that all six PRV strains belonged to the genotype II, which were genetically closer to variant PRV strains. Collectively, the present study provides the latest information on the epidemiology and genotype diversity of four viruses in sows with reproductive diseases in Hunan province, China, which would contribute to developing effective strategies for disease control.
Collapse
Affiliation(s)
- Qiwu Tang
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
| | - Lingrui Ge
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
| | - Shengguo Tan
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
| | - Hai Zhang
- Animal Epidemic Prevention Station of Xiangxi Autonomous Prefecture, JiShou City 416000, China
| | - Yu Yang
- Animal Disease Prevention and Control Center, Wangcheng District, Changsha 410128, China
| | - Lei Zhang
- Subdistrict Office of Nanzhuangping Street, Yongding District, Zhangjiajie 427000, China
| | - Zaofu Deng
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
- Correspondence:
| |
Collapse
|
10
|
The Prevalence and Genetic Diversity of PCV3 and PCV2 in Colombia and PCV4 Survey during 2015–2016 and 2018–2019. Pathogens 2022; 11:pathogens11060633. [PMID: 35745487 PMCID: PMC9228467 DOI: 10.3390/pathogens11060633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Four genotypes of circovirus have been recognized in swine, with PCV2 and PCV3 being the most associated with clinical manifestations, while PCV4 does not have a defined disease. In addition, PCV2 is associated with different syndromes grouped as diseases associated with porcine circovirus (PCVAD), while PCV3 causes systemic and reproductive diseases. In the present study, we retrospectively detected PCV2, PCV3, and PCV4 in Colombia during two periods: A (2015–2016) and B (2018–2019). During period A, we evaluated stool pools from the 32 Colombian provinces, finding a higher prevalence of PCV3 compared to PCV2 as well as PCV2/PCV3 co-infection. Furthermore, we determined that PCV3 had been circulating since 2015 in Colombia. Regarding period B, we evaluated sera pools and tissues from abortions and stillborn piglets from the five provinces with the highest pig production. The highest prevalence found was for PCV3 in tissues followed by sera pools, while PCV2 was lower and only in sera pools. In addition, PCV2/PCV3 co-infection in sera pools was also found for this period. The complete genome sequences of PCV3 and PCV3-ORF2 placed the Colombian isolates within clade 1 as the majority in the world. For PCV2, the predominant genotype currently in Colombia is PCV2d. Likewise, in some PCV3-ORF2 sequences, a mutation (A24V) was found at the level of the Cap protein, which could be involved in PCV3 immunogenic recognition. Regarding PCV4, retrospective surveillance showed that there is no evidence of the presence of this virus in Colombia.
Collapse
|
11
|
Suh J, Oh T, Park K, Yang S, Cho H, Chae C. A Comparison of Virulence of Three Porcine Circovirus Type 2 (PCV2) Genotypes (a, b, and d) in Pigs Singularly Inoculated with PCV2 and Dually Inoculated with PCV2 and Porcine Reproductive and Respiratory Syndrome Virus. Pathogens 2021; 10:891. [PMID: 34358041 PMCID: PMC8308741 DOI: 10.3390/pathogens10070891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to compare the virulence of porcine circovirus type 2 (PCV2) genotypes in dually inoculated pigs with both three genotypes (a, b, and d) of PCV2 and porcine reproductive and respiratory syndrome virus-2 (PRRSV-2) versus pigs singularly inoculated with the same three PCV2 genotypes (a, b, and d). Differences in this comparison were found in PCV2 viremia levels, lung and lymphoid lesion severity, and the amount of PCV2 antigen within the lymphoid lesions. Regardless of PCV2 genotypes, pigs that were dually inoculated with PCV2/PRRSV had significantly higher clinical scores, less average daily weight gain, higher levels of PCV2 viremia, and more severe lug and lymphoid lesions compared to pigs singularly inoculated with PCV2. Among the dually infected pig groups, pigs infected with PCV2d/PRRSV-2 had significantly higher levels of PCV2 viremia, more severe lung and lymphoid lesions, and more PCV2-positive cells within lymphoid lesions compared to pigs dually inoculated with PCV2a/PRRSV-2 and PCV2b/PRRSV-2. The results of this study demonstrated significant differences in the virulence among dual inoculation of PCV2a/PRRSV-2, PCV2b/PRRSV-2, and PCV2d/PRRSV-2. A significant difference in the virulence among PCV2a, PCV2b, and PCV2d single-inoculated pig groups was not found with respect to the levels of PCV2 viremia and production of PCV2-associated lymphoid lesions.
Collapse
Affiliation(s)
| | | | | | | | | | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea; (J.S.); (T.O.); (K.P.); (S.Y.); (H.C.)
| |
Collapse
|
12
|
Simultaneous detection of porcine reproductive and respiratory syndrome virus and porcine circovirus 3 by SYBR Green І-based duplex real-time PCR. Mol Cell Probes 2019; 49:101474. [PMID: 31655106 DOI: 10.1016/j.mcp.2019.101474] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 11/20/2022]
Abstract
The SYBR Green І-based duplex real-time PCR assay was developed for simultaneous detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus 3 (PCV-3) genomes. PRRSV and PCV-3 were distinguished in the same sample by their distinctive melting temperature (Tm) which was 84 °C for PRRSV and 81.5 °C for PCV-3, and other non-targeted swine viruses showed no specific melting peaks. The detection limits of this assay were 46.1copies/μL for PRRSV and 49.3copies/μL for PCV-3, respectively. Thirty-three lung samples of porcine with respiratory and reproductive failure symptoms were collected and confirmed by the SYBR Green І-based real-time PCR assay and conventional PCR assay. The real-time PCR detection results showed that the PRRSV positive rate was 45.45%, the PCV-3 positive rate was 63.63%, the PRRSV and PCV-3 co-infection positive rate was 36.36%, which were more sensitive than conventional PCR detection. This duplex real-time PCR assay could be a rapid, sensitive and reliable method for the detection of PRRSV and PCV-3 co-infection.
Collapse
|
13
|
Chen N, Huang Y, Ye M, Li S, Xiao Y, Cui B, Zhu J. Co-infection status of classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circoviruses (PCV2 and PCV3) in eight regions of China from 2016 to 2018. INFECTION GENETICS AND EVOLUTION 2018; 68:127-135. [PMID: 30572028 DOI: 10.1016/j.meegid.2018.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/19/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
Classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circoviruses (PCV2 and PCV3) are economically important swine viruses that cause reproductive failure and/or respiratory symptoms in pigs. However, the co-infection status of these viruses in Chinese swine herds is not well clarified. In this study, we evaluated the co-infection of these four viruses in 159 pigs collected from 63 herds in eight regions of China from 2016 to 2018. CSFV, PRRSV, PCV2 and PCV3 were detected in 14, 56, 43 and 4 of the pigs, respectively. The percentage of singular infections was 32.71%, while the percentages of dual infections and multiple infections were 15.72% and 3.15%, respectively. The E2 of CSFV, ORF5 of PRRSV, ORF2s of PCV2 and PCV3 from all positive samples were determined and used for phylogenetic analyses. E2-based phylogenetic tree showed that all 14 CSFVs identified in this study belong to 2.1b subtype. ORF5-based phylogenetic tree showed that PRRSV2 is predominant in China while PRRSV1 can also be detected. In addition, 35, 16, 4 and 1 of our PRRSVs are clustered with highly pathogenic PRRSV2, NADC30-like PRRSV2, classical PRRSV2 and PRRSV1, respectively. ORF2-based phylogenetic trees showed that our PCVs are grouped with 2 PCV2 subtypes (PCV2d and PCV2b) and 3 PCV3 subtypes (PCV3a, PCV3b and PCV3c), respectively. Our results provide the latest co-infection status and the diversity of four important swine viruses in Chinese swine herds, which is beneficial for understanding the epidemiology of these viruses.
Collapse
Affiliation(s)
- Nanhua Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Yucheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Mengxue Ye
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shuai Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yanzhao Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Bailei Cui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianzhong Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
14
|
Chen N, Li S, Ye M, Huang Y, Huang Y, Xiao Y, Yu X, Dong J, Tian K, Zhu J. A novel NADC30-like porcine reproductive and respiratory syndrome virus (PRRSV) plays a limited role in the pathogenicity of porcine circoviruses (PCV2 and PCV3) and PRRSV co-infection. Transbound Emerg Dis 2018; 66:28-34. [PMID: 30267610 DOI: 10.1111/tbed.13026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/03/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
Abstract
Co-infection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circoviruses (PCVs) is commonly observed under field conditions and elicits more severe diseases than any singular infection. In this study, the co-infection of PRRSV, PCV2 and PCV3 was analyzed in tissue samples collected from 150 pigs from April 2016 to April 2018. PRRSV, PCV2 and PCV3 was detected in 55 (36.67%), 43 (28.67%) and 3 (2%) of 150 pigs respectively. Remarkably, one lung sample (SD17-36) collected from a diseased pig was co-infected with PRRSV, PCV2 and PCV3. The complete genomes of SD17-36 viruses of PRRSV, PCV2 and PCV3 were determined, which belong to the subgroups of NADC30-like PRRSV, PCV2d and PCV3a respectively. Sequence comparison showed that PRRSV SD17-36 isolate contains a N33 deletion in GP5. Animal challenge study showed that the novel NADC30-like PRRSV SD17-36 isolate is low pathogenic. Our results indicate that the co-infection of PRRSV and PCVs might cause diseases even when PRRSV plays a limited role in the pathogenicity of the co-infection.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yucheng Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ya Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiao Yu
- Animal Husbandry and Veterinary Station of Jiangyan District, Taizhou, China
| | - Jianbao Dong
- Department of Veterinary Medical Science, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Kegong Tian
- OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, Beijing, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Zhai SL, Zhou X, Zhang H, Hause BM, Lin T, Liu R, Chen QL, Wei WK, Lv DH, Wen XH, Li F, Wang D. Comparative epidemiology of porcine circovirus type 3 in pigs with different clinical presentations. Virol J 2017; 14:222. [PMID: 29132394 PMCID: PMC5683367 DOI: 10.1186/s12985-017-0892-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/07/2017] [Indexed: 11/12/2022] Open
Abstract
Background Porcine circovirus type 3 (PCV3), as an emerging circovirus species, was reported to be widely circulating in the United States, China, South Korea and Poland. Previous studies revealed that PCV3 was mainly concentrated in sick animals with respiratory disease, skin disease, reproductive disorders and so on. However, the circulating status of PCV3 in pigs with other clinical presentations (especilly asymptomatic or diarrhea) was not well established. Findings In this study, to conduct a comparative epidemiological survey of PCV3, 80 weaned pig serum samples with severe respiratory disease (SRD), 175 weaned pig serum samples with mild respiratory disease (MRD), 216 asymptomatic weaned pig serum samples, 35 diarrheal weaned pig samples and 35 non-diarrheal weaned pig samples were collected from eight provinces of China. Via qPCR testing, PCV3 was circulating in all sampling provinces, with total positive rates varying from 1.04% to 100%. Interestingly, the PCV3-positive rate was significantly higher in weaned pigs with SRD (63.75%, 51/80) than in those weaned pigs with MRD (13.14%, 23/175) and asymptomatic pigs (1.85%, 4/216) (P < 0.01). Similarly, the PCV3-positive rate was significantly higher in diarrheal weaned pigs (17.14%, 6/35) than in non-diarrheal weaned pigs (2.86%, 1/35) (P < 0.05). Moreover, the lower Ct values of qPCR were frequently found in those weaned pigs or fattening pigs with respiratory disease and diarrhea rather than that in asymptomatic pigs. Sequence analysis showed that low genetic diversity existed among those PCV3 sequences collected from pigs with different clinical presentations. Conclusions The present study further extends evidence that newly described PCV3 widely circulates in six additional provinces of Southern and Northern China and has high similarity to previously reported isolates. As an emerging virus of swine, although the present case-control study reveals that PCV3 has a potential association with swine respiratory disease and diarrhea, further investigations into the pathogenesis are needed to ascertain the role of PCV3 in swine health. Electronic supplementary material The online version of this article (10.1186/s12985-017-0892-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shao-Lun Zhai
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA. .,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA.
| | - Xia Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - He Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ben M Hause
- Cambridge Technologies, Worthington, MN, 56187, USA
| | - Tao Lin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Qin-Ling Chen
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wen-Kang Wei
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dian-Hong Lv
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiao-Hui Wen
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
16
|
Li PC, Qiao XW, Zheng QS, Hou JB. Immunogenicity and immunoprotection of porcine circovirus type 2 (PCV2) Cap protein displayed by Lactococcus lactis. Vaccine 2016; 34:696-702. [DOI: 10.1016/j.vaccine.2015.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 12/31/2022]
|
17
|
Park C, Seo HW, Park SJ, Han K, Chae C. Comparison of porcine circovirus type 2 (PCV2)-associated lesions produced by co-infection between two genotypes of PCV2 and two genotypes of porcine reproductive and respiratory syndrome virus. J Gen Virol 2014; 95:2486-2494. [PMID: 25034866 DOI: 10.1099/vir.0.066290-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The objective of this study was to compare the virulence and pathogenicity of a combination of concurrent infections of two genotypes of porcine circovirus type 2 (PCV2) and two genotypes of porcine reproductive and respiratory syndrome virus (PRRSV) in terms of PCV2 viraemia, and PCV2-associated lesions and antigens in co-infected pigs. Pigs with PCV2a (or 2b)/type 1 (or type 2) PRRSV had significantly (P<0.05) higher mean clinical respiratory scores and lower average daily weight gain compared with pigs with PCV2a (or 2b). Co-infection induced significantly lower levels of anti-PCV2 and anti-PRRSV IgG antibodies than infection with one genotype alone, regardless of the genotype of the two viruses. Pigs with PCV2a (or 2b)/type 2 PRRSV had significantly (P<0.05) higher levels of PCV2 viraemia, more severe PCV2-associated lesions, and more PCV2 DNA within the lesions compared with pigs with PCV2a (or 2b)/type 1 PRRSV. However, there was no significant difference in these parameters in pigs with PCV2a/type 2 PRRSV or PCV2b/type 2 PRRSV. The results of this study demonstrate significant differences in the virulence and pathogenicity of type 1 and type 2 PRRSV but no significant differences in the virulence and pathogenicity of PCV2a and PCV2b with respect to the production of PCV2-associated lesions.
Collapse
Affiliation(s)
- Changhoon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Hwi Won Seo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Su-Jin Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Kiwon Han
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
18
|
Sylla S, Cong YL, Sun YX, Yang GL, Ding XM, Yang ZQ, Zhou YL, Yang M, Wang CF, Ding Z. Protective immunity conferred by porcine circovirus 2 ORF2-based DNA vaccine in mice. Microbiol Immunol 2014; 58:398-408. [DOI: 10.1111/1348-0421.12158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Seydou Sylla
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
- Institut Supérieur des Sciences et de Médecine Vétérinaire; Dalaba 09 Guinea
| | - Yan-Long Cong
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
| | - Yi-Xue Sun
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
| | - Gui-Lian Yang
- Engineering Research Center of Jilin Province for Animals Probiotics; College of Animal Science and Technology
| | - Xue-Mei Ding
- College of Animal Science; College of Veterinary Medicine Jilin University 5333 Xi’an Rd
| | - Zhan-Qing Yang
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
| | - Yu-Long Zhou
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
| | - Minnan Yang
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
| | - Chun-Feng Wang
- Engineering Research Center of Jilin Province for Animals Probiotics; College of Animal Science and Technology
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi; Jilin Agricultural University; 2888 Xinchen Rd Changchun Jilin 130062 China
| | - Zhuang Ding
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
| |
Collapse
|
19
|
Ferrari L, Borghetti P, De Angelis E, Martelli P. Memory T cell proliferative responses and IFN-γ productivity sustain long-lasting efficacy of a Cap-based PCV2 vaccine upon PCV2 natural infection and associated disease. Vet Res 2014; 45:44. [PMID: 24735253 PMCID: PMC3999888 DOI: 10.1186/1297-9716-45-44] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 04/01/2014] [Indexed: 01/15/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) vaccination represents an important measure to cope with PCV2 infection; however, data regarding the modulation of the immune cell compartment are still limited, especially under field conditions. This study is aimed at investigating the features of the cellular immune response in conventional piglets induced by vaccination using a capsid (Cap) protein-based PCV2 vaccine compared to unvaccinated animals when exposed to PCV2 natural infection. Immune reactivity was evaluated by quantifying peripheral cell subsets involved in the anti-viral response and characterizing the interferon-gamma (IFN-γ) secreting cell (SC) responsiveness both in vivo and upon in vitro whole PCV2 recall. The vaccination triggered an early and intense IFN-γ secreting cell response and induced the activation of peripheral lymphocytes. The early increase of IFN-γ SC frequencies resulted in a remarkable and transient tendency to increased IFN-γ productivity in vaccinated pigs. In vaccinated animals, soon before the onset of infection occurred 15-16 weeks post-vaccination, the recalled PCV2-specific immune response was characterized by moderate PCV2-specific IFN-γ secreting cell frequencies and augmented productivity together with reactive CD4+CD8+ memory T cells. Conversely, upon infection, unvaccinated animals showed very high frequencies of IFN-γ secreting cells and a tendency to lower productivity, which paralleled with effector CD4-CD8+ cytotoxic cell responsiveness. The study shows that PCV2 vaccination induces a long-lasting immunity sustained by memory T cells and IFN-γ secreting cells that potentially played a role in preventing the onset of infection; the extent and duration of this reactivity can be an important feature for evaluating the protective immunity induced by vaccination.
Collapse
Affiliation(s)
- Luca Ferrari
- Department of Veterinary Science, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | | | | | | |
Collapse
|
20
|
Gerber PF, Johnson J, Shen H, Striegel D, Xiao CT, Halbur PG, Opriessnig T. Association of concurrent porcine circovirus (PCV) 2a and 2b infection with PCV associated disease in vaccinated pigs. Res Vet Sci 2013; 95:775-81. [DOI: 10.1016/j.rvsc.2013.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 06/01/2013] [Accepted: 06/05/2013] [Indexed: 11/30/2022]
|
21
|
Yin SH, Xiao CT, Gerber PF, Beach NM, Meng XJ, Halbur PG, Opriessnig T. Concurrent porcine circovirus type 2a (PCV2a) or PCV2b infection increases the rate of amino acid mutations of porcine reproductive and respiratory syndrome virus (PRRSV) during serial passages in pigs. Virus Res 2013; 178:445-51. [PMID: 24036229 PMCID: PMC7126594 DOI: 10.1016/j.virusres.2013.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 11/05/2022]
Abstract
The genetic variability of PRRSV during serial passage in PCV2-infected pigs was investigated. PRRSV structural genes ORF6 and ORF7 mutated at various degrees over time in vivo. A significantly higher mutation rate was observed when pigs were co-infected with PCV2.
Porcine reproductive and respiratory syndrome virus (PRRSV) has a high degree of genetic and antigenic variability. The purpose of this study was to determine if porcine circovirus type 2 (PCV2) infection increases genetic variability of PRRSV during serial passages in pigs and to determine if there is a difference in the PRRSV mutation rate between pigs concurrently infected with PCV2a or PCV2b. After 8 consecutive passages of PRRSV alone (group 1), PRRSV with PCV2a (group 2), or PCV2b (group 3) in pigs, the sequences of PRRSV structural genes for open reading frame (ORF) 5, ORF6, ORF7 and the partial non-structural protein gene (Nsp) 2 were determined. The total number of identified amino acid mutations in ORF5, ORF6, ORF7 and Nsp2 sequences was 30 for PRRSV infection only, 63 for PRRSV/PCV2a concurrent infection, and 77 for PRRSV/PCV2b concurrent infection when compared with the original VR2385 virus used to infect the passage 1 pigs. Compared to what occurred in pigs infected with PRRSV only, the mutation rates in ORF5 and ORF6 were significantly higher for concurrent PRRSV/PCV2b infected pigs. The PRRSV/PCV2a pigs had a significantly higher mutation rate in ORF7. The results from this study indicated that, besides ORF5 and Nsp2, the PRRSV structural genes ORF6 and ORF7 were shown to mutate at various degrees when the PRRSV was passaged over time in vivo. Furthermore, a significantly higher mutation rate of PRRSV was observed when pigs were co-infected with PCV2 highlighting the importance of concurrent infections on PRRSV evolution and control.
Collapse
Affiliation(s)
- Shuang-Hui Yin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Construction and immunogenicity of recombinant swinepox virus expressing capsid protein of PCV2. Vaccine 2012; 30:6307-13. [DOI: 10.1016/j.vaccine.2012.07.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 11/17/2022]
|