1
|
Salamanca N, Herrera M, de la Roca E. Amino Acids as Dietary Additives for Enhancing Fish Welfare in Aquaculture. Animals (Basel) 2025; 15:1293. [PMID: 40362110 PMCID: PMC12070871 DOI: 10.3390/ani15091293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
The interest in fish welfare within aquaculture facilities has significantly increased over the past decade, recognizing the fundamental role of animal welfare in the quality of aquaculture products. It has been shown that stress in fish can affect their health, causing pathologies and immune failures, while stress-free fish grow faster and healthier. This has prompted aquaculture farmers to adopt strategies that reduce stress, improve water quality, and optimize stocking densities, thereby enhancing fish welfare. A key area is the role of amino acids in improving fish welfare. Amino acids, such as histidine, isoleucine, leucine, and tryptophan, are essential for various physiological processes, including neurotransmitter formation, energy metabolism, and immune function. Amino acids like tryptophan, arginine, and methionine play a crucial role in mitigating the effects of stress, improving immune function, and reducing oxidative stress. In the present review, the main roles of those amino acids related to fish stress have been shown, analyzing the physiological pathways involved in the link between amino acid ingestion and metabolization and stress responses.
Collapse
Affiliation(s)
- Natalia Salamanca
- Escuela Superior de Ingeniería, University of Huelva, 21071 Huelva, Spain
| | - Marcelino Herrera
- IFAPA Centro Agua del Pino, El Rompido-Punta Umbria rd., 21459 Cartaya, Spain;
| | - Elena de la Roca
- IFAPA Centro Agua del Pino, El Rompido-Punta Umbria rd., 21459 Cartaya, Spain;
| |
Collapse
|
2
|
Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022; 13:1031785. [PMID: 36341445 PMCID: PMC9634088 DOI: 10.3389/fimmu.2022.1031785] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.
Collapse
|
3
|
Fu S, Zhou Y, Qiu Y, Chen W, Zhang J, Miao J. Immune response variations and intestinal flora changes in mastitis induced by three Streptococcus uberis strains. Microbiol Immunol 2021; 66:113-123. [PMID: 34842300 DOI: 10.1111/1348-0421.12955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
Streptococcus uberis is a common cause of mastitis. The pathogenicity among different strains of S. uberis and the resultant host immune responses remain to be elucidated. Herein, we document immune responses among three strains of S. uberis, and preliminary explore whether and how intestinal immunity plays a role in host anti-infection processes. Mice have been proved to be effective experimental animals for bovine mastitis, so utilizing a mouse intramammary infection model, we assay immune responses and gut flora changes of three S. uberis strains by histopathologic examination, RT-PCR, Western blot, and 16s ribosomal DNA sequencing. We find that the immune responses among the three sequence-type (ST) S. uberis strains may be linked to the hasA/B and lbp virulence genes, and the beta diversity of the intestine may be independent of the ST of S. uberis. Twenty phyla and 30 genera of intestinal flora were identified, with Verrucomicrobia and Akkermansia being the most prominent phylum and genus, respectively. These bacteria have strong anti-inflammatory and protective effects against S. uberis challenge. These data provide a foundation for further studies to elucidate gut flora function and exploration of therapeutic targets for mastitis.
Collapse
Affiliation(s)
- Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yawei Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Chen
- Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Crops, College of Animal Science, Tarim University, Tarim, China
| | - Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Li M, Wang Z, Qiu Y, Fu S, Xu Y, Han X, Phouthapane V, Miao J. Taurine protects blood-milk barrier integrity via limiting inflammatory response in Streptococcus uberis infections. Int Immunopharmacol 2021; 101:108371. [PMID: 34789427 DOI: 10.1016/j.intimp.2021.108371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022]
Abstract
Streptococcus uberis (S. uberis) is an important causative agent of mastitis, leading to significant economic losses to dairy industry. This research used a mouse mastitis model to investigate the protective effects of taurine on mammary inflammatory response and blood-milk barrier integrity in S. uberis challenge. The results showed that taurine attenuated S. uberis-induced mammary histopathological changes, especially neutrophil infiltration. The S. uberis-induced expression of pro-inflammatory mediators were decreased significantly by taurine. Further, we demonstrated that taurine limited the S. uberis-induced inflammatory responses via inhibiting the activation of NF-κB and MAPK signaling pathways. Inflammation usually disrupts the mammary barrier system. The recovery of claudin-3 and occludin expressions indicated that attenuation of inflammatory response by taurine can protect the integrity of blood-milk barrier in S. uberis infection. Taken together, our results reveal that the development of taurine as an effective prevention and control strategy for S. uberis-induced mastitis.
Collapse
Affiliation(s)
- Ming Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yawei Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Vanhnaseng Phouthapane
- Department of Livestock and Fisheries, Ministry of Agriculture and Forestry, Vientiane, Laos
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
He M, Nie X, Wang H, Yan S, Zhang Y. Effects of a High-Grain Diet With a Buffering Agent on Milk Protein Synthesis in Lactating Goats. Front Vet Sci 2021; 8:696703. [PMID: 34295935 PMCID: PMC8291223 DOI: 10.3389/fvets.2021.696703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Chinese dairy industries have developed rapidly, providing consumers with high-quality sources of nutrition. However, many problems have also appeared during the development process, especially the low quality of milk. To improve milk quality, a large amount of concentrated feed is usually added to the diet within a certain period of time, which increases the milk production to a certain extent. However, long-term feeding with high-concentration feed can lead to subacute rumen acidosis. Therefore, the present study aimed to determine the effect of adding a buffer on subacute rumen acidosis, and the improvement of milk production and milk quality. We also aimed to study the mechanism of promoting mammary gland lactation. A total of 12 healthy mid-lactating goats were randomly divided into two groups, they were high-grain diet group (Control) and buffering agent group. To understand the effects of high-grain diets with buffers on amino acids in jugular blood and the effects of amino acids on milk protein synthesis, Milk-Testing™ Milkoscan 4000, commercial kits, and high-performance liquid chromatography (HPLC) measurements were integrated with the milk protein rate, the amino acid concentration in jugular venous blood samples, quantitative real-time PCR, comparative proteomics, and western blotting to study differentially expressed proteins and amino acids in mammary gland tissues of goats fed high-grain diets. Feeding lactating goats with buffering agent increased the percentage of milk protein in milk, significantly increased the amino acid content of jugular blood (p < 0.05), and increase the amino acid transporter levels in the mammary gland. Compared with the high-grain group, 2-dimensional electrophoresis technology, matrix-assisted laser desorption/ionization-time of flight/time of flight proteomics analyzer, and western blot analysis further verified that the expression levels of beta casein (CSN2) and lactoferrin (LF) proteins in the mammary glands of lactating goats were higher when fed a high-grain diets and buffers. The mechanism of increased milk protein synthesis was demonstrated to be related to the activation of mammalian target of rapamycin (mTOR) pathway signals.
Collapse
Affiliation(s)
- Meilin He
- The Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xintian Nie
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Huanhuan Wang
- The Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shuping Yan
- The Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yuanshu Zhang
- The Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Lan R, Wan Z, Xu Y, Wang Z, Fu S, Zhou Y, Lin X, Han X, Luo Z, Miao J, Yin Y. Taurine Reprograms Mammary-Gland Metabolism and Alleviates Inflammation Induced by Streptococcus uberis in Mice. Front Immunol 2021; 12:696101. [PMID: 34177964 PMCID: PMC8222520 DOI: 10.3389/fimmu.2021.696101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Streptococcus uberis (S. uberis) is an important pathogen causing mastitis, which causes continuous inflammation and dysfunction of mammary glands and leads to enormous economic losses. Most research on infection continues to be microbial metabolism-centric, and many overlook the fact that pathogens require energy from host. Mouse is a common animal model for studying bovine mastitis. In this perspective, we uncover metabolic reprogramming during host immune responses is associated with infection-driven inflammation, particularly when caused by intracellular bacteria. Taurine, a metabolic regulator, has been shown to effectively ameliorate metabolic diseases. We evaluated the role of taurine in the metabolic regulation of S. uberis-induced mastitis. Metabolic profiling indicates that S. uberis exposure triggers inflammation and metabolic dysfunction of mammary glands and mammary epithelial cells (the main functional cells in mammary glands). Challenge with S. uberis upregulates glycolysis and oxidative phosphorylation in MECs. Pretreatment with taurine restores metabolic homeostasis, reverses metabolic dysfunction by decrease of lipid, amino acid and especially energy disturbance in the infectious context, and alleviates excessive inflammatory responses. These outcomes depend on taurine-mediated activation of the AMPK–mTOR pathway, which inhibits the over activation of inflammatory responses and alleviates cellular damage. Thus, metabolic homeostasis is essential for reducing inflammation. Metabolic modulation can be used as a prophylactic strategy against mastitis.
Collapse
Affiliation(s)
- Riguo Lan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhixin Wan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenglei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shaodong Fu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinguang Lin
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhenhua Luo
- School of Water, Energy & Environment, Cranfield University, Cranfield, United Kingdom
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yulong Yin
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center for Animal & Poultry Science, Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Changsha, China
| |
Collapse
|
7
|
Taurine-Mediated IDOL Contributes to Resolution of Streptococcus uberis Infection. Infect Immun 2021; 89:IAI.00788-20. [PMID: 33593888 DOI: 10.1128/iai.00788-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic alterations occur in pathogenic infections, but the role of lipid metabolism in the progression of bacterial mastitis is unclear. Cross talk between lipid droplets (LDs) and invading bacteria occurs, and targeting of de novo lipogenesis inhibits pathogen reproduction. In this study, we investigate the role(s) of lipid metabolism in mammary cells during Streptococcus uberis infection. Our results indicate that S. uberis induces the synthesis of fatty acids and production of LDs. Importantly, taurine reduces fatty acid synthesis, the abundance of LDs and the in vitro bacterial load of S. uberis These changes are mediated, at least partly, by the E3 ubiquitin ligase IDOL, which is associated with the degradation of low-density lipoprotein receptors (LDLRs). We have identified a critical role for IDOL-mediated fatty acid synthesis in bacterial infection, and we suggest that taurine may be an effective prophylactic or therapeutic strategy for preventing S. uberis mastitis.
Collapse
|
8
|
Wang Z, Lan R, Xu Y, Zuo J, Han X, Phouthapane V, Luo Z, Miao J. Taurine Alleviates Streptococcus uberis-Induced Inflammation by Activating Autophagy in Mammary Epithelial Cells. Front Immunol 2021; 12:631113. [PMID: 33777017 PMCID: PMC7996097 DOI: 10.3389/fimmu.2021.631113] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Streptococcus uberis infection can cause serious inflammation and damage to mammary epithelial cells and tissues that can be significantly alleviated by taurine. Autophagy plays an important role in regulating immunity and clearing invasive pathogens and may be regulated by taurine. However, the relationships between taurine, autophagy, and S. uberis infection remain unclear. Herein, we demonstrate that taurine augments PTEN activity and inhibits Akt/mTOR signaling, which decreases phosphorylation of ULK1 and ATG13 by mTOR and activates autophagy. Activating autophagy accelerates the degradation of intracellular S. uberis, reduces intracellular bacterial load, inhibits over-activation of the NF-κB pathway, and alleviates the inflammation and damage caused by S. uberis infection. This study increases our understanding of the mechanism through which taurine regulates autophagy and is the first to demonstrate the role of autophagy in S. uberis infected MAC-T cells. Our study also provides a theoretical basis for employing nutritional elements (taurine) to regulate innate immunity and control S. uberis infection. It also provides theoretical support for the development of prophylactic strategies for this important pathogen.
Collapse
Affiliation(s)
- Zhenglei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Riguo Lan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiakun Zuo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Vanhnaseng Phouthapane
- Biotechnology and Ecology Institute, Ministry of Science and Technology (MOST), Vientiane, Laos
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Yang MJ, Xu D, Yang DX, Li L, Peng XX, Chen ZG, Li H. Malate enhances survival of zebrafish against Vibrio alginolyticus infection in the same manner as taurine. Virulence 2021; 11:349-364. [PMID: 32316833 PMCID: PMC7199751 DOI: 10.1080/21505594.2020.1750123] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Development of low-cost and eco-friendly approaches to fight bacterial pathogens is especially needed in aquaculture. We previously showed that exogenous malate reprograms zebrafish’s metabolome to potentiate zebrafish survival against Vibrio alginolyticus infection. However, the underlying mechanism is unknown. Here, we use GC-MS based metabolomics to identify the malate-triggered metabolic shift. An activated TCA cycle and elevated taurine are identified as the key metabolic pathways and the most crucial biomarker of the reprogrammed metabolome, respectively. Taurine elevation is attributed to the activated TCA cycle, which is further supported by the increased expression of genes in the metabolic pathway of taurine biosynthesis from the isocitrate of the TCA cycle to taurine. Exogenous taurine increases the survival of zebrafish against V. alginolyticus infection as malate did. Moreover, exogenous taurine and malate regulate the expression of innate immunity genes and promote the generation of reactive oxygen species and nitrogen oxide in a similar way. The two metabolites can alleviate the excessive immune response to bacterial challenge, which protects fish from bacterial infection. These results indicate that malate enhances the survival of zebrafish to V. alginolyticus infection via taurine. Thus, our study highlights a metabolic approach to enhance a host’s ability to fight bacterial infection.
Collapse
Affiliation(s)
- Man-Jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China.,Tibet Vocational Technical College, Lhasha, People's Republic of China
| | - Di Xu
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China
| | - Dai-Xiao Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China
| | - Lu Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhuang-Gui Chen
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Khalil R, Usmani S, Nur-E-Alam M, Ahmed S, Ul-Haq Z. Site-directed Fragnomics and MD Simulations Approaches to Identify Interleukin-2 Inhibitors. Med Chem 2020; 17:407-417. [PMID: 33191887 DOI: 10.2174/1573406416999201113104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The aberrant expression of Interleukin-2 (IL2), the chief regulator of immunity, is associated with many auto-immune diseases. At present, there is no FDA approved drug targeting IL2, which puts forth the need for small molecular inhibitors to block IL2 and its receptor interaction. METHODOLOGY Herein, we used the contemporary fragnomics approach to design novel drug-like inhibitors targeting IL2. Briefly, the RECAP (Retrosynthetic Combinatorial Analysis Procedure) package implemented in MOE (Molecular Operating Environment check) software suite was utilised to obtain fragments fulfilling the 'rule of three' criteria for fragments. The binding site of IL2 was divided into three smaller grooves, and the fragments were docked to screen their affinity for a particular site, followed by site-directed RECAP synthesis. RESULTS A focused library of 10,000 compounds was prepared by re-combining the fragments according to their affinity for a particular site as observed in docking. Docking and subsequent analysis of newly synthesised compounds identified 40 privileged leads, presenting hydrogen bonding with basic residues of the pocket. A QSAR model was implied to predict the IC50 of the compounds and to analyse the electrostatic and hydrophobic contour maps. The resulting hits were found to be modest IL2 inhibitors with predicted inhibitory activity in the range of 5.17-4.40 nM. Further Dynamic simulation studies were carried out to determine the stability of the inhibitor-IL2 complex. CONCLUSION Our findings underline the potential of the novel compounds as valuable pharmacological agents in diseases characterised by IL2 overexpression.
Collapse
Affiliation(s)
- Ruqaiya Khalil
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Saman Usmani
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Mohammad Nur-E-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh 11451, Saudi Arabia
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh 11451, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
11
|
Li B, Wan Z, Wang Z, Zuo J, Xu Y, Han X, Phouthapane V, Miao J. TLR2 Signaling Pathway Combats Streptococcus uberis Infection by Inducing Mitochondrial Reactive Oxygen Species Production. Cells 2020; 9:cells9020494. [PMID: 32098158 PMCID: PMC7072855 DOI: 10.3390/cells9020494] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
Mastitis caused by Streptococcus uberis (S. uberis) is a common and difficult-to-cure clinical disease in dairy cows. In this study, the role of Toll-like receptors (TLRs) and TLR-mediated signaling pathways in mastitis caused by S. uberis was investigated using mouse models and mammary epithelial cells (MECs). We used S. uberis to infect mammary glands of wild type, TLR2−/− and TLR4−/− mice and quantified the adaptor molecules in TLR signaling pathways, proinflammatory cytokines, tissue damage, and bacterial count. When compared with TLR4 deficiency, TLR2 deficiency induced more severe pathological changes through myeloid differentiation primary response 88 (MyD88)-mediated signaling pathways during S. uberis infection. In MECs, TLR2 detected S. uberis infection and induced mitochondrial reactive oxygen species (mROS) to assist host in controlling the secretion of inflammatory factors and the elimination of intracellular S. uberis. Our results demonstrated that TLR2-mediated mROS has a significant effect on S. uberis-induced host defense responses in mammary glands as well as in MECs.
Collapse
Affiliation(s)
- Bin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
| | - Zhixin Wan
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
| | - Jiakun Zuo
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Vanhnaseng Phouthapane
- Biotechnology and Ecology Institute, Ministry of Science and Technology (MOST), Vientiane 22797, Lao PDR;
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
- Correspondence: ; Fax: +86-25-8439-8669
| |
Collapse
|
12
|
Li M, Xi P, Xu Y, Wang Z, Han X, Ren W, Phouthapane V, Miao J. Taurine Attenuates Streptococcus uberis-Induced Bovine Mammary Epithelial Cells Inflammation via Phosphoinositides/Ca 2+ Signaling. Front Immunol 2019; 10:1825. [PMID: 31447841 PMCID: PMC6692464 DOI: 10.3389/fimmu.2019.01825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022] Open
Abstract
Taurine may alleviate the inflammatory injury induced by Streptococcus uberis (S. uberis) infection by regulating intracellular Ca2+ levels. However, the underlying mechanisms remain unclear. Infection leads to subversion of phosphoinositides (PIs) which are closely related to Ca2+ signaling. In order to investigate whether taurine regulates inflammation by means of PIs/ Ca2+ systems, competitive inhibitors of taurine (β-alanine) siTauT, siPAT1, siPLC, siCaN, siPKC, and inhibitors of PLC (U73122), PKC (RO31-8220), and CaN (FK 506) were used. The results indicate that taurine transfers the extracellular nutrient signal for intercellular innate immunity to phosphoinositides without a need to enter the cytoplasm while regulating intracellular Ca2+ levels during inflammation. Both the Ca2+-PKCα-NF-κB, and Ca2+-CaM-CaN-NFAT signaling pathways of S. uberis infection and the regulatory roles of taurine follow activation of PIs/Ca2+ systems. These data increase our understanding on the mechanisms of multifunctional nutrient, taurine attenuated inflammatory responses caused by S. uberis infection, and provide theoretical support for the prevention of this disease.
Collapse
Affiliation(s)
- Ming Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Panpan Xi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangan Han
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Vanhnaseng Phouthapane
- Biotechnology and Ecology Institute, Ministry of Science and Technology, Vientiane, Laos
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Miao J, Adewole D, Liu S, Xi P, Yang C, Yin Y. Tryptophan Supplementation Increases Reproduction Performance, Milk Yield, and Milk Composition in Lactating Sows and Growth Performance of Their Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5096-5104. [PMID: 31008593 DOI: 10.1021/acs.jafc.9b00446] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tryptophan (Trp) can produce bioactive compounds for appetite regulation, calcium mobilization, and mammary gland homeostasis via a serotonin pathway. This study evaluated the effects of Trp supplementation on the reproduction performance, milk yield, and composition of lactating sows, growth performance of their piglets, and the secretion function of porcine mammary epithelial cells (PMECs). The infrared emulsion analyzer and ELISA analyses revealed that feeding sows with a 0.12% Trp addition increased ( P < 0.05) sow average daily feed intake, milk yield, milk calcium concentration, average daily gain of piglets, fatty acid synthase (FAS) and lactose synthase (LS), β-casein secretion, intracellular Ca2+ level, the expression of calcium binding protein CaM, and the activity of CaMKII. In a cellular experiment of PMECs treated with Trp, ELISA and flow cytometry analyses revealed that the pretreatment of a Trp hydroxylase inhibitor reduced ( P < 0.05) FAS and LS synthesis, the intracellular Ca2+ level, and the activity of CaMKII. In conclusion, Trp supplementation at 0.12% increased sows' reproductive performance, milk yield, and calcium concentration and piglets' growth performance. Milk yield increased by Trp was linked to 5-hydroxytryptamine-mediated synthesis of FAS, LS, and β-casein in PMECs, while the increase in calcium concentration was attributed to increasing CaM expression and CAMKII activity.
Collapse
Affiliation(s)
- Jinfeng Miao
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture, Chinese Academy of Sciences , Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha , Hunan 410125 , People's Republic of China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Deborah Adewole
- Department of Animal Science and Aquaculture , Dalhousie University , Truro , Nova Scotia B2N 5E3 , Canada
- Department of Animal Science , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Shangxi Liu
- Department of Animal Science , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Panpan Xi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Chengbo Yang
- Department of Animal Science , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture, Chinese Academy of Sciences , Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha , Hunan 410125 , People's Republic of China
| |
Collapse
|
14
|
Malke H. Genetics and Pathogenicity Factors of Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0002-2017. [PMID: 30873932 PMCID: PMC11590425 DOI: 10.1128/microbiolspec.gpp3-0002-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
Of the eight phylogenetic groups comprising the genus Streptococcus, Lancefield group C and G streptococci (GCS and GGS, resp.) occupy four of them, including the Pyogenic, Anginosus, and Mitis groups, and one Unnamed group so far. These organisms thrive as opportunistic commensals in both humans and animals but may also be associated with clinically serious infections, often resembling those due to their closest genetic relatives, the group A streptoccci (GAS). Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 12 species, several of which being subdivided into subspecies. This review summarizes these advances, citing 264 early and recent references. It focuses on the molecular structure and genetic regulation of clinically important proteins associated with the cell wall, cytoplasmic membrane and extracellular environment. The article also addresses the question of how, based on the current knowledge, basic research and translational medicine might proceed to further advance our understanding of these multifaceted organisms. Particular emphasis in this respect is placed on streptokinase as the protein determining the host specificity of infection and the Rsh-mediated stringent response with its potential for supporting bacterial survival under nutritional stress conditions.
Collapse
Affiliation(s)
- Horst Malke
- Friedrich Schiller University Jena, Faculty of Biology and Pharmacy, D-07743 Jena, Germany, and University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73190
| |
Collapse
|
15
|
Li B, Xi P, Wang Z, Han X, Xu Y, Zhang Y, Miao J. PI3K/Akt/mTOR signaling pathway participates in Streptococcus uberis-induced inflammation in mammary epithelial cells in concert with the classical TLRs/NF-ĸB pathway. Vet Microbiol 2018; 227:103-111. [PMID: 30473339 DOI: 10.1016/j.vetmic.2018.10.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
Abstract
Mammary epithelial cells (MECs) play an important role in debating Streptococcus uberis (S. uberis) infection. Toll like receptor (TLR) engagement leads to the recruitment of phosphatidylinositol 3 kinases (PI3K). In order to investigate the relationship of TLRs/NF-κB and PI3K/Akt/mTOR signaling pathways in S. uberis infection in MECs, we challenged MECs (EpH4-Ev) with S. uberis 0140 J and quantified the adaptor molecules in these two signaling pathways, as-well-as proinflammatory cytokines and cell damage. The results indicate that the host's responses to virulent S. uberis infection are complex. In MECs, both TLR2 and TLR4 are detecting S. uberis infection and TLR2 is the principal receptor. The role of the PI3K/Akt/mTOR pathway in inflammatory regulation is independent of the activation of TLRs/NF-κB. Cross-talk between PI3K/Akt/mTOR and TLRs/NF-κB signaling pathways promote inflammation. This study increases our understanding of the molecular defense mechanisms of MECs in S. uberis mastitis, and provides theoretical support for the prevention of this disease.
Collapse
Affiliation(s)
- Bin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Xi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanshu Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Cheng CH, Guo ZX, Wang AL. The protective effects of taurine on oxidative stress, cytoplasmic free-Ca 2+ and apoptosis of pufferfish (Takifugu obscurus) under low temperature stress. FISH & SHELLFISH IMMUNOLOGY 2018; 77:457-464. [PMID: 29656127 DOI: 10.1016/j.fsi.2018.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
The present study was aimed to investigate the low temperature toxicity and its protection by taurine in pufferfish. The experimental basal diets supplemented with taurine at the rates of 250 (control), 550, 850, 1140, 1430, 1740 mg kg-1 were fed to fish for 8 weeks. The results showed that fish fed diet with taurine had significantly improved weight gain and specific growth rate. After the feeding trial, the fish were then exposed to low temperature stress. The results showed that low temperature stress could induce reactive oxygen species (ROS) generation, disturb the cytoplasm Ca2+ homeostasis, and lead to oxidative stress and apoptosis. Compared with the control group, dietary taurine supplementation groups increased antioxidant enzyme genes such as manganese superoxide dismutase (Mn-SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT), heat shock proteins (HSP70) and complement C3 (C3) mRNA levels under low temperature stress. Meanwhile, dietary taurine supplementation groups reduced ROS generation, and stabilized the cytoplasm Ca2+ under low temperature stress. Furthermore, dietary taurine supplementation groups reduced apoptosis via decreasing caspase-3 activity. This is the first report to demonstrate the mechanisms of taurine against low temperature stress in fish.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China.
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center (SCS-REPIC), PR China.
| | - An-Li Wang
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
17
|
Abdelmegeid M, Vailati-Riboni M, Alharthi A, Batistel F, Loor J. Supplemental methionine, choline, or taurine alter in vitro gene network expression of polymorphonuclear leukocytes from neonatal Holstein calves. J Dairy Sci 2017; 100:3155-3165. [DOI: 10.3168/jds.2016-12025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/10/2016] [Indexed: 12/12/2022]
|