1
|
Zhang S, Li J, Gao H, Wang Y, Cao H, Li X, Gao L, Zheng SJ. TMT-based quantitative proteomic analysis of IBDV-infected CEF cells reveals a favorable role of chicken IRF10 in IBDV replication via suppressing type-I interferon expression. Poult Sci 2024; 103:104421. [PMID: 39442197 PMCID: PMC11532768 DOI: 10.1016/j.psj.2024.104421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious disease caused by infectious bursal disease virus (IBDV), causing huge economic losses to the poultry industry worldwide. Currently, the emerging variant strains of IBDV and new recombinants in the field are circulating in many countries and poses severe threats to the development of poultry industry. Elucidation of the pathogenesis of IBDV infection will be of great help to the development of vaccines for control of IBDV infection. In this study, liquid chromatography tandem-mass spectrometry (LC-MS/MS) combined with tandem mass tag (TMT) labeling was performed to determine the expressions of nucleus proteins in IBDV-infected chicken embryonic fibroblast (CEF) cells 24 h post-infection (hpi). Our data show that a total of 236 nucleus proteins were differentially expressed in IBDV-infected cells vs mock-infected controls, and that among those proteins, 171 were significantly upregulated while 65 downregulated. Bioinformatics analysis reveals that the differentially expressed proteins (DEPs) were mainly involved in immune response, DNA replication, mismatch repair, and RIG-I-like receptor (RLR) signaling. Consistently, the expression of ten selected upregulated genes (IRF10, IRF7, IRF1, STAT1, ATF3, GTF3A, CSRP3, RARB, BASP1, and NF-κB1) markedly increased as examined by quantitative real-time PCR (qRT-PCR). Furthermore, the expression of IRF10 was upregulated both in the cytoplasm and nucleus of DF-1 cells as examined by Western Blot. Moreover, knockdown of IRF10 remarkably inhibited IBDV replication via promoting IFN-I response, and overexpression of IRF10 significantly suppressed type I interferon and ISGs expression in both mock and IBDV-infected cells, suggesting that IRF10 serve as a negative regulator for host antiviral response. These results provide clues to further investigation into host-IBDV interactions and the underlying mechanisms of IBDV infection.
Collapse
Affiliation(s)
- Shujun Zhang
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Li
- China Institute of Veterinary Drug Control
| | - Hui Gao
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Chen S, Xu H, Pan T, Nie Y, Zhang X, Chen F, Xie Q, Chen W. A Comprehensive Analysis of the ceRNA Network and Hub Genes in Avian Leukosis Virus Subgroup J and Infectious Bursal Disease Virus Superinfection. Animals (Basel) 2024; 14:3449. [PMID: 39682415 DOI: 10.3390/ani14233449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
In the realm of poultry production, viral superinfections pose significant challenges, causing substantial economic losses worldwide. Among these, avian leukosis virus subgroup J (ALV-J) and infectious bursal disease virus (IBDV) are particularly concerning as they frequently lead to superinfections in chicken, further exacerbating production losses and health complications. Our previous research delved into the pathogenicity and immunosuppressive effects of these superinfections through in vitro and in vivo analyses. Yet, the underlying key genes and pathways governing this phenomenon remained elusive. In this study, we randomly selected three chickens at 21 days post infection from each treatment group (ALV-J, IBDV, ALV-J+IBDV, and control group) to collect the bursa of Fabricius samples for full transcriptome analysis. Utilizing these data, we constructed a comprehensive circRNA/lncRNA-miRNA-mRNA network which elucidated both synergistic and specific activations during the superinfection. Notably, three pivotal genes (FILIP1L, DCX, and MYPN) were pinpointed in datasets reflecting synergistic activations. Conversely, four other genes (STAP, HKR6, XKR4, and TLR5) emerged in datasets associated with specific activations. Further exploration revealed diverse significant GO terms and pathways associated with both synergistic and distinct activation processes. These ceRNA network and core genes potentially wield substantial influence over the synergistic or specific activation of tumorigenesis and pathogenesis induced by ALV-J and IBDV. These findings could help develop targeted therapies and improve disease control in poultry, reducing economic losses.
Collapse
Affiliation(s)
- Sheng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Huijuan Xu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tingxi Pan
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Nie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Feng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Weiguo Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| |
Collapse
|
3
|
Cui L, Li X, Chen Z, Liu Z, Zhang Y, Han Z, Liu S, Li H. Integrative RNA-seq and ChIP-seq analysis unveils metabolic regulation as a conserved antiviral mechanism of chicken p53. Microbiol Spectr 2024; 12:e0030924. [PMID: 38888361 PMCID: PMC11302347 DOI: 10.1128/spectrum.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
The tumor suppressor p53, primarily functioning as a transcription factor, has exhibited antiviral capabilities against various viruses in chickens, including infectious bursal disease virus (IBDV), avian leukosis virus subgroup J (ALV-J), and avian infectious laryngotracheitis virus (ILTV). Nevertheless, the existence of a universal antiviral mechanism employed by chicken p53 (chp53) against these viruses remains uncertain. This study conducted a comprehensive comparison of molecular networks involved in chp53's antiviral function against IBDV, ALV-J, and ILTV. This was achieved through an integrated analysis of ChIP-seq data, examining chp53's genome-wide chromatin occupancy, and RNA-seq data from chicken cells infected with these viruses. The consistent observation of chp53 target gene enrichment in metabolic pathways, confirmed via ChIP-qPCR, suggests a ubiquitous regulation of host cellular metabolism by chp53 across different viruses. Further genome binding motif conservation analysis and transcriptional co-factor prediction suggest conserved transcriptional regulation mechanism by which chp53 regulates host cellular metabolism during viral infection. These findings offer novel insights into the antiviral role of chp53 and propose that targeting the virus-host metabolic interaction through regulating p53 could serve as a universal strategy for antiviral therapies in chickens.IMPORTANCEThe current study conducted a comprehensive analysis, comparing molecular networks underlying chp53's antiviral role against infectious bursal disease virus (IBDV), avian leukosis virus subgroup J (ALV-J), and avian infectious laryngotracheitis virus (ILTV). This was achieved through a combined assessment of ChIP-seq and RNA-seq data obtained from infected chicken cells. Notably, enrichment of chp53 target genes in metabolic pathways was consistently observed across viral infections, indicating a universal role of chp53 in regulating cellular metabolism during diverse viral infections. These findings offer novel insights into the antiviral capabilities of chicken p53, laying a foundation for the potential development of broad-spectrum antiviral therapies in chickens.
Collapse
Affiliation(s)
- Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuefeng Li
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijie Chen
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zheyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Zhang
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hai Li
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
4
|
Zafar HS, Akbar H, Xu H, Ponnuraj N, Van Etten K, Jarosinski KW. Oncogenic Animal Herpesviruses. Curr Opin Virol 2024; 67:101424. [PMID: 38981163 DOI: 10.1016/j.coviro.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Oncogenic viruses play a pivotal role in oncology due to their unique role in unraveling the complexities of cancer development. Understanding the role viruses play in specific cancers is important to provide basic insights into the transformation process, which will help identify potential cellular targets for treatment. This review discusses the diverse role of animal herpesviruses in initiating and promoting various forms of cancer. We will summarize the mechanisms that underlie the development of animal herpesvirus-induced cancer that may provide a basis for developing potential therapeutic interventions or preventative strategies in the future.
Collapse
Affiliation(s)
- Hafiz S Zafar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huai Xu
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kathrine Van Etten
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith W Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Kappari L, Dasireddy JR, Applegate TJ, Selvaraj RK, Shanmugasundaram R. MicroRNAs: exploring their role in farm animal disease and mycotoxin challenges. Front Vet Sci 2024; 11:1372961. [PMID: 38803799 PMCID: PMC11129562 DOI: 10.3389/fvets.2024.1372961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
MicroRNAs (miRNAs) serve as key regulators in gene expression and play a crucial role in immune responses, holding a significant promise for diagnosing and managing diseases in farm animals. This review article summarizes current research on the role of miRNAs in various farm animal diseases and mycotoxicosis, highlighting their potential as biomarkers and using them for mitigation strategies. Through an extensive literature review, we focused on the impact of miRNAs in the pathogenesis of several farm animal diseases, including viral and bacterial infections and mycotoxicosis. They regulate gene expression by inducing mRNA deadenylation, decay, or translational inhibition, significantly impacting cellular processes and protein synthesis. The research revealed specific miRNAs associated with the diseases; for instance, gga-miR-M4 is crucial in Marek's disease, and gga-miR-375 tumor-suppressing function in Avian Leukosis. In swine disease such as Porcine Respiratory and Reproductive Syndrome (PRRS) and swine influenza, miRNAs like miR-155 and miR-21-3p emerged as key regulatory factors. Additionally, our review highlighted the interaction between miRNAs and mycotoxins, suggesting miRNAs can be used as a biomarker for mycotoxin exposure. For example, alterations in miRNA expression, such as the dysregulation observed in response to Aflatoxin B1 (AFB1) in chickens, may indicate potential mechanisms for toxin-induced changes in lipid metabolism leading to liver damage. Our findings highlight miRNAs potential for early disease detection and intervention in farm animal disease management, potentially reducing significant economic losses in agriculture. With only a fraction of miRNAs functionally characterized in farm animals, this review underlines more focused research on specific miRNAs altered in distinct diseases, using advanced technologies like CRISPR-Cas9 screening, single-cell sequencing, and integrated multi-omics approaches. Identifying specific miRNA targets offers a novel pathway for early disease detection and the development of mitigation strategies against mycotoxin exposure in farm animals.
Collapse
Affiliation(s)
- Laharika Kappari
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | | | - Todd J. Applegate
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
6
|
Liu Z, Cui L, Li X, Xu L, Zhang Y, Han Z, Liu S, Li H. Characterization of the Effects of Host p53 and Fos on Gallid Alpha Herpesvirus 1 Replication. Genes (Basel) 2023; 14:1615. [PMID: 37628666 PMCID: PMC10454551 DOI: 10.3390/genes14081615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Treatment options for herpesvirus infections that target the interactions between the virus and the host have been identified as promising. Our previous studies have shown that transcription factors p53 and Fos are essential host determinants of gallid alpha herpesvirus 1 (ILTV) infection. The impact of p53 and Fos on ILTV replication has 'not been fully understood yet. Using the sole ILTV-permissive chicken cell line LMH as a model, we examined the effects of hosts p53 and Fos on all phases of ILTV replication, including viral gene transcription, viral genome replication, and infectious virion generation. We achieved this by manipulating the expression of p53 and Fos in LMH cells. Our results demonstrate that the overexpression of either p53 or Fos can promote viral gene transcription at all stages of the temporal cascade of ILTV gene expression, viral genome replication, and infectious virion production, as assessed through absolute quantitative real-time PCR, ILTV-specific RT-qPCR assays, and TCID50 assays. These findings are consistent with our previous analyses of the effects of Fos and p53 knockdowns on virus production and also suggest that both p53 and Fos may be dispensable for ILTV replication. Based on the synergistic effect of regulating ILTV, we further found that there is an interaction between p53 and Fos. Interestingly, we found that p53 also has targeted sites upstream of ICP4, and these sites are very close to the Fos sites. In conclusion, our research offers an in-depth understanding of how hosts p53 and Fos affect ILTV replication. Understanding the processes by which p53 and Fos regulate ILTV infection will be improved by this knowledge, potentially paving the way for the development of novel therapeutics targeting virus-host interactions as a means of treating herpesvirus infections.
Collapse
Affiliation(s)
- Zheyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xuefeng Li
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Li Xu
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yu Zhang
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hai Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
7
|
Chen Z, Leng M, Liang Z, Zhu P, Chen S, Xie Q, Chen F, Lin W. gga-miR-20b-5p inhibits infectious bursal disease virus replication via targeting Netrin 4. Vet Microbiol 2023; 279:109676. [PMID: 36796296 DOI: 10.1016/j.vetmic.2023.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) involved host-virus interaction, affecting the replication or pathogenesis of several viruses. Frontier evidences suggested that miRNAs play essential roles in infectious bursal disease virus (IBDV) replication. However, the biological function of miRNAs and the underlying molecular mechanisms are still unclear. Here, we reported that gga-miR-20b-5p acted as a negative factor affecting IBDV infection. We found that gga-miR-20b-5p was significantly up-regulated during IBDV infection in host cells, and that gga-miR-20b-5p effectively inhibited IBDV replication via targeting the expression of host protein netrin 4 (NTN4). In contrast, inhibition of endogenous miR-20b-5p markedly facilitated viral replication associated with enhancing NTN4 expression. Collectively, these findings highlight a crucial role of gga-miR-20b-5p in IBDV replication.
Collapse
Affiliation(s)
- Zixian Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Mei Leng
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhishan Liang
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Puduo Zhu
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Sheng Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingmei Xie
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Feng Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| | - Wencheng Lin
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
8
|
Alterations in bone marrow microRNA expression profiles on infection with avian pathogenic Escherichia coli. Res Vet Sci 2022; 150:1-9. [DOI: 10.1016/j.rvsc.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
|
9
|
Xu L, Chen Z, Zhang Y, Cui L, Liu Z, Li X, Liu S, Li H. P53 maintains gallid alpha herpesvirus 1 replication by direct regulation of nucleotide metabolism and ATP synthesis through its target genes. Front Microbiol 2022; 13:1044141. [PMID: 36504811 PMCID: PMC9729838 DOI: 10.3389/fmicb.2022.1044141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
P53, a well-known tumor suppressor, has been confirmed to regulate the infection of various viruses, including chicken viruses. Our previous study observed antiviral effect of p53 inhibitor Pifithrin-α (PFT-α) on the infection of avian infectious laryngotracheitis virus (ILTV), one of the major avian viruses economically significant to the poultry industry globally. However, the potential link between this antiviral effect of PFT-α and p53 remains unclear. Using chicken LMH cell line which is permissive for ILTV infection as model, we explore the effects of p53 on ILTV replication and its underlying molecular mechanism based on genome-wide transcriptome analysis of genes with p53 binding sites. The putative p53 target genes were validated by ChIP-qPCR and RT-qPCR. Results demonstrated that, consistent with the effects of PFT-α on ILTV replication we previously reported, knockdown of p53 repressed viral gene transcription and the genome replication of ILTV effectively. The production of infectious virions was also suppressed significantly by p53 knockdown. Further bioinformatic analysis of genes with p53 binding sites revealed extensive repression of these putative p53 target genes enriched in the metabolic processes, especially nucleotide metabolism and ATP synthesis, upon p53 repression by PFT-α in ILTV infected LMH cells. Among these genes, eighteen were involved in nucleotide metabolism and ATP synthesis. Then eight of the 18 genes were selected randomly for validations, all of which were successfully identified as p53 target genes. Our findings shed light on the mechanisms through which p53 controls ILTV infection, meanwhile expand our knowledge of chicken p53 target genes.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijie Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lu Cui
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zheyi Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuefeng Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China,*Correspondence: Shengwang Liu,
| | - Hai Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China,Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China,Hai Li,
| |
Collapse
|
10
|
Chen Z, Cui L, Xu L, Liu Z, Liang Y, Li X, Zhang Y, Li Y, Liu S, Li H. Characterization of chicken p53 transcriptional function via parallel genome-wide chromatin occupancy and gene expression analysis. Poult Sci 2022; 101:102164. [PMID: 36167023 PMCID: PMC9513273 DOI: 10.1016/j.psj.2022.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
The tumor suppressor p53, which acts primarily as a transcription factor, can regulate infections from various viruses in chickens. However, the underlying mechanisms of the antiviral functions of chicken p53 (chp53) remain unclear due to the lack of detailed information on its transcriptional regulation. Here, to gain comprehensive insights into chp53 transcriptional regulatory function in a global and unbiased manner, we determined the genome-wide chromatin occupancy of chp53 by chromatin immunoprecipitation, which was followed by sequencing and chp53-mediated gene expression profile by RNA sequencing using chemically immortalized leghorn male hepatoma (LMH) cells with ectopic expression of chp53 as the model. The integrated parallel genome-wide chromatin occupancy and gene expression analysis characterized chp53 chromatin occupancy and identified 754 direct target genes of chp53. Furthermore, functional annotation and cross-species comparative biological analyses revealed the conserved key biological functions and DNA binding motifs of p53 between chickens and humans, which may be due to the consensus amino acid sequence and structure of p53 DNA-binding domains. The present study, to our knowledge, provides the first comprehensive characterization of the chp53 transcriptional regulatory network, and can possibly help to improve our understanding of p53 transcriptional regulatory mechanisms and their antiviral functions in chickens.
Collapse
|
11
|
Wang H, Li W, Zheng SJ. Advances on Innate Immune Evasion by Avian Immunosuppressive Viruses. Front Immunol 2022; 13:901913. [PMID: 35634318 PMCID: PMC9133627 DOI: 10.3389/fimmu.2022.901913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
Innate immunity is not only the first line of host defense against pathogenic infection, but also the cornerstone of adaptive immune response. Upon pathogenic infection, pattern recognition receptors (PRRs) of host engage pathogen-associated molecular patterns (PAMPs) of pathogens, which initiates IFN production by activating interferon regulatory transcription factors (IRFs), nuclear factor-kappa B (NF-κB), and/or activating protein-1 (AP-1) signal transduction pathways in host cells. In order to replicate and survive, pathogens have evolved multiple strategies to evade host innate immune responses, including IFN-I signal transduction, autophagy, apoptosis, necrosis, inflammasome and/or metabolic pathways. Some avian viruses may not be highly pathogenic but they have evolved varied strategies to evade or suppress host immune response for survival, causing huge impacts on the poultry industry worldwide. In this review, we focus on the advances on innate immune evasion by several important avian immunosuppressive viruses (infectious bursal disease virus (IBDV), Marek’s disease virus (MDV), avian leukosis virus (ALV), etc.), especially their evasion of PRRs-mediated signal transduction pathways (IFN-I signal transduction pathway) and IFNAR-JAK-STAT signal pathways. A comprehensive understanding of the mechanism by which avian viruses evade or suppress host immune responses will be of help to the development of novel vaccines and therapeutic reagents for the prevention and control of infectious diseases in chickens.
Collapse
Affiliation(s)
- Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Shijun J. Zheng,
| |
Collapse
|
12
|
Abstract
Recognition of viral RNAs by melanoma differentiation associated gene-5 (MDA5) initiates chicken antiviral response by producing type I interferons. Our previous studies showed that chicken microRNA-155-5p (gga-miR-155-5p) enhanced IFN-β expression and suppressed the replication of infectious burse disease virus (IBDV), a double-stranded RNA (dsRNA) virus causing infectious burse disease in chickens. However, the mechanism underlying IBDV-induced gga-miR-155-5p expression in host cells remains elusive. Here, we show that IBDV infection or poly(I:C) treatment of DF-1 cells markedly increased the expression of GATA-binding protein 3 (GATA3), a master regulator for TH2 cell differentiation, and that GATA3 promoted gga-miR-155-5p expression in IBDV-infected or poly(I:C)-treated cells by directly binding to its promoter. Surprisingly, ectopic expression of GATA3 significantly reduced IBDV replication in DF-1 cells, and this reduction could be completely abolished by treatment with gga-miR-155-5p inhibitors, whereas knockdown of GATA3 by RNA interference enhanced IBDV growth, and this enhancement could be blocked with gga-miR-155-5p mimics, indicating that GATA3 suppressed IBDV replication by gga-miR-155-5p. Furthermore, our data show that MDA5 is required for GATA3 expression in host cells with poly(I:C) treatment, so are the adaptor protein TBK1 and transcription factor IRF7, suggesting that induction of GATA3 expression in IBDV-infected cells relies on MDA5-TBK1-IRF7 signaling pathway. These results uncover a novel role for GATA3 as an antivirus transcription factor in innate immune response by promoting miR-155 expression, further our understandings of host response against pathogenic infection, and provide valuable clues to the development of antiviral reagents for public health. IMPORTANCE Gga-miR-155-5p acts as an important antivirus factor against IBDV infection, which causes a severe immunosuppressive disease in chicken. Elucidation of the mechanism regulating gga-miR-155-5p expression in IBDV-infected cells is essential to our understandings of the host response against pathogenic infection. This study shows that transcription factor GATA3 initiated gga-miR-155-5p expression in IBDV-infected cells by directly binding to its promoter, suppressing viral replication. Furthermore, induction of GATA3 expression was attributable to the recognition of dsRNA by MDA5, which initiates signal transduction via TBK1 and IRF7. Thus, it is clear that IBDV induces GATA3 expression via MDA5-TBK1-IRF7 signaling pathway, thereby suppressing IBDV replication by GATA3-mediated gga-miR-155-5p expression. This information remarkably expands our knowledge of the roles for GATA3 as an antivirus transcription factor in host innate immune response particularly at an RNA level and may prove valuable in the development of antiviral drugs for public health.
Collapse
|
13
|
Wu Y, Wen J, Han J, Tian Y, Man C. Stress-induced immunosuppression increases levels of certain circulating miRNAs and affects the immune response to an infectious bursal disease virus vaccine in chickens. Res Vet Sci 2021; 142:141-148. [PMID: 34954461 DOI: 10.1016/j.rvsc.2021.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
Stress-induced immunosuppression can affect the immune effect of vaccine. However, the mechanism of stress-induced immunosuppression affecting immune response to infectious bursal disease virus (IBDV) vaccine in chicken is still unclear. In this study, thirteen IBDV related circulating miRNAs were selected to study their expressions, possible functions and mechanisms in dexamethasone (Dex)-induced immunosuppressed chicken vaccinated with IBDV attenuated vaccine. The experiment aimed to explore the relationship between the expressions of IBDV related circulating miRNAs and stress-induced immunosuppression. The quantitative real-time PCR (qRT-PCR) results showed that Dex-induced immunosuppression could induce the differential expressions of the candidate serum circulating miRNAs, especially on the 2nd, 5th, 7th and 28th day after dexamethasone treatment. Dex-induced immunosuppression could affect the immune response to the IBDV vaccine, which was possibly achieved by partially regulating the differential expressions of the IBDV related circulating miRNAs. Bioinformatics analysis showed that the candidate miRNAs could regulate the immune function mainly through targeting genes (such as CREB1 and MAPK1) in TGF-β and MAPK signaling pathways. This study can provide a preliminary reference for further studying the function and mechanism of circulating miRNAs in immune regulation.
Collapse
Affiliation(s)
- Yiru Wu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Jianwei Han
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin, China.
| |
Collapse
|
14
|
miRNA Regulatory Functions in Farm Animal Diseases, and Biomarker Potentials for Effective Therapies. Int J Mol Sci 2021; 22:ijms22063080. [PMID: 33802936 PMCID: PMC8002598 DOI: 10.3390/ijms22063080] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression post-transcriptionally by targeting either the 3′ untranslated or coding regions of genes. They have been reported to play key roles in a wide range of biological processes. The recent remarkable developments of transcriptomics technologies, especially next-generation sequencing technologies and advanced bioinformatics tools, allow more in-depth exploration of messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs), including miRNAs. These technologies have offered great opportunities for a deeper exploration of miRNA involvement in farm animal diseases, as well as livestock productivity and welfare. In this review, we provide an overview of the current knowledge of miRNA roles in major farm animal diseases with a particular focus on diseases of economic importance. In addition, we discuss the steps and future perspectives of using miRNAs as biomarkers and molecular therapy for livestock disease management as well as the challenges and opportunities for understanding the regulatory mechanisms of miRNAs related to disease pathogenesis.
Collapse
|
15
|
Yu H, Xu H, Yan C, Zhu S, Lan X, Lu Y, He Q, Yin H, Zhu Q, Zhao X, Li D, Liu Y, Wang Y. gga-miR-148a-5p-Targeting PDPK1 Inhibits Proliferation and Cell Cycle Progression of Avain Leukosis Virus Subgroup J (ALV-J)-Infected Cells. Front Cell Dev Biol 2021; 8:587889. [PMID: 33384993 PMCID: PMC7769946 DOI: 10.3389/fcell.2020.587889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
Avian leukosis virus subgroup J disease (ALV-J) is a contagious and immunosuppressive avian disease caused by ALV-J virus. Although miRNA participate in various biological processes of tumors, little is known about the potential role of miRNA in ALV-J. Our previous miRNA and RNA sequencing data showed that the expression of gga-miR-148a-5p was significantly different in ALV-J-infected chicken spleens compared with non-infected chickens. The aim of this study was to investigate the functional roles of gga-miR-148a-5p and identify downstream targets regulated by gga-miR-148a-5p in ALV-J-infected chickens. We found that the expression of gga-miR-148a-5p was significantly downregulated during ALV-J infection of chicken embryo fibroblasts (CEF). Dual luciferase reporter assays demonstrated that PDPK1 is a direct target gene of gga-miR-148a-5p. In vitro, overexpression of gga-miR-148a-5p significantly promoted ALV-J-infected CEF cell proliferation, included cell cycle, whereas inhibition of gga-miR-148a-5p had an opposite effect. Inhibition of PDPK1 promoted the proliferation of ALV-J-infected cells but had no effect on the activity of NF-κB. Together, these results suggested that gga-miR-148a-5p targets PDPK1 to inhibit the proliferation and cell cycle of ALV-J-infected CEF cells. Our study provides a new understanding for the tumor mechanism of ALV-J infection.
Collapse
Affiliation(s)
- Heling Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chaoyang Yan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shiliang Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuxiang Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qijian He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Chen Y, Zhu S, Hu J, Hu Z, Liu X, Wang X, Gu M, Hu S, Liu X. gga-miR-1603 and gga-miR-1794 directly target viral L gene and function as a broad-spectrum antiviral factor against NDV replication. Virulence 2020; 12:45-56. [PMID: 33372825 PMCID: PMC7781659 DOI: 10.1080/21505594.2020.1864136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As the causative agent of Newcastle disease (ND), Newcastle disease virus (NDV) has seriously restricted the development of the poultry industry. Previous research has shown that miRNAs, members of the small noncoding RNA family, are implicated in the regulation NDV replication through extensive interactions with host mRNAs, but whether miRNAs affect NDV replication by directly binding to the NDV antigenome remains unclear. In this study, potential Gallus gallus miRNAs targeting the antigenome of NDV were bioinformatically predicted using the online software RegRNA 2.0, and gga-miR-1603 and gga-miR-1794 were identified as targeting the viral L gene directly through dual-luciferase reporter assays. Sequence alignment analysis demonstrated that multiple genotypes of NDVs harbored highly conserved binding sites for gga-miR-1603 and gga-miR-1794 in the viral antigenome located at 8611–8634 nt and 14,490–14,514 nt, respectively. Meanwhile, we found that gga-miR-1603 and gga-miR-1794 negatively regulated the expression of viral L gene at both the RNA and protein levels, as well as viral replication in vitro. Furthermore, NDV infection had no effect on endogenous gga-miR-1603 and gga-miR-1794 expression in various avian cell lines. Overall, our present study demonstrated that gga-miR-1603 and gga-miR-1794 directly bind to the viral L gene to facilitate ts degradation and inhibit the replication of multiple genotypes of NDVs in vitro. These findings will provide us with important clues for antiviral therapy against NDV infection.
Collapse
Affiliation(s)
- Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China
| | - Shanshan Zhu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University , Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University , Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University , Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou, China
| |
Collapse
|
17
|
Epigenetic Regulation by Non-Coding RNAs in the Avian Immune System. Life (Basel) 2020; 10:life10080148. [PMID: 32806547 PMCID: PMC7459779 DOI: 10.3390/life10080148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The identified non-coding RNAs (ncRNAs) include circular RNAs, long non-coding RNAs, microRNAs, ribosomal RNAs, small interfering RNAs, small nuclear RNAs, piwi-interacting RNAs, and transfer RNAs, etc. Among them, long non-coding RNAs, circular RNAs, and microRNAs are regulatory RNAs that have different functional mechanisms and were extensively participated in various biological processes. Numerous research studies have found that circular RNAs, long non-coding RNAs, and microRNAs played their important roles in avian immune system during the infection of parasites, virus, or bacterium. Here, we specifically review and expand this knowledge with current advances of circular RNAs, long non-coding RNAs, and microRNAs in the regulation of different avian diseases and discuss their functional mechanisms in response to avian diseases.
Collapse
|
18
|
Li J, Zheng SJ. Role of MicroRNAs in Host Defense against Infectious Bursal Disease Virus (IBDV) Infection: A Hidden Front Line. Viruses 2020; 12:E543. [PMID: 32423052 PMCID: PMC7291112 DOI: 10.3390/v12050543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Duan X, Zhao M, Li X, Gao L, Cao H, Wang Y, Zheng SJ. gga-miR-27b-3p enhances type I interferon expression and suppresses infectious bursal disease virus replication via targeting cellular suppressors of cytokine signaling 3 and 6 (SOCS3 and 6). Virus Res 2020; 281:197910. [PMID: 32126296 DOI: 10.1016/j.virusres.2020.197910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 01/03/2023]
Abstract
MicroRNAs are small noncoding RNAs playing an important role in host response to pathogenic infection. Here we show that IBDV infection induced the demethylation of the pre-miR-27 promoter and upregulated gga-miR-27b-3p expression. We found that ectopic expression of miR-27b-3p in DF-1 cells enhanced the expression of chicken IFN-β, IRF3 and NF-κB, via directly targeting cellular suppressors of cytokine signaling 3 and 6 (SOCS3 and 6), inhibiting IBDV replication in host cells, while inhibition of endogenous miR-27b-3p by its inhibitors suppressed the expression of IFN-β, IRF3 and NF-κB, enhancing SOCS3 and 6 expressions and facilitating IBDV replication. Furthermore, transfection of DF-1 cells with miR-27b-3p markedly increased phosphorylation of STAT1 on Tyr701 in cells post chIFN-γ treatment. On the contrary, inhibition of endogenous miR-27b-3p reduced phosphorylation of STAT1 on Tyr701 in cells with chIFN-γ treatment. These findings indicate that gga-miR-27b-3p serves as an inducible antiviral mediator in host response to IBDV infection.
Collapse
Affiliation(s)
- Xueyan Duan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Mingliang Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Li Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Shijun J Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
20
|
Interferon-stimulated genes inhibit caprine parainfluenza virus type 3 replication in Madin-Darby bovine kidney cells. Vet Microbiol 2020; 241:108573. [DOI: 10.1016/j.vetmic.2019.108573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
|
21
|
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that inhibit protein translation from target mRNAs. Accumulating evidence suggests that miRNAs can regulate a broad range of biological pathways, including cell differentiation, apoptosis, and carcinogenesis. With the development of miRNAs, the investigation of miRNA functions has emerged as a hot research field. Due to the intensive farming in recent decades, chickens are easily influenced by various pathogen transmissions, and this has resulted in large economic losses. Recent reports have shown that miRNAs can play critical roles in the regulation of chicken diseases. Therefore, the aim of this review is to briefly discuss the current knowledge regarding the effects of miRNAs on chickens suffering from common viral diseases, mycoplasmosis, necrotic enteritis, and ovarian tumors. Additionally, the detailed targets of miRNAs and their possible functions are also summarized. This review intends to highlight the key role of miRNAs in regard to chickens and presents the possibility of improving chicken disease resistance through the regulation of miRNAs.
Collapse
|
22
|
Epigenetic Upregulation of Chicken MicroRNA-16-5p Expression in DF-1 Cells following Infection with Infectious Bursal Disease Virus (IBDV) Enhances IBDV-Induced Apoptosis and Viral Replication. J Virol 2020; 94:JVI.01724-19. [PMID: 31694944 DOI: 10.1128/jvi.01724-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally by silencing or degrading their targets and play important roles in the host response to pathogenic infection. Although infectious bursal disease virus (IBDV)-induced apoptosis in host cells has been established, the underlying molecular mechanism is not completely unraveled. Here, we show that infection of DF-1 cells by IBDV induced gga-miR-16-5p (chicken miR-16-5p) expression via demethylation of the pre-miR-16-2 (gga-miR-16-5p precursor) promoter. We found that ectopic expression of gga-miR-16-5p in DF-1 cells enhanced IBDV-induced apoptosis by directly targeting the cellular antiapoptotic protein B-cell lymphoma 2 (Bcl-2), facilitating IBDV replication in DF-1 cells. In contrast, inhibition of endogenous miR-16-5p markedly suppressed apoptosis associated with enhanced Bcl-2 expression, arresting viral replication in DF-1 cells. Furthermore, infection of DF-1 cells with IBDV reduced Bcl-2 expression, and this reduction could be abolished by inhibition of gga-miR-16-5p expression. Moreover, transfection of DF-1 cells with gga-miR-16-5p mimics enhanced IBDV-induced apoptosis associated with increased cytochrome c release and caspase-9 and -3 activation, and inhibition of caspase-3 decreased IBDV growth in DF-1 cells. Thus, epigenetic upregulation of gga-miR-16-5p expression by IBDV infection enhances IBDV-induced apoptosis by targeting the cellular antiapoptotic protein Bcl-2, facilitating IBDV replication in host cells.IMPORTANCE Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive disease in young chickens, causing severe economic losses to stakeholders across the globe. Although IBD virus (IBDV)-induced apoptosis in the host has been established, the underlying mechanism is not very clear. Here, we show that infection of DF-1 cells by IBDV upregulated gga-miR-16-5p expression via demethylation of the pre-miR-16-2 promoter. Overexpression of gga-miR-16-5p enhanced IBDV-induced apoptosis associated with increased cytochrome c release and caspase-9 and -3 activation. Importantly, we found that IBDV infection induced expression of gga-miR-16-5p that triggered apoptosis by targeting Bcl-2, favoring IBDV replication, while inhibition of gga-miR-16-5p in IBDV-infected cells restored Bcl-2 expression, slowing down viral growth, indicating that IBDV induces apoptosis by epigenetic upregulation of gga-miR-16-5p expression. These findings uncover a novel mechanism employed by IBDV for its own benefit, which may be used as a potential target for intervening IBDV infection.
Collapse
|
23
|
The Roles of MicroRNAs (miRNAs) in Avian Response to Viral Infection and Pathogenesis of Avian Immunosuppressive Diseases. Int J Mol Sci 2019; 20:ijms20215454. [PMID: 31683847 PMCID: PMC6862082 DOI: 10.3390/ijms20215454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in the regulation of various biological processes including cell development and differentiation, apoptosis, tumorigenesis, immunoregulation and viral infections. Avian immunosuppressive diseases refer to those avian diseases caused by pathogens that target and damage the immune organs or cells of the host, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. As such, once a disease with an immunosuppressive feature occurs in flocks, it would be difficult for the stakeholders to have an optimal economic income. Infectious bursal disease (IBD), avian leukemia (AL), Marek’s disease (MD), chicken infectious anemia (CIA), reticuloendotheliosis (RE) and avian reovirus infection are on the top list of commonly-seen avian diseases with a feature of immunosuppression, posing an unmeasurable threat to the poultry industry across the globe. Understanding the pathogenesis of avian immunosuppressive disease is the basis for disease prevention and control. miRNAs have been shown to be involved in host response to pathogenic infections in chickens, including regulation of immunity, tumorigenesis, cell proliferation and viral replication. Here we summarize current knowledge on the roles of miRNAs in avian response to viral infection and pathogenesis of avian immunosuppressive diseases, in particular, MD, AL, IBD and RE.
Collapse
|
24
|
Zhang K, Han Y, Wang Z, Zhao Y, Fu Y, Peng X. gga-miR-146c Activates TLR6/MyD88/NF-κB Pathway through Targeting MMP16 to Prevent Mycoplasma Gallisepticum (HS Strain) Infection in Chickens. Cells 2019; 8:cells8050501. [PMID: 31137698 PMCID: PMC6562429 DOI: 10.3390/cells8050501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
Mycoplasma gallisepticum (MG), a pathogen that infects chickens and some other birds, triggers chronic respiratory disease (CRD) in chickens, which is characterized by inflammation. The investigation of microbial pathogenesis would contribute to the deep understanding of infection control. Since microribonucleic acids (miRNAs) play a key role in this process, gga-mir-146c, an upregulated miRNA upon MG infection, was selected according to our previous RNA-sequencing data. In this paper, we predicted and validated that MMP16 is one of gga-miR-146c target genes. Results show that MMP16 is the target of gga-miR-146c and gga-miR-146c can downregulate MMP16 expression within limits. gga-miR-146c upregulation significantly increased the expression of TLR6, NF-κB p65, MyD88, and TNF-α, whereas the gga-miR-146c inhibitor led to an opposite result. gga-miR-146c upregulation effectively decreased apoptosis and stimulated DF-1 cells proliferation upon MG infection. On the contrary, gga-miR-146c inhibitor promoted apoptosis and repressed the proliferation. Collectively, our results suggest that gga-miR-146c upregulation upon MG infection represses MMP16 expression, activating TLR6/MyD88/NF-κB pathway, promoting cell proliferation by inhibiting cell apoptosis, and, finally, enhancing cell cycle progression to defend against host MG infection.
Collapse
Affiliation(s)
- Kang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yun Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zaiwei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yali Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
25
|
Ding L, Li J, Li W, Fang Z, Li N, Guo Q, Qu H, Feng D, Li J, Hong M. p53 mediated IFN-β signaling to affect viral replication upon TGEV infection. Vet Microbiol 2018; 227:61-68. [PMID: 30473353 DOI: 10.1016/j.vetmic.2018.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
TGEV can induce IFN-β production, which in turn plays a vital role in host antiviral immune responses. Our previous studies showed that TGEV infection activated p53 signaling to induce host cell apoptosis, which might influence virus replication. However, whether there be an interaction between p53 and IFN-β signaling in the process of TGEV infection is unknown. In the present study, we used low dose of TGEV to infect p53 wild-type PK-15 cells (WT PK-15 cells) and p53 deficient cells (p53-/- PK-15 cells), to investigate the modulation of IFN signaling and virus replication by p53. The results showed that the IFN-β expression and production were notably inhibited in p53-/- PK-15 cells compared with that in WT PK-15 cells at early stage of TGEV infection. In addition, TGEV-induced the changes in mRNA levels of TRIF, TRAM, MDA5, RIG-I, IPS-1, IRF9, IRF3, ISG15 and ISG20 were notably hindered in p53-/- PK-15 cells before 36 h post infection (p.i.). Moreover, TGEV genomic RNA and sub genomic mRNA (N gene and ORF7) levels showed significant increase in p53-/- PK-15 cells compared with WT PK-15 cells after TGEV infection. And viral titers were observably enhanced in p53-/- PK-15 cells. Furthermore, exogenous IFN-β and polyinosinic-polycytidylic acid (poly (I:C)) treatment markedly inhibited the mRNA levels of TGEV gRNA, N and ORF7 in WT PK-15 cells and p53-/- PK-15 cells compared to control. Taken together, these results demonstrated that p53 may mediate IFN-β signaling to inhibit viral replication early after TGEV infection.
Collapse
Affiliation(s)
- Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Jiawei Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Weihao Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Zhenhua Fang
- School of Tropical Agricultural Technology, Hainan College of Vocation and Technique, Haikou, Hainan, 570216, China
| | - Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Qiqi Guo
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Haoyue Qu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Dan Feng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Jiangyue Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
26
|
Moyano AL, Steplowski J, Wang H, Son KN, Rapolti DI, Marshall J, Elackattu V, Marshall MS, Hebert AK, Reiter CR, Ulloa V, Pituch KC, Givogri MI, Lu QR, Lipton HL, Bongarzone ER. microRNA-219 Reduces Viral Load and Pathologic Changes in Theiler's Virus-Induced Demyelinating Disease. Mol Ther 2018; 26:730-743. [PMID: 29433936 DOI: 10.1016/j.ymthe.2018.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/06/2018] [Accepted: 01/11/2018] [Indexed: 01/10/2023] Open
Abstract
Analysis of microRNA (miR) expression in the central nervous system white matter of SJL mice infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) revealed a significant reduction of miR-219, a critical regulator of myelin assembly and repair. Restoration of miR-219 expression by intranasal administration of a synthetic miR-219 mimic before disease onset ameliorates clinical disease, reduces neurogliosis, and partially recovers motor and sensorimotor function by negatively regulating proinflammatory cytokines and virus RNA replication. Moreover, RNA sequencing of host lesions showed that miR-219 significantly downregulated two genes essential for the biosynthetic cholesterol pathway, Cyp51 (lanosterol 14-α-demethylase) and Srebf1 (sterol regulatory element-binding protein-1), and reduced cholesterol biosynthesis in infected mice and rat CG-4 glial precursor cells in culture. The change in cholesterol biosynthesis had both anti-inflammatory and anti-viral effects. Because RNA viruses hijack endoplasmic reticulum double-layered membranes to provide a platform for RNA virus replication and are dependent on endogenous pools of cholesterol, miR-219 interference with cholesterol biosynthesis interfered virus RNA replication. These findings demonstrate that miR-219 inhibits TMEV-induced demyelinating disease through its anti-inflammatory and anti-viral properties.
Collapse
Affiliation(s)
- Ana Lis Moyano
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Jeffrey Steplowski
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Haibo Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kyung-No Son
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Diana I Rapolti
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jeffrey Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vince Elackattu
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Michael S Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amy K Hebert
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cory R Reiter
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Viviana Ulloa
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Katarzyna C Pituch
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Howard L Lipton
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
27
|
Ning P, Hu C, Li X, Zhou Y, Hu A, Zhang Y, Gao L, Gong C, Guo K, Zhang X, Zhang Y. Classical swine fever virus Shimen infection increases p53 signaling to promote cell cycle arrest in porcine alveolar macrophages. Oncotarget 2017; 8:55938-55949. [PMID: 28915564 PMCID: PMC5593535 DOI: 10.18632/oncotarget.18997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/18/2017] [Indexed: 12/20/2022] Open
Abstract
Classical swine fever virus (CSFV) replicates in macrophages and causes persistent infection. Despite its role in disastrous economic losses in swine industries, the molecular mechanisms underlying its pathogenesis are poorly understood. The virus evades the neutralizing immune response, subverting the immune system to ensure its own survival and persistence. Our genome-wide analysis of porcine alveolar macrophage transcriptional responses to CSFV Shimen infection using the Solexa/Illumina digital gene expression system revealed that p53 pathway components and cell cycle molecules were differentially regulated during infection compared to controls. Further, we investigated the molecular changes in macrophages infected with CSFV Shimen, focusing on the genes involved in the p53 pathway. CSFV Shimen infection led to phosphorylation and accumulation of p53 in a time-dependent manner. Furthermore, CSFV Shimen infection upregulated cyclin-dependent kinase inhibitor 1A (p21) mRNA and protein. In addition, CSFV Shimen infection induced cell cycle arrest at the G1 phase, as well as downregulation of cyclin E1 and cyclin-dependent kinase 2 (CDK2). The expression of genes in the p53 pathway did not change significantly after p53 knockdown by pifithrin-α during CSFV Shimen infection. Our data suggest that CSFV Shimen infection increases expression of host p53 and p21, and inhibits expression of cyclin E1 and CDK2, leading to cell cycle arrest at the G1 phase. CSFV may utilize this strategy to subvert the innate immune response and proliferate in host cells.
Collapse
Affiliation(s)
- Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, PR China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, PR China.,College of Science, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Congxia Hu
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xuepeng Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, PR China
| | - Yulu Zhou
- College of Science, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Aoxue Hu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, PR China
| | - Ya Zhang
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, PR China
| | - Lifang Gao
- College of Science, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Cunmei Gong
- College of Science, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xianghan Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, PR China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, PR China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| |
Collapse
|