1
|
Yang Z, Zhang Y, Zhao Q, Du S, Huang X, Wu R, Yan Q, Han X, Wen Y, Cao SJ. HbpA from Glaesserella parasuis induces an inflammatory response in 3D4/21 cells by activating the MAPK and NF-κB signalling pathways and protects mice against G. parasuis when used as an immunogen. Vet Res 2024; 55:93. [PMID: 39075605 PMCID: PMC11285476 DOI: 10.1186/s13567-024-01344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Glaesserella parasuis is usually a benign swine commensal in the upper respiratory tract, but virulent strains can cause systemic infection characterized by pneumonia, meningitis, and fibrinous polyserositis. The intensive pulmonary inflammatory response following G. parasuis infection is the main cause of lung injury and death in pigs. Vaccination has failed to control the disease due to the lack of extended cross-protection. Accumulating evidence indicates that the heme-binding protein A (HbpA) is a potential virulence determinant and a promising antigen candidate for the development of a broader range of vaccines. However, it is not yet known whether HbpA contributes to G. parasuis virulence or has any potential immune protective effects against G. parasuis. Here, we show that HbpA can induce the transcription and secretion of proinflammatory cytokines (IL-6, TNF-α, and MCP-1) in porcine alveolar macrophages (PAM, 3D4/31). The HbpA protein is recognized by Toll-like receptors 2 and 4 on 3D4/21 macrophages, resulting in the activation of MAP kinase and NF-κB signalling cascades and the transcription and secretion of proinflammatory cytokines. HbpA contributes to virulence and bacterial pulmonary colonization in C57BL/6 mice and plays a role in adhesion to host cells and evasion of the bactericidal effect of pulmonary macrophages. In addition, mice immunized with HbpA were partially protected against challenge by G. parasuis SC1401. The results suggest that HbpA plays an important role in the pathogenesis of disease caused by G. parasuis and lay a foundation for the development of a subunit or chimeric anti-G. parasuis vaccine.
Collapse
Affiliation(s)
- Zhen Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiwen Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - San-Jie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Li YA, Sun Y, Zhang Y, Wang X, Dieye Y, Wang S, Shi H. Salmonella enterica serovar Choleraesuis vector outperforms alum as an adjuvant, increasing a cross-protective immune response against Glaesserella parasuis. Vet Microbiol 2023; 287:109915. [PMID: 38000209 DOI: 10.1016/j.vetmic.2023.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
The adjuvant and/or vector significantly affect a vaccine's efficacy. Although traditional adjuvants such as alum have contributed to vaccine development, deficiencies in the induction of cellular and mucosal immunity have limited their further promotion. Salmonella vectors have unique advantages for establishing cellular and mucosal immunity due to mucosal pathways of invasion and intracellular parasitism. In addition, Salmonella vectors can activate multiple innate immune pathways, thereby promoting adaptive immune responses. In this work, the attenuated Salmonella enterica serovar Choleraesuis (S. Choleraesuis) vector rSC0016 was used to deliver the conserved protective antigen HPS_06257 of Glaesserella parasuis (G. parasuis), generating a novel recombinant strain rSC0016(pS-HPS_06257). The rSC0016(pS-HPS_06257) can express and deliver the HPS_06257 protein to the lymphatic system of the host. In comparison to HPS_06257 adjuvanted with alum, rSC0016(pS-HPS_06257) significantly increased TLR4 and TLR5 activation in mice as well as the levels of proinflammatory cytokines. In addition, rSC0016 promoted a greater degree of maturation in bone marrow-derived dendritic cells (BMDCs) than alum. The specific humoral, mucosal, and cellular immune responses against HPS_06257 in mice immunized with rSC0016(pS-HPS_06257) were significantly higher than those of HPS_06257 adjuvanted with alum. HPS_06257 delivered by the S. Choleraesuis vector induces a Th1-biased Th1/Th2 mixed immune response, while HPS adjuvanted with alum can only induce a Th2-biased immune response. HPS_06257 adjuvanted with alum only causes opsonophagocytic activity (OPA) responses against a homologous strain (G. parasuis serotype 5, GPS5), whereas rSC0016(pS-HPS_06257) could generate cross-OPA responses against a homologous strain and a heterologous strain (G. parasuis serotype 12, GPS12). Ultimately, HPS_06257 adjuvanted with alum protected mice against lethal doses of GPS5 challenge by 60 % but failed to protect mice against lethal doses of GPS12. In contrast, mice immunized with rSC0016(pS-HPS_06257) had 100 % or 80 % survival when challenged with lethal doses of GPS5 or GPS12, respectively. Altogether, the S. Choleraesuis vector rSC0016 could potentially generate an improved innate immune response and an improved adaptive immunological response compared to the traditional alum adjuvant, offering a novel concept for the development of a universal G. parasuis vaccine.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanni Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
3
|
Silva GFR, Moreno LZ, Matajira CEC, Silva APS, Araújo KM, Gomes VTM, Barbosa MRF, Sato MIZ, Moreno AM. Serotyping and Antimicrobial Susceptibility Profiling of Glaesserella parasuis Isolated from Diseased Swine in Brazil. Pathogens 2022; 11:pathogens11121443. [PMID: 36558777 PMCID: PMC9785225 DOI: 10.3390/pathogens11121443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Glaesserella parasuis is one of the major pathogens in swine intensive production systems. To date, 15 serovars have been described, and the prevalence of these serotypes in different geographical regions has been identified by several methods. G. parasuis outbreaks could be controlled with vaccination if it were not for serovar diversity and limited cross-serovar protection; consequently, antibiotic therapy continues to be necessary for infection control. Here, we present the isolation, identification, serotyping, and antibiotic susceptibility profiling of G. parasuis from diseased swine in Brazil. A total of 105 G. parasuis strains, originating from nine different Brazilian states, were evaluated, and serotypes 4 and 5 were found to be the most prevalent (27.6% and 24.8% respectively). Aminoglycosides, florfenicol, tiamulin, and β-lactams were tested, and they presented lower resistant rates against G. parasuis strains. The highest resistance rates were observed against tylosin (97.1%), sulfadimethoxine (89.5%), danofloxacin (80%), trimethoprim/sulfamethoxazole (62.5%), enrofloxacin (54.3%), and clindamycin (50.5%). Multidrug resistance was detected in 89.5% of tested strains, and a total of sixty resistance profiles were identified. The cluster analysis of resistance patterns showed no correlation with the isolation year or G. parasuis serotype.
Collapse
Affiliation(s)
- Givago Faria Ribeiro Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av Prof Dr Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
| | - Luisa Zanolli Moreno
- Phibro Animal Health Corporation–Av. Pres. Tancredo de Almeida Neves, 1063, São Paulo 071112-070, SP, Brazil
| | | | - Ana Paula Santos Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av Prof Dr Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
| | - Kawany Miyazaki Araújo
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av Prof Dr Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
| | - Vasco Túlio Moura Gomes
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av Prof Dr Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
| | - Mikaela Renata Funada Barbosa
- Environmental Company of the State of São Paulo (CETESB), Av. Prof. Frederico Hermann Júnior 345, São Paulo 05459-900, SP, Brazil
| | - Maria Inês Zanolli Sato
- Environmental Company of the State of São Paulo (CETESB), Av. Prof. Frederico Hermann Júnior 345, São Paulo 05459-900, SP, Brazil
| | - Andrea Micke Moreno
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av Prof Dr Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
- Correspondence:
| |
Collapse
|
4
|
Identification of Glaesserella parasuis and Differentiation of Its 15 Serovars Using High-Resolution Melting Assays. Pathogens 2022; 11:pathogens11070752. [PMID: 35889997 PMCID: PMC9323117 DOI: 10.3390/pathogens11070752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glaesserella parasuis is the etiological agent of Glässer’s disease, which is associated with polyserositis and arthritis and has a significant impact on the economy of the pig production industry. For the optimal surveillance of this pathogen, as well as for the investigation of G. parasuis-associated diseases, it is crucial to identify G. parasuis at the serovar level. In this work, we designed and developed new high-resolution melting (HRM) approaches, namely, the species-specific GPS-HRM1 and two serovar-specific HRM assays (GPS-HRM2 and GPS-HRM3), and evaluated the sensitivity and specificity of the assays. The HRM assays demonstrated good sensitivity, with 12.5 fg–1.25 pg of input DNA for GPS-HRM1 and 125 fg–12.5 pg for GPS-HRM2 and GPS-HRM3, as well as a specificity of 100% for the identification of all recognized 15 G. parasuis serovars. Eighteen clinical isolates obtained between 2014 and 2022 in Switzerland were tested by applying the developed HRM assays, which revealed a heterogeneous distribution of serovars 2, 7, 4, 13, 1, and 14. The combination with virulence marker vtaA (virulence-associated trimeric autotransporters) allows for the prediction of potentially virulent strains. The assays are simple to execute and enable a reliable low-cost approach, thereby refining currently available diagnostic tools.
Collapse
|
5
|
Temporal Patterns of Phenotypic Antimicrobial Resistance and Coinfecting Pathogens in Glaesserella parasuis Strains Isolated from Diseased Swine in Germany from 2006 to 2021. Pathogens 2022; 11:pathogens11070721. [PMID: 35889967 PMCID: PMC9316560 DOI: 10.3390/pathogens11070721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Glaesserella parasuis (Gps) causes high economic losses in pig farms worldwide. So far no vaccine provides cross-protection for different serotypes, so antibiotic treatment is widely used to cope with this pathogen. In this study, routine diagnostic data from 2046 pigs with Gps related diseases sent for necropsy to a German laboratory in the time period 2006–2021 were analysed retrospectively. In the time period 2018–2021, the most frequent serotypes (ST) detected were ST4 (30%) and ST13 (22%). A comparison of the reference period 2006–2013 prior to obligatory routine recording of antimicrobial usage in livestock with the period 2014–2021 resulted in a statistically significant decrease of frequencies of resistant Gps isolates for ceftiofur, enrofloxacin, erythromycin, spectinomycin, tiamulin and tilmicosin. While in 2006–2013 all isolates were resistant for tetracyclin and cephalothin, frequencies of resistant isolates decreased in the second time period to 28% and 62%, respectively. Parallel to the reduction of antimicrobial usage, during recent years a reduction in resistant Gps isolates has been observed, so only a low risk of treatment failure exists. Most frequently, pigs positive for Gps were also positive for S.suis (25.4%), PRRSV-EU (25.1%) and influenza virus (23%). The viral pathogens may act as potential trigger factors.
Collapse
|
6
|
A New Calcium(II)-Based Substitute for Enrofloxacin with Improved Medicinal Potential. Pharmaceutics 2022; 14:pharmaceutics14020249. [PMID: 35213984 PMCID: PMC8878047 DOI: 10.3390/pharmaceutics14020249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Enrofloxacin (EFX) reacting with Ca(II) afforded a new complex, [Ca(EFX)2(H2O)4] (EFX-Ca), which was structurally characterized both in solid and solution chemistry. E. coli and S. typhi were tested to be the most sensitive strains for EFX-Ca. The LD50 value of EFX-Ca in mice was 7736 mg/kg, implying the coordination of EFX to Ca(II) effectively reduced its acute toxicity. EFX-Ca also decreased the plasma-binding rate and enhanced the drug distribution in rats along with longer elimination half-life. EFX-Ca also showed similar low in vivo acute toxicity and higher anti-inflammation induced by H2O2 or CuSO4 in zebrafish, with reactive oxygen species (ROS)-related elimination. The therapeutic effects of EFX-Ca on two types (AA and 817) of E. coli-infected broilers were also better than those of EFX, with cure rates of 78% and 88%, respectively. EFX-Ca showed promise as a bio-safe metal-based veterinary drug with good efficacy and lower toxicity.
Collapse
|
7
|
JIA YC, CHEN X, ZHOU YY, YAN P, GUO Y, YIN RL, YUAN J, WANG LX, WANG XZ, YIN RH. Application of mouse model for evaluation of recombinant LpxC and GmhA as novel antigenic vaccine candidates of Glaesserella parasuis serotype 13. J Vet Med Sci 2021; 83:1500-1508. [PMID: 34393140 PMCID: PMC8569868 DOI: 10.1292/jvms.21-0298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
Glaesserella parasuis (G. parasuis) has been one of the bacteria affecting the large-scale swine industry. Lack of an effective vaccine has limited control of the disease, which has an effect on prevalence. In order to improve the cross-protection of vaccines, development on subunit vaccines has become a hot spot. In this study, we firstly cloned the lpxC and gmhA genes from G. parasuis serotype 13 isolates, and expressed and purified their proteins. The results showed that LpxC and GmhA can stimulate mice to produce IgG antibodies. Through testing the cytokine levels of interleukin 4 (IL-4), IL-10 and interferon-γ (IFN-γ), it is found that recombinant GmhA, the mixed LpxC and GmhA can stimulate the body to produce Th1 and Th2 immune responses, while recombinant LpxC and inactivated bacteria can only produce Th2 immune responses. On the protection rate for mice, recombinant LpxC, GmhA and the mixture of LpxC and GmhA can provide 50%, 50% and 60% protection for lethal dose of G. parasuis infection, respectively. The partial protection achieved by the recombinant LpxC and GmhA supports their potential as novel vaccine candidate antigens against G. parasuis.
Collapse
Affiliation(s)
- Yong C. JIA
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Xin CHEN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Y. ZHOU
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Ping YAN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Ying GUO
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Rong L. YIN
- Research Academy of Animal Husbandry and Veterinary Medicine
Sciences of Jilin Province, Changchun 130062, China
| | - Jing YUAN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Lin X. WANG
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Z. WANG
- Liaoning Agricultural Technical College, Yingkou, 115009,
China
| | - Rong H. YIN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
8
|
Meenongwa A, Brissos RF, Soikum C, Chaveerach P, Trongpanich Y, Chaveerach U. Enhancement of biological activities of copper(II) complexes containing guanidine derivatives by enrofloxacin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Costa-Hurtado M, Barba-Vidal E, Maldonado J, Aragon V. Update on Glässer's disease: How to control the disease under restrictive use of antimicrobials. Vet Microbiol 2020; 242:108595. [PMID: 32122599 DOI: 10.1016/j.vetmic.2020.108595] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 01/27/2023]
Abstract
Antimicrobials have been commonly used to control bacterial diseases in farm animals. The efficacy of these drugs deterred the development of other control measures, such as vaccines, which are currently getting more attention due to the increased concern about antimicrobial resistance. Glässer's disease is caused by Glaesserella (Haemophilus) parasuis and affects pork production around the world. Balance between colonization and immunity seems to be essential in disease control. Reduction in antimicrobial use in veterinary medicine requires the implementation of preventive measures, based on alternative tools such as vaccination and other strategies to guarantee a beneficial microbial colonization of the animals. The present review summarizes and discusses the current knowledge on diagnosis and control of Glässer's disease, including prospects on alternatives to antimicrobials.
Collapse
Affiliation(s)
- Mar Costa-Hurtado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| | | | | | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| |
Collapse
|
10
|
Ye C, Li R, Xu L, Qiu Y, Fu S, Liu Y, Wu Z, Hou Y, Hu CAA. Effects of Baicalin on piglet monocytes involving PKC-MAPK signaling pathways induced by Haemophilus parasuis. BMC Vet Res 2019; 15:98. [PMID: 30909903 PMCID: PMC6434632 DOI: 10.1186/s12917-019-1840-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background Haemophilus parasuis (HPS) is the causative agent of Glässer’s disease, characterized by arthritis, fibrinous polyserositis and meningitis, and resulting in worldwide economic losses in the swine industry. Baicalin (BA), a commonly used traditional Chinese medication, has been shown to possess a series of activities, such as anti-bacterial, anti-viral, anti-tumor, anti-oxidant and anti-inflammatory activities. However, whether BA has anti-apoptotic effects following HPS infection is unclear. Here, we investigated the anti-apoptotic effects and mechanisms of BA in HPS-induced apoptosis via the protein kinase C (PKC)–mitogen-activated protein kinase (MAPK) pathway in piglet’s mononuclear phagocytes (PMNP). Results Our data demonstrated that HPS could induce reactive oxygen species (ROS) production, arrest the cell cycle and promote apoptosis via the PKC–MAPK signaling pathway in PMNP. Moreover, when BA was administered, we observed a reduction in ROS production, suppression of cleavage of caspase-3 in inducing apoptosis, and inhibition of activation of the PKC–MAPK signaling pathway for down-regulating p-JNK, p-p38, p-ERK, p-PKC-α and PKC-δ in PMNP triggered by HPS. Conclusions Our data strongly suggest that BA can reverse the apoptosis initiated by HPS through regulating the PKC–MAPK signaling pathway, which represents a promising therapeutic agent in the treatment of HPS infection.
Collapse
Affiliation(s)
- Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Ruizhi Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Lei Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China. .,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China.
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Chien-An Andy Hu
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| |
Collapse
|
11
|
Guo L, Guo J, Liu H, Zhang J, Chen X, Qiu Y, Fu S. Tea polyphenols suppress growth and virulence-related factors of Haemophilus parasuis. J Vet Med Sci 2018; 80:1047-1053. [PMID: 29798967 PMCID: PMC6068306 DOI: 10.1292/jvms.18-0085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The bacterium Haemophilus parasuis (H. parasuis) is the primary cause of Glässer's disease. Currently, there are no effective vaccines that can confer protection against all H. parasuis serovars. Therefore, the present study aimed to investigate the effect of tea polyphenols on growth, expression of virulence-related factors, and biofilm formation of H. parasuis, as well as to evaluate their protective effects against H. parasuis challenge. Our findings demonstrated that tea polyphenols can inhibit H. parasuis growth in a dose-dependent manner and attenuate the biofilm formation of H. parasuis. In addition, tea polyphenols exerted inhibitory effects on the expression of H. parasuis virulence-related factors. Moreover, tea polyphenols could confer protection against a lethal dose of H. parasuis and can reduce pathological tissue damage induced by H. parasuis. In summary, our findings demonstrated the promising use of tea polyphenols as a novel treatment for H. parasuis infection in pigs.
Collapse
Affiliation(s)
- Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jing Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - HuaShan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan 430208, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|