1
|
Li XX, Hong ZQ, Xiong ZX, Zhang LW, Wang S, Tao P, Chen P, Li XM, Qian P. Development of a novel chimeric lysin to combine parental phage lysin and cefquinome for preventing sow endometritis after artificial insemination. Vet Res 2025; 56:39. [PMID: 39934866 PMCID: PMC11816537 DOI: 10.1186/s13567-025-01457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/04/2024] [Indexed: 02/13/2025] Open
Abstract
Sow endometritis is usually caused by multiple species of pathogenic bacteria. Numerous isolates from endometritis patients have developed antimicrobial resistance. Thus, novel antibacterial agents and strategies to combat endometritis are needed. A total of 526 bacteria, including Staphylococcus spp. (26.3%), Streptococcus spp. (12.3%), E. coli (28.9%), Enterococcus spp. (20.1%), Proteus spp. (9.5%), and Corynebacterium spp. (2.8%), were isolated from sows with endometritis. We constructed a novel chimeric lysin, ClyL, which is composed of a cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain from the phage lysin LysGH15 and a cell wall-binding domain (CBD) from the prophage lysin Lys0859. The activities of ClyL and Lys0859 were most pronounced for the Staphylococcus and Streptococcus strains isolated from sow endometritis and bovine mastitis, respectively. ClyL and Lys0859 were combined to create a phage lysin cocktail, which demonstrated a synergistic effect against the coinfection of Staphylococcus and Streptococcus in vitro and in vivo. Furthermore, the combination of phage lysin cocktail and cefquinome had a synergistic bactericidal effect on boar semen that did not influence the activity of sperm. Remarkably, the incidence rate of sow endometritis was 0% (0/7) when the combination of phage lysin cocktail and cefquinome was used in semen via artificial insemination compared with 50% (3/6) when PBS was administered. Overall, the administration of a phage lysin cocktail and cefquinome in semen via artificial insemination is a promising novel strategy to prevent sow endometritis after artificial insemination.
Collapse
Affiliation(s)
- Xin-Xin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zi-Qiang Hong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zhi-Xuan Xiong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Li-Wen Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Shuang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Pan Tao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Pin Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Xiang-Min Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Xu M, Ke H, Zang Y, Gou H, Yang D, Shi K, Zhang K, Li Y, Jiang Z, Chu P, Zhai S, Li C. Outer membrane vesicles secreted from Actinobacillus pleuropneumoniae isolate disseminating the floR resistance gene to Enterobacteriaceae. Front Microbiol 2024; 15:1467847. [PMID: 39301187 PMCID: PMC11410613 DOI: 10.3389/fmicb.2024.1467847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Actinobacillus pleuropneumoniae, a significant respiratory pig pathogen, is causing substantial losses in the global swine industry. The resistance spectrum of A. pleuropneumoniae is expanding, and multidrug resistance is a severe issue. Horizontal gene transfer (HGT) plays a crucial role in the development of the bacterial genome by facilitating the dissemination of resistance determinants. However, the horizontal transfer of resistance genes via A. pleuropneumoniae-derived outer membrane vesicles (OMVs) has not been previously reported. In this study, we used Illumina NovaSeq and PacBio SequeI sequencing platforms to determine the whole genome sequence of A. pleuropneumoniae GD2107, a multidrug-resistant (MDR) isolate from China. We detected a plasmid in the isolate named pGD2107-1; the plasmid was 5,027 bp in size with 7 putative open reading frames (ORF) and included the floR resistance genes. The carriage of resistance genes in A. pleuropneumoniae OMVs was identified using a polymerase chain reaction (PCR) assay, and then we thoroughly evaluated the influence of OMVs on the horizontal transfer of drug-resistant plasmids. The transfer of the plasmid to recipient bacteria via OMVs was confirmed by PCR. In growth competition experiments, all recipients carrying the pGD2107-1 plasmid exhibited a fitness cost compared to the corresponding original recipients. This study revealed that OMVs could mediate interspecific horizontal transfer of the resistance plasmid pGD2107-1 into Escherichia coli recipient strains and significantly enhance the resistance of the transformants. In summary, A. pleuropneumoniae-OMVs play the pivotal role of vectors for dissemination of the floR gene spread and may contribute to more antimicrobial resistance gene transfer in other Enterobacteriaceae.
Collapse
Affiliation(s)
- Minsheng Xu
- Guangdong Academy of Agricultural Sciences, Institute of Animal Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Haiyi Ke
- Guangdong Gaozhou Agricultural School, Maoming, China
| | - Yingan Zang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hongchao Gou
- Guangdong Academy of Agricultural Sciences, Institute of Animal Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Dongxia Yang
- Guangdong Academy of Agricultural Sciences, Institute of Animal Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Keda Shi
- Guangdong Academy of Agricultural Sciences, Institute of Animal Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Kunli Zhang
- Guangdong Academy of Agricultural Sciences, Institute of Animal Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Yan Li
- Guangdong Academy of Agricultural Sciences, Institute of Animal Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Zhiyong Jiang
- Guangdong Academy of Agricultural Sciences, Institute of Animal Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Pinpin Chu
- Guangdong Academy of Agricultural Sciences, Institute of Animal Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Shaolun Zhai
- Guangdong Academy of Agricultural Sciences, Institute of Animal Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Chunling Li
- Guangdong Academy of Agricultural Sciences, Institute of Animal Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| |
Collapse
|
3
|
Wang H, Liao C, Ding K, Zhang L, Wang L. Evaluation the kill rate and mutant selection window of danofloxacin against Actinobacillus pleuropneumoniae in a peristaltic pump model. BMC Vet Res 2024; 20:241. [PMID: 38831324 PMCID: PMC11145865 DOI: 10.1186/s12917-024-04016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Actinobacillus pleuropneumoniae is a serious pathogen in pigs. The abundant application of antibiotics has resulted in the gradual emergence of drugresistant bacteria, which has seriously affected treatment of disease. To aid measures to prevent the emergence and spread of drug-resistant bacteria, herein, the kill rate and mutant selection window (MSW) of danofloxacin (DAN) against A. pleuropneumoniae were evaluated. METHODS For the kill rate study, the minimum inhibitory concentration (MIC) was tested using the micro dilution broth method and time-killing curves of DAN against A. pleuropneumoniae grown in tryptic soy broth (TSB) at a series drug concentrations (from 0 to 64 MIC) were constructed. The relationships between the kill rate and drug concentrations were analyzed using a Sigmoid Emax model during different time periods. For the MSW study, the MIC99 (the lowest concentration that inhibited the growth of the bacteria by ≥ 99%) and mutant prevention concentration (MPC) of DAN against A. pleuropneumoniae were measured using the agar plate method. Then, a peristaltic pump infection model was established to simulate the dynamic changes of DAN concentrations in pig lungs. The changes in number and sensitivity of A. pleuropneumoniae were measured. The relationships between pharmacokinetic/pharmacodynamic parameters and the antibacterial effect were analyzed using the Sigmoid Emax model. RESULTS In kill rate study, the MIC of DAN against A. pleuropneumoniae was 0.016 µg/mL. According to the kill rate, DAN exhibited concentration-dependent antibacterial activity against A. pleuropneumoniae. A bactericidal effect was observed when the DAN concentration reached 4-8 MIC. The kill rate increased constantly with the increase in DAN concentration, with a maximum value of 3.23 Log10 colony forming units (CFU)/mL/h during the 0-1 h period. When the drug concentration was in the middle part of the MSW, drugresistant bacteria might be induced. Therefore, the dosage should be avoided to produce a mean value of AUC24h/MIC99 (between 31.29 and 62.59 h. The values of AUC24h/MIC99 to achieve bacteriostatic, bactericidal, and eradication effects were 9.46, 25.14, and > 62.59 h, respectively. CONCLUSION These kill rate and MSW results will provide valuable guidance for the use of DAN to treat A. pleuropneumoniae infections.
Collapse
Affiliation(s)
- Hongjuan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chengshui Liao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, 471000, China
| | - Ke Ding
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Longfei Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Wei Y, Ji X, Zhang F, Zhang S, Deng Q, Ding H. PK-PD integration of enrofloxacin and cefquinome alone and in combination against Klebsiella pneumoniae using an in vitro dynamic model. Front Pharmacol 2023; 14:1226936. [PMID: 37869750 PMCID: PMC10587432 DOI: 10.3389/fphar.2023.1226936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: Klebsiella pneumoniae is classified as a critical pathogen in both animals and humans and infections can be fatal in chickens resulting in substantial economic losses. However, the misuse of antibiotics can also lead to drug resistance and a potential transmission chain between animals and humans. Three K. pneumoniae strains with different susceptibility phenotypes were chosen to study the pharmacokinetic/pharmacodynamic (PK/PD) integration of enrofloxacin (ENR) and cefquinome (CEQ) alone and in combination. Results: Checkerboard assay results indicated that the combination treatment for type strain ATCC 700603 was synergistic effect with a fractional inhibitory concentration index (FICI) of ≤0.5. The other two clinical strains demonstrated an additive effect (FICI >0.5 to ≤1). Furthermore, static time-kill curves indicated that enrofloxacin and cefquinome added singly were effective in killing K. pneumoniae at concentrations of >2 MIC and ≥1 MIC, respectively. Additionally, the combination of enrofloxacin and cefquinome led to an enhanced antibacterial activity of cefquinome. The dynamic time-kill curves indicated that enrofloxacin and cefquinome had bactericidal and bacteriostatic activities, respectively at ≥1.5 mg/L (single-dose) and 4 mg/L (8 h split-dose) causing a decrease in bacterial counts of ≥4.45 and >2 log10 CFU/mL. Enrofloxacin possessed no bacteriostatic effects against K. pneumoniae at a constant concentration of 1× MIC. Cefquinome used in combination with 1× MIC enrofloxacin exhibited bactericidal activity at ≥4 mg/L (12 h split-dose) with reductions of ≥3.65 log10 CFU/mL. The PK/PD parameters were also analyzed to determine the concentration and duration of the drugs needed to reduce bacteria by 3 log10 CFU/mL. For enrofloxacin alone, the AUC24h/MIC was 23.29 h and the Cmax/MIC was 3.18. For cefquinome alone, the %T > MIC was 48.66 and when used in combination with enrofloxacin was 18.04. The combined use of cefquinome and enrofloxacin can increase the antibacterial activity of cefquinome against K. pneumoniae under a 12-h split-dose regimen regardless of individual drug susceptibility. Discussion: The static and dynamic time-kill curves indicated that enrofloxacin exhibited concentration-dependent activity, while cefquinome exhibited time-dependent activity. In the in vitro dynamic model, enrofloxacin alone exhibited better antimicrobial effects against K. pneumoniae compared to cefquinome alone. However, the antibacterial effect of cefquinome can be enhanced by combining it with enrofloxacin. These findings suggest a potentially effective approach for combating K. pneumoniae infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Huanzhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Somogyi Z, Mag P, Simon R, Kerek Á, Makrai L, Biksi I, Jerzsele Á. Susceptibility of Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis Isolated from Pigs in Hungary between 2018 and 2021. Antibiotics (Basel) 2023; 12:1298. [PMID: 37627719 PMCID: PMC10451952 DOI: 10.3390/antibiotics12081298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine respiratory disease complex (PRDC) has been a major animal health, welfare, and economic problem in Hungary; therefore, great emphasis should be put on both the prevention and control of this complex disease. As antibacterial agents are effective tools for control, antibiotic susceptibility testing is indispensable for the proper implementation of antibacterial therapy and to prevent the spread of resistance. The best method for this is to determine the minimum inhibitory concentration (MIC) by the broth microdilution method. In our study, we measured the MIC values of 164 Actinobacillus pleuropneumoniae, 65 Pasteurella multocida, and 118 Streptococcus suis isolates isolated from clinical cases against the following antibacterial agents: amoxicillin, ceftiofur, cefquinome, oxytetracycline, doxycycline, tylosin, tilmicosin, tylvalosin, tulathromycin, lincomycin, tiamulin, florfenicol, colistin, enrofloxacin, and sulfamethoxazole-trimethoprim. Outstanding efficacy against A. pleuropneumoniae isolates was observed with ceftiofur (100%) and tulathromycin (100%), while high levels of resistance were observed against cefquinome (92.7%) and sulfamethoxazole-trimethoprim (90.8%). Ceftiofur (98.4%), enrofloxacin (100%), florfenicol (100%), and tulathromycin (100%) were found to be highly effective against P. multocida isolates, while 100% resistance was detected against the sulfamethoxazole-trimethoprim combination. For the S. suis isolates, only ceftiofur (100%) was not found to be resistant, while the highest rate of resistance was observed against the sulfamethoxazole-trimethoprim combination (94.3%). An increasing number of studies report multi-resistant strains of all three pathogens, making their monitoring a high priority for animal and public health.
Collapse
Affiliation(s)
- Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Réka Simon
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
| | - Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - László Makrai
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary
| | - Imre Biksi
- Department of Pathology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary;
- SCG Diagnostics Ltd., HU-2437 Délegyháza, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| |
Collapse
|
6
|
The pharmacokinetics and pharmacodynamics of cefquinome against Streptococcus agalactiae in a murine mastitis model. PLoS One 2023; 18:e0278306. [PMID: 36696421 PMCID: PMC9876276 DOI: 10.1371/journal.pone.0278306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/14/2022] [Indexed: 01/26/2023] Open
Abstract
Cefquinome is a new generation cephalosporin that is effective in the treatment of mastitis in animals. In this study, we evaluated the associations between the specific pharmacokinetics and pharmacodynamics (PK/PD) of cefquinome and its antibacterial activity against Streptococcus agalactiae in a mouse model of mastitis. After a single intramammary dose of cefquinome (30, 60, 120, and 240 μg/mammary gland), the concentration of cefquinome in plasma was analysed by liquid chromatography with tandem mass spectrometry (HPLC/MS-MS). The PK parameters were calculated using a one-compartment first-order absorption model. Antibacterial activity was defined as the maximum change in the S. agalactiae population after each dose. An inhibitory sigmoid Emax model was used to evaluate the relationships between the PK/PD index values and antibacterial effects. The duration for which the concentration of the antibiotic (%T) remained above the minimum inhibitory concentration (MIC) was defined as the optimal PK/PD index for assessing antibacterial activity. The values of %T > MIC to reach 0.5-log10CFU/MG, 1-log10 CFU/MG and 2-log10 CFU/MG reductions were 31, 47, and 81%, respectively. When the PK/PD index %T > MIC of cefquinome was >81% in vivo, the density of the Streptococcus agalactiae was reduced by 2-log10. These findings provide a valuable understanding to optimise the dose regimens of cefquinome in the treatment of S. agalactiae infections.
Collapse
|
7
|
Zhang L, Xie H, Wang Y, Wang H, Hu J, Zhang G. Pharmacodynamic Parameters of Pharmacokinetic/Pharmacodynamic (PK/PD) Integration Models. Front Vet Sci 2022; 9:860472. [PMID: 35400105 PMCID: PMC8989418 DOI: 10.3389/fvets.2022.860472] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
Pharmacokinetic/pharmacodynamic (PK/PD) integration models are used to investigate the antimicrobial activity characteristics of drugs targeting pathogenic bacteria through comprehensive analysis of the interactions between PK and PD parameters. PK/PD models have been widely applied in the development of new drugs, optimization of the dosage regimen, and prevention and treatment of drug-resistant bacteria. In PK/PD analysis, minimal inhibitory concentration (MIC) is the most commonly applied PD parameter. However, accurately determining MIC is challenging and this can influence the therapeutic effect. Therefore, it is necessary to optimize PD indices to generate more rational results. Researchers have attempted to optimize PD parameters using mutant prevention concentration (MPC)-based PK/PD models, multiple PD parameter-based PK/PD models, kill rate-based PK/PD models, and others. In this review, we discuss progress on PD parameters for PK/PD models to provide a valuable reference for drug development, determining the dosage regimen, and preventing drug-resistant mutations.
Collapse
Affiliation(s)
- Longfei Zhang
- Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongbing Xie
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yongqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongjuan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Jianhe Hu ;
| | - Gaiping Zhang
- Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
- Gaiping Zhang
| |
Collapse
|
8
|
Intestinal Exposure to Ceftiofur and Cefquinome after Intramuscular Treatment and the Impact of Ceftiofur on the Pig Fecal Microbiome and Resistome. Antibiotics (Basel) 2022; 11:antibiotics11030342. [PMID: 35326805 PMCID: PMC8944603 DOI: 10.3390/antibiotics11030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
Optimization of antimicrobial treatment during a bacterial infection in livestock requires in-depth knowledge of the impact of antimicrobial therapy on the pathogen and commensal microbiota. Once administered antimicrobials and/or their metabolites are excreted either by the kidneys through urine and/or by the intestinal tract through feces, causing antimicrobial pressure and possibly the emergence of resistance in the gastro-intestinal tract. So far, the excretion of ceftiofur and cefquinome in the intestinal tract of pigs has not been described. The objective of this study was to investigate the excretion of ceftiofur and cefquinome in the different segments of the gut and feces after intramuscular administration. Therefore, 16 pigs were treated either with ceftiofur (n = 8) or cefquinome (n = 8), and feces were collected during the entire treatment period. The presence of ceftiofur and desfuroylceftiofuracetamide or cefquinome were quantified via liquid chromatography−tandem mass spectrometry. At the end of the treatment, pigs were euthanized, and samples from the duodenum, jejunum, ileum and cecum were analyzed. In feces, no active antimicrobial residues could be measured, except for one ceftiofur-treated pig. In the gut segments, the concentration of both antimicrobials increased from duodenum toward the ileum, with a maximum in the ileum (187.8 ± 101.7 ng·g−1 ceftiofur-related residues, 57.8 ± 37.5 ng·g−1 cefquinome) and sharply decreased in the cecum (below the limit of quantification for ceftiofur-related residues, 6.4 ± 4.2 ng·g−1 cefquinome). Additionally, long-read Nanopore sequencing and targeted quantitative polymerase chain reaction (qPCR) were performed in an attempt to clarify the discrepancy in fecal excretion of ceftiofur-related residues between pigs. In general, there was an increase in Prevotella, Bacteroides and Faecalibacterium and a decrease in Escherichia and Clostridium after ceftiofur administration (q-value < 0.05). The sequencing and qPCR could not provide an explanation for the unexpected excretion of ceftiofur-related residues in one pig out of eight. Overall, this study provides valuable information on the gut excretion of parenteral administered ceftiofur and cefquinome.
Collapse
|
9
|
Zhang L, Xie H, Wang H, Ding H, Zhang G, Hu J. Kill Rate and Evaluation of Ex Vivo PK/PD Integration of Cefquinome Against Actinobacillus pleuropneumoniae. Front Vet Sci 2021; 8:751957. [PMID: 34966804 PMCID: PMC8710486 DOI: 10.3389/fvets.2021.751957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
We wished to study the detailed and precise antibacterial activity of cefquinome against Actinobacillus pleuropneumoniae (APP) in vitro and ex vivo. We analyzed the relationships between kill rate and cefquinome concentration in broth and between pharmacokinetic/pharmacodynamic (PK/PD) parameters and antibacterial effect in serum and tissue cage fluid (TCF) of piglets. Cefquinome exhibited time-dependent antibacterial activity against APP according to the kill rate. The maximum kill rate was 0.48 log10 CFU/mL/h at the 0-9-h period in broth. In the ex vivo PK/PD study, the maximum concentration (Cmax), time to reach the maximum concentration (Tmax), terminal half-life (T1/2β), and area under the concentration time curve (AUCinfinity) were 5.65 μg/ml, 0.58 h, 2.24 h, and 18.48 μg·h/ml in serum and 1.13 μg/ml, 2.60 h, 12.22 h, and 20.83 μg·h/ml in TCF, respectively. The values of area under the curve during 24 h/minimum inhibitory concentration (AUC24h/MIC) for bacteriostatic, bactericidal, and bacterial eradication effects were 18.94, 246.8, and 1013.23 h in serum and 4.20, 65.81, and 391.35 h in TCF, respectively. Our findings will provide a valuable basis for optimization of dosage regimens when applying cefquinome to treat APP infection.
Collapse
Affiliation(s)
- Longfei Zhang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.,Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
| | - Hongbing Xie
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongjuan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Huanzhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Gaiping Zhang
- Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
| | - Jianhe Hu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
10
|
Elbadawy M, Soliman A, Abugomaa A, Alkhedaide A, Soliman MM, Aboubakr M. Disposition of Cefquinome in Turkeys ( Meleagris gallopavo) Following Intravenous and Intramuscular Administration. Pharmaceutics 2021; 13:1804. [PMID: 34834219 PMCID: PMC8622898 DOI: 10.3390/pharmaceutics13111804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022] Open
Abstract
The bioavailability and pharmacokinetics in turkeys of cefquinome (CFQ), a broad-spectrum 4th-generation cephalosporin antibiotic, were explored after a single injection of 2 mg/kg body weight by intravenous (IV) and intramuscular (IM) routes. In a crossover design and 3-weeks washout interval, seven turkeys were assigned for this objective. Blood samples were collected prior to and at various time intervals following each administration. The concentration of CFQ in plasma was measured using HPLC with a UV detector set at 266 nm. For pharmacokinetic analysis, non-compartmental methods have been applied. Following IV administration, the elimination half-life (t1/2ʎz), distribution volume at steady state (Vdss), and total body clearance (Cltot) of CFQ were 1.55 h, 0.54 L/kg, and 0.32 L/h/kg, respectively. Following the IM administration, CFQ was speedily absorbed with an absorption half-life (t1/2ab) of 0.25 h, a maximum plasma concentration (Cmax) of 2.71 μg/mL, attained (Tmax) at 0.56 h. The bioavailability (F) and in vitro plasma protein binding of CFQ were 95.56% and 11.5%, respectively. Results indicated that CFQ was speedily absorbed with a considerable bioavailability after IM administration. In conclusion, CFQ has a favorable disposition in turkeys that can guide to estimate optimum dosage regimes and eventually lead to its usage to eradicate turkey's susceptible bacterial infections.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalioubiya, Egypt;
| | - Ahmed Soliman
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Dakahliya, Egypt
| | - Adel Alkhedaide
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia; (A.A.); (M.M.S.)
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia; (A.A.); (M.M.S.)
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalioubiya, Egypt;
| |
Collapse
|
11
|
Mi K, Li M, Sun L, Hou Y, Zhou K, Hao H, Pan Y, Liu Z, Xie C, Huang L. Determination of Susceptibility Breakpoint for Cefquinome against Streptococcus suis in Pigs. Antibiotics (Basel) 2021; 10:antibiotics10080958. [PMID: 34439008 PMCID: PMC8389024 DOI: 10.3390/antibiotics10080958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis (S. suis), a zoonotic pathogen, causes severe diseases in both pigs and human beings. Cefquinome can display excellent antibacterial activity against gram-negative and gram-positive bacteria. The aim of this study was to derive an optimal dosage of cefquinome against S. suis with a pharmacokinetic/pharmacodynamic (PK/PD) integration model in the target infection site and to investigate the cutoffs monitoring the changes of resistance. The minimum inhibitory concentration (MIC) distribution of cefquinome against 342 S. suis strains was determined. MIC50 and MIC90 were 0.06 and 0.25 μg/mL, respectively. The wild-type cutoff was calculated as 1 μg/mL. A two-compartmental model was applied to calculate the main pharmacokinetic parameters after 2 mg/kg cefquinome administered intramuscularly. An optimized dosage regimen of 3.08 mg/kg for 2-log10 CFU reduction was proposed by ex vivo PK/PD model of infected swine. The pharmacokinetic-pharmacodynamic cutoff was calculated as 0.06 μg/mL based on PK/PD targets. Based on the clinical effectiveness study of pathogenic MIC isolates, the clinical cutoff was calculated as 0.5 μg/mL. A clinical breakpoint was proposed as 1 μg/mL. In conclusion, the results offer a reference for determining susceptibility breakpoint of cefquinome against S. suis and avoiding resistance emergence by following the optimal dosage regimen.
Collapse
Affiliation(s)
- Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.M.); (M.L.); (L.S.); (H.H.); (Z.L.); (C.X.)
| | - Mei Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.M.); (M.L.); (L.S.); (H.H.); (Z.L.); (C.X.)
| | - Lei Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.M.); (M.L.); (L.S.); (H.H.); (Z.L.); (C.X.)
| | - Yixuan Hou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (K.Z.); (Y.P.)
| | - Kaixiang Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (K.Z.); (Y.P.)
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.M.); (M.L.); (L.S.); (H.H.); (Z.L.); (C.X.)
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (K.Z.); (Y.P.)
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.M.); (M.L.); (L.S.); (H.H.); (Z.L.); (C.X.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (K.Z.); (Y.P.)
| | - Changqing Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.M.); (M.L.); (L.S.); (H.H.); (Z.L.); (C.X.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (K.Z.); (Y.P.)
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.M.); (M.L.); (L.S.); (H.H.); (Z.L.); (C.X.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (K.Z.); (Y.P.)
- Correspondence:
| |
Collapse
|
12
|
Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Methods for the Quantification of Cefquinome, Ceftiofur, and Desfuroylceftiofuracetamide in Porcine Feces with Emphasis on Analyte Stability. Molecules 2021; 26:molecules26154598. [PMID: 34361749 PMCID: PMC8348739 DOI: 10.3390/molecules26154598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Cefquinome and ceftiofur are β-lactam antibiotics used for the treatment of bacterial infections in swine. Although these antimicrobials are administered intramuscularly, the exposure of the gut microbiota to these cephalosporins is not well described. This exposure can contribute to the emergence and spread of antimicrobials in the environment and to the possible spread of antimicrobial resistance genes. To assess the impact of drug administration on the intestinal excretion of these antimicrobials it is essential to measure the amounts of native compound and metabolites in feces. Two (ultra)-high-performance liquid chromatography-tandem mass spectrometry ((U)HPLC–MS/MS) methods were developed and validated, one for the determination of cefquinome and ceftiofur and the other for the determination of ceftiofur residues, measured as desfuroylceftiofuracetamide, in porcine feces. The matrix-based calibration curve was linear from 5 ng g−1 to 1000 ng g−1 for cefquinome (correlation coefficient (r) = 0.9990 ± 0.0007; goodness of fit (gof) = 3.70 ± 1.43) and ceftiofur (r = 0.9979 ± 0.0009; gof = 5.51 ± 1.14) and quadratic from 30 ng g−1 to 2000 ng g−1 for desfuroylceftiofuracetamide (r = 0.9960 ± 0.0020; gof = 7.31 ± 1.76). The within-day and between-day precision and accuracy fell within the specified ranges. Since β-lactam antibiotics are known to be unstable in feces, additional experiments were conducted to adjust the sampling protocol in order to minimize the impact of the matrix constituents on the stability of the analytes. Immediately after sampling, 500 µL of an 8 µg mL−1 tazobactam solution in water was added to 0.5 g feces, to reduce the degradation in matrix.
Collapse
|
13
|
Mi K, Sun D, Li M, Hao H, Zhou K, Liu Z, Yuan Z, Huang L. Evidence for Establishing the Clinical Breakpoint of Cefquinome against Haemophilus Parasuis in China. Pathogens 2021; 10:pathogens10020105. [PMID: 33498972 PMCID: PMC7912692 DOI: 10.3390/pathogens10020105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/31/2022] Open
Abstract
Haemophilus parasuis can cause high morbidity and mortality in swine. Cefquinome possesses excellent antibacterial activity against pathogens causing diseases of the respiratory tract. This study aimed to establish the clinical breakpoint (CBP) of cefquinome against H. parasuis and to monitor the resistance change. Referring to the minimum inhibitory concentration (MIC) distribution of cefquinome against 131 H. parasuis isolates, the MIC50 and MIC90 were determined to be 0.125 and 1 μg/mL, respectively. And the epidemiological cutoff (ECOFF) value was 1 μg/mL. HPS42 was selected as a representative strain for the pharmacodynamic (PD) experiment, pharmacokinetic (PK) experiment and clinical experiments. The PK/PD index values, area under concentration-time curve (AUC)/MIC, of the bacteriostatic, bactericidal, and bacterial elimination effects were 23, 41, and 51 h, respectively. The PK/PD cutoff was calculated as 0.125 μg/mL by Monte Carlo simulation (MCS), and the clinical cutoff was 0.25−4 μg/mL by WindoW. Combing these three values, the CBP of cefquinome against H. parasuis was found to be 1 μg/mL. In conclusion, this was the first study to integrate various cutoffs to establish the CBP in the laboratory. It is helpful to distinguish wild type H. parasuis and reduce the probability of treatment failure.
Collapse
Affiliation(s)
- Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430000, China; (K.M.); (D.S.); (H.H.); (Z.L.); (Z.Y.)
| | - Da Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430000, China; (K.M.); (D.S.); (H.H.); (Z.L.); (Z.Y.)
| | - Mei Li
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (M.L.); (K.Z.)
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430000, China; (K.M.); (D.S.); (H.H.); (Z.L.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (M.L.); (K.Z.)
| | - Kaixiang Zhou
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (M.L.); (K.Z.)
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430000, China; (K.M.); (D.S.); (H.H.); (Z.L.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (M.L.); (K.Z.)
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430000, China; (K.M.); (D.S.); (H.H.); (Z.L.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (M.L.); (K.Z.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430000, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430000, China; (K.M.); (D.S.); (H.H.); (Z.L.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (M.L.); (K.Z.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430000, China
- Correspondence:
| |
Collapse
|
14
|
Zhang L, Zhou Z, Gu X, Huang S, Shen X, Ding H. Murine Thigh Microdialysis to Evaluate the Pharmacokinetic/Pharmacodynamic Integration of Cefquinome Against Actinobacillus pleuropneumoniae. Front Vet Sci 2020; 7:448. [PMID: 32851028 PMCID: PMC7419427 DOI: 10.3389/fvets.2020.00448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore the application of microdialysis in pharmacokinetic (PK)/pharmacodynamic (PD) integration of cefquinome against Actinobacillus pleuropneumoniae. After the A. pleuropneumoniae population reached 106 CFU/thigh, the mice received 0.04, 0.16, 0.63, 2.5, and 10 mg/kg cefquinome by subcutaneous injection. Plasma samples were collected by retro-orbital puncture for 4 h, and thigh dialysate was obtained by microdialysis at a flow rate of 1.5 μL/min for 6 h for the PK study. For the PD experiment, the infected mice were treated with a 4-fold-increase in the total cefquinome dose, ranging from 0.01 to 10 mg/kg/24 h, divided into one, two, three, four, and eight doses. The number of bacteria was determined and an inhibitory sigmoid maximum effect (Emax) model was used to analyse the relationships between PK/PD parameters and efficacy. The mean penetration of cefquinome from plasma to the thigh was 0.591. The PK data for PK/PD integration were obtained by extrapolation. The fittest PK/PD parameter for efficacy evaluation was %fT>MIC (the percentage of time that free drug concentrations exceed the MIC). The magnitudes of %fT>MIC to achieve net bacterial stasis, 1-log10 CFU reduction, 2-log10 CFU reduction, and 3-log10 CFU reduction were 19.56, 28.65, 41.59, and 67.07 % in plasma and 21.74, 36.11, 52.96, and 82.68% in murine thigh, respectively. Microdialysis was first applied to evaluate the PK/PD integration of cefquinome against A. pleuropneumoniae. These results would provide valuable references when we apply microdialysis to study the PK/PD integration model and use cefquinome to treat animal diseases caused by A. pleuropneumoniae.
Collapse
Affiliation(s)
- Longfei Zhang
- College of Animal Science and Veterinary Medicine of Henan Institute of Science and Technology, Xinxiang, China.,Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zichong Zhou
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiaoyan Gu
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Sixiu Huang
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiangguang Shen
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Huanzhong Ding
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Altayban A, Kandeel M, Kitade Y, Al-Nazawi M. A pilot study on the pharmacokinetics of a single intramuscular injection of cefquinome in Arabian camel calves. Acta Vet Hung 2020; 68:59-64. [PMID: 32384074 DOI: 10.1556/004.2020.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
Abstract
This study was conducted to evaluate the pharmacokinetics of cefquinome in camel calves after a single intramuscular injection in a dose of 2 mg/kg body weight (kg b. w.). Cefquinome concentrations were measured by ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS). A non-compartmental pharmacokinetic model was used to fit the time-concentration curve and estimate the pharmacokinetic parameters. The peak serum concentration (Cmax) was 28.4 μg/mL at the time of maximum concentration (Tmax) of 25 min. The elimination half-life (t1/2) was 17.4 h. The area under the concentration-time curve (AUC0-∞) was 103.7 μg/ml-1h and the mean residence time (MRT0-∞) was 21.3 h. In comparison with other animal species, the pharmacokinetics of cefquinome in Arabian camel calves showed faster absorption from the site of injection and slower elimination. Since cefquinome, as other beta-lactams, is a time-dependent antimicrobial agent, a single dose of 2 mg/kg b. w. might be sufficient against the most sensitive organisms in camel calves owing to its prolonged elimination phase. However, dose readjustment is required for cases needing concentrations above 2 µg/mL for 12 h or above 1 µg/mL for 24 h.
Collapse
Affiliation(s)
- Abdullah Altayban
- 1Department of Physiology, Biochemistry and Pharmacology, King Faisal University, Al Hofuf, Al Ahsa, 31982, Saudi Arabia
| | - Mahmoud Kandeel
- 1Department of Physiology, Biochemistry and Pharmacology, King Faisal University, Al Hofuf, Al Ahsa, 31982, Saudi Arabia
- 2Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshiekh University, Kafrelshiekh, Egypt
| | - Yukio Kitade
- 3Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa, Yakuza, Toyota, Japan
- 4Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, Japan
| | - Mohammed Al-Nazawi
- 1Department of Physiology, Biochemistry and Pharmacology, King Faisal University, Al Hofuf, Al Ahsa, 31982, Saudi Arabia
| |
Collapse
|
16
|
Luo W, Chen D, Wu M, Li Z, Tao Y, Liu Q, Pan Y, Qu W, Yuan Z, Xie S. Pharmacokinetics/Pharmacodynamics models of veterinary antimicrobial agents. J Vet Sci 2020; 20:e40. [PMID: 31565887 PMCID: PMC6769327 DOI: 10.4142/jvs.2019.20.e40] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022] Open
Abstract
Misuse and abuse of veterinary antimicrobial agents have led to an alarming increase in bacterial resistance, clinical treatment failure, and drug residues. To address these problems, consistent and appropriate dosage regimens for veterinary antimicrobial agents are needed. Pharmacokinetics/Pharmacodynamics (PK/PD) models have been widely used to establish rational dosage regimens for veterinary antimicrobial agents that can achieve effective prevention and treatment of bacterial diseases and avoid the development of bacterial resistance. This review introduces building methods for PK/PD models and describes current PK/PD research progress toward rational dosage regimens for veterinary antimicrobial agents. Finally, the challenges and prospects of PK/PD models in the design of dosage regimens for veterinary antimicrobial agents are reviewed. This review will help to increase awareness of PK/PD modeling among veterinarians and hopefully promote its development and future use.
Collapse
Affiliation(s)
- Wanhe Luo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengru Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenxia Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|