1
|
Jin X, Wu X, Li Z, Hu Y, Xia L, Zu S, Zhang G, Hu H. Integrin αVβ3 mediates porcine deltacoronavirus infection and inflammatory response through activation of the FAK-PI3K-AKT-nf-κB signalling pathway. Virulence 2024; 15:2407847. [PMID: 39368071 PMCID: PMC11457627 DOI: 10.1080/21505594.2024.2407847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging porcine enteropathogenic coronavirus that causes acute watery diarrhoea in piglets, resulting in significant economic losses to the global swine industry. However, the underlying mechanism of PDCoV infection is not well defined, which seriously hinders the development of effective drugs and vaccines. Integrins (ITG) are heterodimeric transmembrane glycoproteins that play important roles in the life cycle of many viruses. In the current study, the viral entry pathways of PDCoV were explored and the role of ITGαVβ3 was investigated during PDCoV infection. Our results showed that the lysosomal acidification inhibitor bafilomycin-A1 (Baf-A1) significantly reduced PDCoV infection, while exogenous protease facilitated PDCoV infection and even allowed PDCoV entry to bypass the endosomal pathway, suggesting PDCoV entry into cells via the endocytic pathway and the exogenous protease-mediated pathway simultaneously. Furthermore, ITGαVβ3 was identified to be involved in PDCoV infection, especially during viral entry stages. PDCoV infection triggers the activation of the focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K)-serine/threonine-specific protein kinase (AKT) signalling pathway, and this activation is ITGαVβ3-dependent, suggesting that the activation of the FAK-PI3K-AKT signalling pathway during PDCoV infection is mediated by ITGαVβ3. Our results further demonstrated that PDCoV infection induced the expression of inflammatory cytokines, which was mediated by activation of the ITGαVβ3-FAK-PI3K-AKT-nuclear transcription factor-κB (NF-κB) signalling pathway. Overall, the results revealed that ITGαVβ3 is an essential host factor for PDCoV infection and can serve as a supplementary receptor to facilitate PDCoV infection, which can help us to explore the molecular mechanism of PDCoV infection.
Collapse
Affiliation(s)
- Xiaohui Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, P. R. China
| | - Xingyi Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, P. R. China
| | - Zehui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, P. R. China
| | - Yixin Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, P. R. China
| | - Lu Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, P. R. China
| | - Shaopo Zu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, P. R. China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Longhu Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Hui Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| |
Collapse
|
2
|
Xue M, Xing L, Yang Y, Shao M, Liao F, Xu F, Chen Y, Wang S, Chen B, Yao C, Gu G, Tong C. A decrease in integrin α5β1/FAK is associated with increased apoptosis of aortic smooth muscle cells in acute type a aortic dissection. BMC Cardiovasc Disord 2024; 24:180. [PMID: 38532364 PMCID: PMC10964683 DOI: 10.1186/s12872-024-03778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/08/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Acute type A aortic dissection (AAAD) is a devastating disease. Human aortic smooth muscle cells (HASMCs) exhibit decreased proliferation and increased apoptosis, and integrin α5β1 and FAK are important proangiogenic factors involved in regulating angiogenesis. The aim of this study was to investigate the role of integrin α5β1 and FAK in patients with AAAD and the potential underlying mechanisms. METHODS Aortic tissue samples were obtained from 8 patients with AAAD and 4 organ donors at Zhongshan Hospital of Fudan University. The level of apoptosis in the aortic tissues was assessed by immunohistochemical (IHC) staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assays. The expression of integrin α5β1 and FAK was determined. Integrin α5β1 was found to be significantly expressed in HASMCs, and its interaction with FAK was assessed via coimmunoprecipitation (Co-IP) analysis. Proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8) assays and flow cytometry after integrin α5β1 deficiency. RESULTS The levels of integrin α5β1 and FAK were both significantly decreased in patients with AAAD. Downregulating the expression of integrin α5β1-FAK strongly increased apoptosis and decreased proliferation in HASMCs, indicating that integrin α5β1-FAK might play an important role in the development of AAAD. CONCLUSIONS Downregulation of integrin α5β1-FAK is associated with increased apoptosis and decreased proliferation in aortic smooth muscle cells and may be a potential therapeutic strategy for AAAD.
Collapse
Affiliation(s)
- Mingming Xue
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lingyu Xing
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yilin Yang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mian Shao
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fengqing Liao
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feixiang Xu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yumei Chen
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sheng Wang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bin Chen
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenling Yao
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Guorong Gu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chaoyang Tong
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Liu Y, Song D, Liu X, Wang Y, Wang G, Lan Y. Suppression of porcine hemagglutinating encephalomyelitis virus replication by resveratrol. Virol J 2022; 19:226. [PMID: 36578037 PMCID: PMC9795454 DOI: 10.1186/s12985-022-01953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Porcine hemagglutinating encephalomyelitis virus (PHEV), a member of the genus Betacoronavirus, is the causative agent of neurological disease in pigs. No effective therapeutics are currently available for PHEV infection. Resveratrol has been shown to exert neuroprotective and antiviral effects. Here resveratrol was investigated for its ability to inhibit PHEV replication in nerve cells and central nervous system tissues. METHODS Anti-PHEV effect of resveratrol was evaluated using an in vitro cell-based PHEV infection model and employing a mouse PHEV infection model. The collected cells or tissues were used for quantitative PCR analysis, western blot analysis, or indirect immunofluorescence assay. The supernatants were collected to quantify viral loads by TCID50 assay in vitro. EC50 and CC50 were determined by dose-response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral versus cytotoxic activity. RESULTS Our results showed that resveratrol treatment reduced PHEV titer in a dose-dependent manner, with a 50% inhibition concentration of 6.24 μM. A reduction of > 70% of viral protein expression and mRNA copy number and a 19-fold reduction of virus titer were achieved when infected cells were treated with 10 µM resveratrol in a pre-treatment assay. Quantitative PCR analysis and TCID50 assay results revealed that the addition of 10 μM resveratrol to cells after adsorption of PHEV significantly reduced 56% PHEV mRNA copy number and eightfold virus titer. 10 µM resveratrol treatment reduced 46% PHEV mRNA copy number and fourfold virus titer in virus inactivation assay. Moreover, the in vivo data obtained in this work also demonstrated that resveratrol inhibited PHEV replication, and anti-PHEV activities of resveratrol treatment via intranasal installation displayed better than oral gavage. CONCLUSION These results indicated that resveratrol exerted antiviral effects under various drug treatment and virus infection conditions in vitro and holds promise as a treatment for PHEV infection in vivo.
Collapse
Affiliation(s)
- Yuzhu Liu
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Deguang Song
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xueli Liu
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanqi Wang
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gaili Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, Jilin China
| | - Yungang Lan
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
4
|
Ai X, He W, Wang X, Wang Z, Wang G, Lu H, Qin S, Li Z, Guan J, Zhao K, Song D, Gao F, Lan Y. Antiviral effect of lysosomotropic disaccharide trehalose on porcine hemagglutinating encephalomyelitis virus, a highly neurotropic betacoronavirus. Virology 2022; 577:131-137. [PMID: 36368235 DOI: 10.1016/j.virol.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Many members of the genus Betacoronavirus are neurotropic viruses that frequently cause serious harm to humans or animals, including highly neurotropic porcine hemagglutinating encephalomyelitis virus (PHEV). Nevertheless, very few approved treatments exist to combat these viruses. Lysosomotropic trehalose, a widely used, nontoxic, natural disaccharide that can traverse the blood-brain barrier, has been proposed as a potential antiviral agent for use in prevention or treatment of betacoronavirus-associated infections. The purpose of this study was to determine if trehalose could inhibit PHEV infection of cells of a mouse central nervous system-derived neuroblastoma cell line in vitro or brain cells in vivo. Our results demonstrated that treatment of PHEV-infected mouse neuroblastoma cells and mice with trehalose reduced viral replication and that these trehalose antiviral effects were dependent on expression of lysosomal protein progranulin. Collectively, these results indicated that trehalose holds promise as a new antiviral agent for use in controlling neurotropic betacoronavirus infections.
Collapse
Affiliation(s)
- Xiaomin Ai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinran Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhenzhen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gaili Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, Jilin, China
| | - Hujun Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Siyuan Qin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; General Monitoring Station for Wildlife-Borne Infectious Diseases, State Forestry and Grass Administration, Shenyang, China
| | - Zi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Deguang Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Chen YM, Burrough E. The Effects of Swine Coronaviruses on ER Stress, Autophagy, Apoptosis, and Alterations in Cell Morphology. Pathogens 2022; 11:pathogens11080940. [PMID: 36015060 PMCID: PMC9416022 DOI: 10.3390/pathogens11080940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Swine coronaviruses include the following six members, namely porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine delta coronavirus (PDCoV), swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine hemagglutinating encephalomyelitis virus (PHEV), and porcine respiratory coronavirus (PRCV). Clinically, PEDV, TGEV, PDCoV, and SADS-CoV cause enteritis, whereas PHEV induces encephalomyelitis, and PRCV causes respiratory disease. Years of studies reveal that swine coronaviruses replicate in the cellular cytoplasm exerting a wide variety of effects on cells. Some of these effects are particularly pertinent to cell pathology, including endoplasmic reticulum (ER) stress, unfolded protein response (UPR), autophagy, and apoptosis. In addition, swine coronaviruses are able to induce cellular changes, such as cytoskeletal rearrangement, alterations of junctional complexes, and epithelial-mesenchymal transition (EMT), that render enterocytes unable to absorb nutrients normally, resulting in the loss of water, ions, and protein into the intestinal lumen. This review aims to describe the cellular changes in swine coronavirus-infected cells and to aid in understanding the pathogenesis of swine coronavirus infections. This review also explores how the virus exerted subcellular and molecular changes culminating in the clinical and pathological findings observed in the field.
Collapse
Affiliation(s)
- Ya-Mei Chen
- College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung County 912301, Taiwan
- Correspondence:
| | - Eric Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Rani P, Kapoor B, Gulati M, Atanasov AG, Alzahrani Q, Gupta R. Antimicrobial peptides: A plausible approach for COVID-19 treatment. Expert Opin Drug Discov 2022; 17:473-487. [PMID: 35255763 PMCID: PMC8935455 DOI: 10.1080/17460441.2022.2050693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), which emerged as a major public health threat, has affected >400 million people globally leading to >5 million mortalities to date. Treatments of COVID-19 are still to be developed as the available therapeutic approaches are not able to combat the virus causing the disease (severe acute respiratory syndrome coronavirus-2; SARS-CoV-2) satisfactorily. However, antiviral peptides (AVPs) have demonstrated prophylactic and therapeutic effects against many coronaviruses (CoVs). AREAS COVERED This review critically discusses various types of AVPs evaluated for the treatment of COVID-19 along with their mechanisms of action. Furthermore, the peptides inhibiting the entry of the virus by targeting its binding to angiotensin-converting enzyme 2 (ACE2) or integrins, fusion mechanism as well as activation of proteolytic enzymes (cathepsin L, transmembrane serine protease 2 (TMPRSS2), or furin) are also discussed. EXPERT OPINION Although extensively investigated, successful treatment of COVID-19 is still a challenge due to emergence of virus mutants. Antiviral peptides are anticipated to be blockbuster drugs for the management of this serious infection because of their formulation and therapeutic advantages. Although they may act on different pathways, AVPs having a multi-targeted approach are considered to have the upper hand in the management of this infection.
Collapse
Affiliation(s)
- Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville, Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
7
|
Robles JP, Zamora M, Adan-Castro E, Siqueiros-Marquez L, Martinez de la Escalera G, Clapp C. The spike protein of SARS-CoV-2 induces endothelial inflammation through integrin α5β1 and NF-κB signaling. J Biol Chem 2022; 298:101695. [PMID: 35143839 PMCID: PMC8820157 DOI: 10.1016/j.jbc.2022.101695] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial cells (ECs) form a critical interface between blood and tissues that maintains whole-body homeostasis. In COVID-19, disruption of the EC barrier results in edema, vascular inflammation, and coagulation, hallmarks of this severe disease. However, the mechanisms by which ECs are dysregulated in COVID-19 are unclear. Here, we show that the spike protein of SARS-CoV-2 alone activates the EC inflammatory phenotype in a manner dependent on integrin ⍺5β1 signaling. Incubation of human umbilical vein ECs with whole spike protein, its receptor-binding domain, or the integrin-binding tripeptide RGD induced the nuclear translocation of NF-κB and subsequent expression of leukocyte adhesion molecules (VCAM1 and ICAM1), coagulation factors (TF and FVIII), proinflammatory cytokines (TNF⍺, IL-1β, and IL-6), and ACE2, as well as the adhesion of peripheral blood leukocytes and hyperpermeability of the EC monolayer. In addition, inhibitors of integrin ⍺5β1 activation prevented these effects. Furthermore, these vascular effects occur in vivo, as revealed by the intravenous administration of spike, which increased expression of ICAM1, VCAM1, CD45, TNFα, IL-1β, and IL-6 in the lung, liver, kidney, and eye, and the intravitreal injection of spike, which disrupted the barrier function of retinal capillaries. We suggest that the spike protein, through its RGD motif in the receptor-binding domain, binds to integrin ⍺5β1 in ECs to activate the NF-κB target gene expression programs responsible for vascular leakage and leukocyte adhesion. These findings uncover a new direct action of SARS-CoV-2 on EC dysfunction and introduce integrin ⍺5β1 as a promising target for treating vascular inflammation in COVID-19.
Collapse
Affiliation(s)
- Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México.
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Elva Adan-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | | | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| |
Collapse
|
8
|
Amruta N, Engler-Chiurazzi EB, Murray-Brown IC, Gressett TE, Biose IJ, Chastain WH, Befeler JB, Bix G. In Vivo protection from SARS-CoV-2 infection by ATN-161 in k18-hACE2 transgenic mice. Life Sci 2021; 284:119881. [PMID: 34389403 PMCID: PMC8352850 DOI: 10.1016/j.lfs.2021.119881] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an infectious disease that has spread worldwide. Current treatments are limited in both availability and efficacy, such that improving our understanding of the factors that facilitate infection is urgently needed to more effectively treat infected individuals and to curb the pandemic. We and others have previously demonstrated the significance of interactions between the SARS-CoV-2 spike protein, integrin α5β1, and human ACE2 to facilitate viral entry into host cells in vitro. We previously found that inhibition of integrin α5β1 by the clinically validated small peptide ATN-161 inhibits these spike protein interactions and cell infection in vitro. In continuation with our previous findings, here we have further evaluated the therapeutic potential of ATN-161 on SARS-CoV-2 infection in k18-hACE2 transgenic (SARS-CoV-2 susceptible) mice in vivo. We discovered that treatment with single or repeated intravenous doses of ATN-161 (1 mg/kg) within 48 h after intranasal inoculation with SARS-CoV-2 lead to a reduction of lung viral load, viral immunofluorescence, and improved lung histology in a majority of mice 72 h post-infection. Furthermore, ATN-161 reduced SARS-CoV-2-induced increased expression of lung integrin α5 and αv (an α5-related integrin that has also been implicated in SARS-CoV-2 interactions) as well as the C-X-C motif chemokine ligand 10 (Cxcl10), further supporting the potential involvement of these integrins, and the anti-inflammatory potential of ATN-161, respectively, in SARS-CoV-2 infection. To the best of our knowledge, this is the first study demonstrating the potential therapeutic efficacy of targeting integrin α5β1 in SARS-CoV-2 infection in vivo and supports the development of ATN-161 as a novel SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Elizabeth B Engler-Chiurazzi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Isabel C Murray-Brown
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Timothy E Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ifechukwude J Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wesley H Chastain
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jaime B Befeler
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70122, USA.
| |
Collapse
|
9
|
The PERK/PKR-eIF2α pathway negatively regulates porcine hemagglutinating encephalomyelitis virus replication by attenuating global protein translation and facilitating stress granule formation. J Virol 2021; 96:e0169521. [PMID: 34643429 PMCID: PMC8754228 DOI: 10.1128/jvi.01695-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The replication of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is closely associated with the endoplasmic reticulum (ER) of infected cells. The unfolded protein response (UPR), which is mediated by ER stress (ERS), is a typical outcome in coronavirus-infected cells and is closely associated with the characteristics of coronaviruses. However, the interaction between virus-induced ERS and coronavirus replication is poorly understood. Here, we demonstrate that infection with the betacoronavirus porcine hemagglutinating encephalomyelitis virus (PHEV) induced ERS and triggered all three branches of the UPR signaling pathway both in vitro and in vivo. In addition, ERS suppressed PHEV replication in mouse neuro-2a (N2a) cells primarily by activating the protein kinase R-like ER kinase (PERK)–eukaryotic initiation factor 2α (eIF2α) axis of the UPR. Moreover, another eIF2α phosphorylation kinase, interferon (IFN)-induced double-stranded RNA-dependent protein kinase (PKR), was also activated and acted cooperatively with PERK to decrease PHEV replication. Furthermore, we demonstrate that the PERK/PKR-eIF2α pathways negatively regulated PHEV replication by attenuating global protein translation. Phosphorylated eIF2α also promoted the formation of stress granules (SGs), which in turn repressed PHEV replication. In summary, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets (e.g., PERK, PKR, and eIF2α) for antiviral drugs. IMPORTANCE Coronavirus diseases are caused by different coronaviruses of importance in humans and animals, and specific treatments are extremely limited. ERS, which can activate the UPR to modulate viral replication and the host innate response, is a frequent occurrence in coronavirus-infected cells. PHEV, a neurotropic betacoronavirus, causes nerve cell damage, which accounts for the high mortality rates in suckling piglets. However, it remains incompletely understood whether the highly developed ER in nerve cells plays an antiviral role in ERS and how ERS regulates viral proliferation. In this study, we found that PHEV infection induced ERS and activated the UPR both in vitro and in vivo and that the activated PERK/PKR-eIF2α axis inhibited PHEV replication through attenuating global protein translation and promoting SG formation. A better understanding of coronavirus-induced ERS and UPR activation may reveal the pathogenic mechanism of coronavirus and facilitate the development of new treatment strategies for these diseases.
Collapse
|
10
|
Khodajou-Masouleh H, Shahangian SS, Rasti B. Reinforcing our defense or weakening the enemy? A comparative overview of defensive and offensive strategies developed to confront COVID-19. Drug Metab Rev 2021; 53:508-541. [PMID: 33980089 DOI: 10.1080/03602532.2021.1928686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Developing effective strategies to confront coronavirus disease 2019 (COVID-19) has become one of the greatest concerns of the scientific community. In addition to the vast number of global mortalities due to COVID-19, since its outbreak, almost every aspect of human lives has changed one way or another. In the present review, various defensive and offensive strategies developed to confront COVID-19 are illustrated. The Administration of immune-boosting micronutrients/agents, as well as the inhibition of the activity of incompetent gatekeepers, including some host cell receptors (e.g. ACE2) and proteases (e.g. TMPRSS2), are some efficient defensive strategies. Antibody/phage therapies and specifically vaccines also play a prominent role in the enhancement of host defense against COVID-19. Nanotechnology, however, can considerably weaken the virulence of SARS-CoV-2, utilizing fake cellular locks (compounds mimicking cell receptors) to block the viral keys (spike proteins). Generally, two strategies are developed to interfere with the binding of spike proteins to the host cell receptors, either utilizing fake cellular locks to block the viral keys or utilizing fake viral keys to block the cellular locks. Due to their evolutionary conserved nature, viral enzymes, including 3CLpro, PLpro, RdRp, and helicase are highly potential targets for drug repurposing strategy. Thus, various steps of viral replication/transcription can effectively be blocked by their inhibition, leading to the elimination of SARS-CoV-2. Moreover, RNA decoy and CRISPR technologies likely offer the best offensive strategies after viral entry into the host cells, inhibiting the viral replication/assembly in the infected cells and substantially reducing the quantity of viral progeny.
Collapse
Affiliation(s)
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| |
Collapse
|
11
|
Amruta N, Chastain WH, Paz M, Solch RJ, Murray-Brown IC, Befeler JB, Gressett TE, Longo MT, Engler-Chiurazzi EB, Bix G. SARS-CoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders. Cytokine Growth Factor Rev 2021; 58:1-15. [PMID: 33674185 PMCID: PMC7894219 DOI: 10.1016/j.cytogfr.2021.02.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 is a novel coronavirus that severely affects the respiratory system, is the cause of the COVID-19 pandemic, and is projected to result in the deaths of 2 million people worldwide. Recent reports suggest that SARS-CoV-2 also affects the central nervous system along with other organs. COVID-19-associated complications are observed in older people with underlying neurological conditions like stroke, Alzheimer's disease, and Parkinson's disease. Hence, we discuss SARS-CoV-2 viral replication and its inflammation-mediated infection. This review also focuses on COVID-19 associated neurological complications in individuals with those complications as well as other groups of people. Finally, we also briefly discuss the current therapies available to treat patients, as well as ongoing available treatments and vaccines for effective cures with a special focus on the therapeutic potential of a small 5 amino acid peptide (PHSCN), ATN-161, that inhibits SARS-CoV-2 spike protein binding to both integrin α5β1 and α5β1/hACE2.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Wesley H Chastain
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Meshi Paz
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Rebecca J Solch
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Isabel C Murray-Brown
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jaime B Befeler
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Timothy E Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Michele T Longo
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA
| | - Elizabeth B Engler-Chiurazzi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Hou J, Yan D, Liu Y, Huang P, Cui H. The Roles of Integrin α5β1 in Human Cancer. Onco Targets Ther 2020; 13:13329-13344. [PMID: 33408483 PMCID: PMC7781020 DOI: 10.2147/ott.s273803] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cell adhesion to the extracellular matrix has important roles in tissue integrity and human health. Integrins are heterodimeric cell surface receptors that are composed by two non-covalently linked alpha and beta subunits that mainly participate in the interaction of cell-cell adhesion and cell-extracellular matrix and regulate cell motility, adhesion, differentiation, migration, proliferation, etc. In mammals, there have been eighteen α subunits and 8 β subunits and so far 24 distinct types of αβ integrin heterodimers have been identified in humans. Integrin α5β1, also known as the fibronectin receptor, is a heterodimer with α5 and β1 subunits and has emerged as an essential mediator in many human carcinomas. Integrin α5β1 alteration is closely linked to the progression of several types of human cancers, including cell proliferation, angiogenesis, tumor metastasis, and cancerogenesis. In this review, we will introduce the functions of integrin α5β1 in cancer progression and also explore its regulatory mechanisms. Additionally, the potential clinical applications as a target for cancer imaging and therapy are discussed. Collectively, the information reviewed here may increase the understanding of integrin α5β1 as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Du Yan
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400716, People's Republic of China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| |
Collapse
|
13
|
Schütz D, Ruiz-Blanco YB, Münch J, Kirchhoff F, Sanchez-Garcia E, Müller JA. Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Adv Drug Deliv Rev 2020; 167:47-65. [PMID: 33189768 PMCID: PMC7665879 DOI: 10.1016/j.addr.2020.11.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022]
Abstract
To date, no effective vaccines or therapies are available against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pandemic agent of the coronavirus disease 2019 (COVID-19). Due to their safety, efficacy and specificity, peptide inhibitors hold great promise for the treatment of newly emerging viral pathogens. Based on the known structures of viral proteins and their cellular targets, antiviral peptides can be rationally designed and optimized. The resulting peptides may be highly specific for their respective targets and particular viral pathogens or exert broad antiviral activity. Here, we summarize the current status of peptides inhibiting SARS-CoV-2 entry and outline the strategies used to design peptides targeting the ACE2 receptor or the viral spike protein and its activating proteases furin, transmembrane serine protease 2 (TMPRSS2), or cathepsin L. In addition, we present approaches used against related viruses such as SARS-CoV-1 that might be implemented for inhibition of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
14
|
Beddingfield BJ, Iwanaga N, Chapagain PP, Zheng W, Roy CJ, Hu TY, Kolls JK, Bix GJ. The Integrin Binding Peptide, ATN-161, as a Novel Therapy for SARS-CoV-2 Infection. ACTA ACUST UNITED AC 2020; 6:1-8. [PMID: 33102950 PMCID: PMC7566794 DOI: 10.1016/j.jacbts.2020.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023]
Abstract
Many efforts to design and screen therapeutics for the current severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic have focused on inhibiting viral host cell entry by disrupting angiotensin-converting enzyme-2 (ACE2) binding with the SARS-CoV-2 spike protein. This work focuses on the potential to inhibit SARS-CoV-2 entry through a hypothesized α5β1 integrin-based mechanism and indicates that inhibiting the spike protein interaction with α5β1 integrin (+/- ACE2) and the interaction between α5β1 integrin and ACE2 using a novel molecule (ATN-161) represents a promising approach to treat coronavirus disease-19.
Collapse
Key Words
- ACE2
- ACE2, angiotensin-converting enzyme 2
- ATN-161
- CO2, carbon dioxide
- COVID-19
- COVID-19, coronavirus disease-2019
- DMEM, Dulbecco’s modified eagle media
- ELISA, enzyme-linked immunosorbent assay
- IC50, half-maximal inhibitory concentration
- RBD, receptor binding domain
- RGD, arginine-glycine-aspartate
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2
- alpha5beta1 integrin
- hACE2, human angiotensin-converting enzyme 2
- host-cell entry
- qPCR, quantitative polymerase chain reaction
- receptor binding domain
- therapeutic
- viral spike protein
Collapse
Affiliation(s)
- Brandon J. Beddingfield
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Naoki Iwanaga
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, Florida, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Wenshu Zheng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Chad J. Roy
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Tony Y. Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jay K. Kolls
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Gregory J. Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
- Address for correspondence: Dr. Gregory J. Bix, Tulane University School of Medicine, Clinical Neuroscience Research Center, 131 South Robertson, Suite 1300, Room 1349, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
15
|
Beddingfield B, Iwanaga N, Chapagain P, Zheng W, Roy CJ, Hu TY, Kolls J, Bix G. The Integrin Binding Peptide, ATN-161, as a Novel Therapy for SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32587959 DOI: 10.1101/2020.06.15.153387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many efforts to design and screen therapeutics for severe acute respiratory syndrome coronavirus (SARS-CoV-2) have focused on inhibiting viral cell entry by disrupting ACE2 binding with the SARS-CoV-2 spike protein. This work focuses on inhibiting SARS-CoV-2 entry through a hypothesized α5β1 integrin-based mechanism, and indicates that inhibiting the spike protein interaction with α5β1 integrin (+/- ACE2), and the interaction between α5β1 integrin and ACE2 using a molecule ATN-161 represents a promising approach to treat COVID-19.
Collapse
|