1
|
Yan Z, Yue J, Zhang Y, Hou Z, Li D, Yang Y, Li X, Idris A, Li H, Li S, Xie J, Feng R. Pseudorabies virus VHS protein abrogates interferon responses by blocking NF-κB and IRF3 nuclear translocation. Virol Sin 2024; 39:587-599. [PMID: 38823782 PMCID: PMC11401465 DOI: 10.1016/j.virs.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Herpesviruses antagonize host antiviral responses through a myriad of molecular strategies culminating in the death of the host cells. Pseudorabies virus (PRV) is a significant veterinary pathogen in pigs, causing neurological sequalae that ultimately lead to the animal's demise. PRV is known to trigger apoptotic cell death during the late stages of infection. The virion host shutdown protein (VHS) encoded by UL41 plays a crucial role in the PRV infection process. In this study, we demonstrate that UL41 inhibits PRV-induced activation of inflammatory cytokine and negatively regulates the cGAS-STING-mediated antiviral activity by targeting IRF3, thereby inhibiting the translocation and phosphorylation of IRF3. Notably, mutating the conserved amino acid sites (E192, D194, and D195) in the RNase domain of UL41 or knocking down UL41 inhibits the immune evasion of PRV, suggesting that UL41 may play a crucial role in PRV's evasion of the host immune response during infection. These results enhance our understanding of how PRV structural proteins assist the virus in evading the host immune response.
Collapse
Affiliation(s)
- Zhenfang Yan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jiayu Yue
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Yaxin Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhengyang Hou
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Yanmei Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4702, Australia
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Shasha Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China.
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Cui Y, Wang M, Cheng A, Zhang W, Yang Q, Tian B, Ou X, Huang J, Wu Y, Zhang S, Sun D, He Y, Zhao X, Wu Z, Zhu D, Jia R, Chen S, Liu M. The precise function of alphaherpesvirus tegument proteins and their interactions during the viral life cycle. Front Microbiol 2024; 15:1431672. [PMID: 39015737 PMCID: PMC11250606 DOI: 10.3389/fmicb.2024.1431672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Alphaherpesvirus is a widespread pathogen that causes diverse diseases in humans and animals and can severely damage host health. Alphaherpesvirus particles comprise a DNA core, capsid, tegument and envelope; the tegument is located between the nuclear capsid and envelope. According to biochemical and proteomic analyses of alphaherpesvirus particles, the tegument contains at least 24 viral proteins and plays an important role in the alphaherpesvirus life cycle. This article reviews the important role of tegument proteins and their interactions during the viral life cycle to provide a reference and inspiration for understanding alphaherpesvirus infection pathogenesis and identifying new antiviral strategies.
Collapse
Affiliation(s)
- Yuxi Cui
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Wu L, Wang M, Cheng A, Tian B, Huang J, Wu Y, Yang Q, Ou X, Sun D, Zhang S, Zhao X, Gao Q, He Y, Zhu D, Chen S, Liu M, Jia R. Duck plague virus tegument protein vp22 plays a key role in the secondary envelopment and cell-to-cell spread. Vet Res 2023; 54:60. [PMID: 37461115 DOI: 10.1186/s13567-023-01191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Duck plague virus (DPV) is one of the major infectious and fatal diseases of geese, ducks, and other wild waterfowl. The DPV UL49 gene product VP22 is one of the most abundant tegument proteins. However, the role of the DPV VP22 is enigmatic to be clarified. In this study, we found deletion of the UL49 gene resulted in reduced viral growth curve and smaller plaque size in duck embryo fibroblast (DEF) cells, confirming that DPV VP22 is required for efficient viral growth in vitro. In addition, deletion of the UL49 gene inhibited the secondary envelopment of the virus, the release of viral particles, and the spread of viruses between cells. Our study signified the importance of VP22 for DPV secondary envelopment, release, cell-to-cell spread, and accumulation of viral RNA. These findings provide a basis for further study of the function of VP22 in DPV or other herpesviruses.
Collapse
Affiliation(s)
- Liping Wu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Xumin Ou
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Xinxin Zhao
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Qun Gao
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| |
Collapse
|
4
|
Duck Enteritis Virus Inhibits the cGAS-STING DNA-Sensing Pathway To Evade the Innate Immune Response. J Virol 2022; 96:e0157822. [PMID: 36448809 PMCID: PMC9769366 DOI: 10.1128/jvi.01578-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS), a key DNA sensor, detects cytosolic viral DNA and activates the adaptor protein stimulator of interferon genes (STING) to initiate interferon (IFN) production and host innate antiviral responses. Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality in waterfowl. In the present study, we found that DEV inhibits host innate immune responses during the late phase of viral infection. Furthermore, we screened DEV proteins for their ability to inhibit the cGAS-STING DNA-sensing pathway and identified multiple viral proteins, including UL41, US3, UL28, UL53, and UL24, which block IFN-β activation through this pathway. The DEV tegument protein UL41, which exhibited the strongest inhibitory effect, selectively downregulated the expression of interferon regulatory factor 7 (IRF7) by reducing its mRNA accumulation, thereby inhibiting the DNA-sensing pathway. Ectopic expression of UL41 markedly reduced viral DNA-triggered IFN-β production and promoted viral replication, whereas deficiency of UL41 in the context of DEV infection increased the IFN-β response to DEV and suppressed viral replication. In addition, ectopic expression of IRF7 inhibited the replication of the UL41-deficient virus, whereas IRF7 knockdown facilitated its replication. This study is the first report identifying multiple viral proteins encoded by a duck DNA virus, which inhibit the cGAS-STING DNA-sensing pathway. These findings expand our knowledge of DNA sensing in ducks and reveal a mechanism through which DEV antagonizes the host innate immune response. IMPORTANCE Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality, resulting in substantial economic losses in the commercial waterfowl industry. The evasion of DNA-sensing pathway-mediated antiviral innate immunity is essential for the persistent infection and replication of many DNA viruses. However, the mechanisms used by DEV to modulate the DNA-sensing pathway remain poorly understood. In the present study, we found that DEV encodes multiple viral proteins to inhibit the cGAS-STING DNA-sensing pathway. The DEV tegument protein UL41 selectively diminished the accumulation of interferon regulatory factor 7 (IRF7) mRNA, thereby inhibiting the DNA-sensing pathway. Loss of UL41 potently enhanced the IFN-β response to DEV and impaired viral replication in ducks. These findings provide insights into the host-virus interaction during DEV infection and help develop new live attenuated vaccines against DEV.
Collapse
|
5
|
Liang Z, Guo J, Yuan S, Cheng Q, Zhang X, Liu Z, Wang C, Li Z, Hou B, Huang S, Wen F. Pathological and Molecular Characterization of a Duck Plague Outbreak in Southern China in 2021. Animals (Basel) 2022; 12:ani12243523. [PMID: 36552444 PMCID: PMC9774102 DOI: 10.3390/ani12243523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Duck plague (DP) is a highly contagious viral disease in ducks caused by the duck plague virus (DPV). The DPV, a member of Herpesviridae, poses a severe threat to the waterfowl farming industry worldwide. In this study, we reported a recent outbreak of DPV in domestic laying ducks at 310 days of age from southern China in December 2021. The gross lesion, histopathologic examination, molecular detection, and genetic characterization studies of DPV are described here. As a result, gross lesions such as an enlarged congestive spleen and liver were observed. Liver with vacuolar degeneration and small vacuoles and spleen with hemosiderosis were remarkable microscopic findings. Our results suggested that the liver had the highest viral load, followed by the trachea, pancreas, kidney, brain, spleen, and heart. In addition, DPV was successfully isolated in chicken embryo fibroblast cell culture and designated as DP-GD-305-21. The UL2, UL12, UL41, UL47, and LORF11 genes of DP-GD-305-21 shared a high nucleotide homology with the Chinese virulent (CHv) strain and the Chinese variant (CV) strain. In conclusion, this study reports the isolation and molecular characterization of DPV from a recent outbreak in southern China. Our results contributed to the understanding of the pathological and molecular characterization of currently circulating DPV in China.
Collapse
Affiliation(s)
- Zhipeng Liang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- Correspondence: (J.G.); (F.W.)
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Qing Cheng
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xinyu Zhang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhun Liu
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Congying Wang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, 528231, China
- Correspondence: (J.G.); (F.W.)
| |
Collapse
|
6
|
Zhou T, Wang M, Cheng A, Yang Q, Tian B, Wu Y, Jia R, Chen S, Liu M, Zhao XX, Ou X, Mao S, Sun D, Zhang S, Zhu D, Huang J, Gao Q, Yu Y, Zhang L. Regulation of alphaherpesvirus protein via post-translational phosphorylation. Vet Res 2022; 53:93. [PMID: 36397147 PMCID: PMC9670612 DOI: 10.1186/s13567-022-01115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
An alphaherpesvirus carries dozens of viral proteins in the envelope, tegument and capsid structure, and each protein plays an indispensable role in virus adsorption, invasion, uncoating and release. After infecting the host, a virus eliminates unfavourable factors via multiple mechanisms to escape or suppress the attack of the host immune system. Post-translational modification of proteins, especially phosphorylation, regulates changes in protein conformation and biological activity through a series of complex mechanisms. Many viruses have evolved mechanisms to leverage host phosphorylation systems to regulate viral protein activity and establish a suitable cellular environment for efficient viral replication and virulence. In this paper, viral protein kinases and the regulation of viral protein function mediated via the phosphorylation of alphaherpesvirus proteins are described. In addition, this paper provides new ideas for further research into the role played by the post-translational modification of viral proteins in the virus life cycle, which will be helpful for understanding the mechanisms of viral infection of a host and may lead to new directions of antiviral treatment.
Collapse
Affiliation(s)
- Tong Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| |
Collapse
|
7
|
Abstract
Many viruses induce shutoff of host gene expression (host shutoff) as a strategy to take over cellular machinery and evade host immunity. Without host shutoff activity, these viruses generally replicate poorly in vivo, attesting to the importance of this antiviral strategy. In this review, we discuss one particularly advantageous way for viruses to induce host shutoff: triggering widespread host messenger RNA (mRNA) decay. Viruses can trigger increased mRNA destruction either directly, by encoding RNA cleaving or decapping enzymes, or indirectly, by activating cellular RNA degradation pathways. We review what is known about the mechanism of action of several viral RNA degradation factors. We then discuss the consequences of widespread RNA degradation on host gene expression and on the mechanisms of immune evasion, highlighting open questions. Answering these questions is critical to understanding how viral RNA degradation factors regulate host gene expression and how this process helps viruses evade host responses and replicate.
Collapse
Affiliation(s)
- Léa Gaucherand
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA;
| | - Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA;
| |
Collapse
|
8
|
Dai H, Wu J, Yang H, Guo Y, Di H, Gao M, Wang J. Construction of BHV-1 UL41 Defective Virus Using the CRISPR/Cas9 System and Analysis of Viral Replication Properties. Front Cell Infect Microbiol 2022; 12:942987. [PMID: 35873151 PMCID: PMC9304932 DOI: 10.3389/fcimb.2022.942987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine herpesvirus type 1 (BHV-1) is a neurotropic herpesvirus that causes infectious rhinotracheitis and vulvovaginitis in cattle. The virion host shutoff protein encoded by the BHV-1 UL41 gene is highly conserved in the Alphaherpesvirinae subfamily. This protein can degrade viral and host messenger RNA (mRNA) to interrupt host defense and facilitate the rapid proliferation of BHV-1. However, studies on the BHV-1 UL41 gene are limited, and BHV-1 defective virus construction using the CRISPR/Cas9 system is somewhat challenging. In this study, we rapidly constructed a BHV-1 UL41-deficient strain using the CRISPR/Cas9 system in BL primary bovine-derived cells. BHV-1 UL41-defective mutants were screened by Western blot analysis using specific polyclonal antibodies as the primary antibodies. During the isolation and purification of the defective strain, a mixed virus pool edited by an efficient single-guide RNA (sgRNA) showed a plaque number reduction. Viral growth property assessment showed that BHV-1 UL41 was dispensable for replication, but the UL41-defective strain exhibited early and slowed viral replication. Furthermore, the BHV-1 UL41-deficient strain exhibited enhanced sensitivity to temperature and acidic environments. The BHV-1 UL41-deficient strain regulated viral and host mRNA levels to affect viral replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junwei Wang
- *Correspondence: Mingchun Gao, ; Junwei Wang,
| |
Collapse
|
9
|
He T, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Chen S, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Tian B, Ou X, Mao S, Sun D, Gao Q, Yu Y, Zhang L, Liu Y. Duck plague virus UL41 protein inhibits RIG-I/MDA5-mediated duck IFN-β production via mRNA degradation activity. Vet Res 2022; 53:22. [PMID: 35303942 PMCID: PMC8932288 DOI: 10.1186/s13567-022-01043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/21/2022] [Indexed: 11/10/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are cytosolic pattern recognition receptors that initiate innate antiviral immunity. Recent reports found that duck RLRs significantly restrict duck plague virus (DPV) infection. However, the molecular mechanism by which DPV evades immune responses is unknown. In this study, we first found that the DPV UL41 protein inhibited duck interferon-β (IFN-β) production mediated by RIG-I and melanoma differentiation-associated gene 5 (MDA5) by broadly downregulating the mRNA levels of important adaptor molecules, such as RIG-I, MDA5, mitochondrial antiviral signalling protein (MAVS), stimulator of interferon gene (STING), TANK-binding kinase 1 (TBK1), and interferon regulatory factor (IRF) 7. The conserved sites of the UL41 protein, E229, D231, and D232, were responsible for this activity. Furthermore, the DPV CHv-BAC-ΔUL41 mutant virus induced more duck IFN-β and IFN-stimulated genes (Mx, OASL) production in duck embryo fibroblasts (DEFs) than DPV CHv-BAC parent virus. Our findings provide insights into the molecular mechanism underlying DPV immune evasion.
Collapse
Affiliation(s)
- Tianqiong He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| |
Collapse
|
10
|
Wan J, Li F, Wang M, Cheng A, Tian B, Yang Q, Wu Y, Ou X, Mao S, Sun D, Zhang S, Huang J, Gao Q, Zhao X, Chen S, Liu M, Jia R, Zhu D. The protein encoded by the duck plague virus UL14 gene regulates virion morphogenesis and affects viral replication. Poult Sci 2022; 101:101863. [PMID: 35489250 PMCID: PMC9062478 DOI: 10.1016/j.psj.2022.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
To investigate the pivotal roles of the duck plague virus (DPV) tegument protein UL14 in viral replication, we generated 2 mutated viruses of DPV by using the bacterial artifcial chromosome system, the UL14-null mutant virus (CHv-BAC-ΔUL14) and the corresponding revertant virus (CHv-BAC-ΔUL14R). We found that the CHv-BAC-ΔUL14 viruses exhibited impaired virion morphogenesis in transmission electron microscopy (TEM) studies. Furthermore, CHv-BAC-ΔUL14 exhibited a plaque size reduction in duck embryo fibroblasts (DEFs). Finally, CHv-BAC-ΔUL14 exhibited a significant viral growth defect. Taken together, our findings suggest that DPV UL14 protein regulates viral morphogenesis for efficient viral replication.
Collapse
|