1
|
Li S, Huang Y, Sun Q, Li Y, Xie H, Fu Q. Caspase-1 is critical for mice in the defense against Streptococcus equi subsp. zooepidemicus infection by promoting macrophage phagocytosis. Microb Pathog 2025; 203:107499. [PMID: 40122410 DOI: 10.1016/j.micpath.2025.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) is an important pathogen which is responsible for a wide range of diseases in various species. Macrophages are professional phagocytes that can engulf microorganisms and trigger responses leading to microbial death. Caspase-1 is considered as a proinflammatory factor that mediates antibacterial response to protect hosts from bacteria. Here, we revealed a novel role of Caspase-1 in mice against SEZ. Through both in vitro and in vivo infection assays, we demonstrated that the maturation and secretion of the cytokine IL-1β are critically dependent on Caspase-1 activation. The Caspase-1 deficient mice displayed attenuation of bactericidal activity against SEZ, mainly by decreasing the accumulation of macrophage. In addition to the recruitment of macrophages, deficiency of Caspase-1 also impaired the phagocytosis of SEZ by macrophages. Our study demonstrated that Caspase-1 is critical for mice to defense against SEZ depending on the recruitment and phagocytosis of macrophage.
Collapse
Affiliation(s)
- Shun Li
- School of Animal Science and Technology, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Yunfei Huang
- School of Animal Science and Technology, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Qinqin Sun
- School of Animal Science and Technology, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Yajuan Li
- School of Animal Science and Technology, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Honglin Xie
- School of Animal Science and Technology, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China.
| | - Qiang Fu
- School of Animal Science and Technology, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China.
| |
Collapse
|
2
|
Liu Z, Yang Y, Chen M, Chen X, Ming K, Liu Y, Weng J, Xing B, Wei L, Wang Z, Wei Z. De novo designed mini-binders targeting glyceraldehyde-3-phosphate dehydrogenase of Streptococcus equi ssp. zooepidemicus provided partial protection in mice model of infection. Int J Biol Macromol 2025; 307:142293. [PMID: 40118411 DOI: 10.1016/j.ijbiomac.2025.142293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) is an important zoonotic pathogen that greatly threatens the health of pigs in China. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as a critical virulence factor that contributes to the adhesion of SEZ to host. Effectively blocking the GAPDH mediated adhesion is of high significance for the treatment of SEZ infection. In this study, we de novo designed mini-binders targeting GAPDH by RFdiffusion approach and three binder candidates targeting two hydrophobic sites on GAPDH were screened out. Among them, binder 1and binder 9 presented micromolar affinities to GAPDH, and were thermostable in solution. The two binders significantly inhibited the adhesion of SEZ to HEp-2 cells, while binder 1 showed higher potency. We estimated the protection efficiency of the two binders in vivo with different administration programs. Binder 1 improved the survival (60 %) of mice infected with a lethal dose of SEZ when preventive and therapeutic administration combined, while binder 9 failed to reverse the death of mice in any of the dosing procedures. This work provided new insights for the rapid development of highly efficient and easy-to-prepare anti-SEZ agents and a paradigm for the application of protein de novo design in agricultural field.
Collapse
Affiliation(s)
- Zhang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Yi Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Meiting Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Xiujuan Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Ke Ming
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Animal Innovative Drug Research Center, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Yanxia Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Jun Weng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Banbin Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Lin Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Animal Innovative Drug Research Center, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Zhizheng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Animal Innovative Drug Research Center, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Zigong Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Animal Innovative Drug Research Center, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China; National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China.
| |
Collapse
|
3
|
Li S, Xu G, Guo Z, Liu Y, Ouyang Z, Li Y, Huang Y, Sun Q, Giri BR, Fu Q. Deficiency of hasB accelerated the clearance of Streptococcus equi subsp. Zooepidemicus through gasdermin d-dependent neutrophil extracellular traps. Int Immunopharmacol 2024; 140:112829. [PMID: 39083933 DOI: 10.1016/j.intimp.2024.112829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus, SEZ) is an essential zoonotic bacterial pathogen that can cause various inflammation, such as meningitis, endocarditis, and pneumonia. UDP-glucose dehydrogenase (hasB) is indispensable in synthesizing SEZ virulence factor hyaluronan capsules. Our study investigated the infection of hasB on mice response to SEZ by employing a constructed capsule-deficient mutant strain designated as the ΔhasB strain. This deficiency was associated with a reduced SEZ bacterial load in the mice's blood and peritoneal lavage fluid (PLF) post-infection. Besides, the ΔhasB SEZ strain exhibited a higher propensity for neutrophil infiltration and release of cell-free DNA (cfDNA) in vivo compared to the wild-type (WT) SEZ strain. In vitro experiments further revealed that ΔhasB SEZ more effectively induced the formation of neutrophil extracellular traps (NETs) containing histone 3 (H3), neutrophil elastase (NE), and DNA, than its WT counterpart. Moreover, the release of NETs was determined to be gasdermin D (GSDMD)-dependent during the infection process. Taken together, these findings underscore that the deficiency of the hasB gene in SEZ leads to enhanced GSDMD-dependent NET release from neutrophils, thereby reducing SEZ's capacity to resist NETs-mediated eradication during infection. Our finding paves the way for the development of innovative therapeutic strategies against SEZ.
Collapse
Affiliation(s)
- Shun Li
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, Guangdong, China
| | - Guobin Xu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zheng Guo
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhiliang Ouyang
- Houjie Town Agricultural Technology Service Center, Dongguan, Guangdong, China
| | - Yajuan Li
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, Guangdong, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, Guangdong, China
| | - Qinqin Sun
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, Guangdong, China
| | - Bikash R Giri
- Department of Zoology, K.K.S. Women's College, Balasore, Odisha, India
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, Guangdong, China.
| |
Collapse
|
4
|
Li Y, Zhang P, Huang Y, Yu J, Liu Y, Li S, Sun Q, Fu Q. SzM protein of Streptococcus equi ssp. zooepidemicus triggers the release of neutrophil extracellular traps depending on GSDMD. Microb Pathog 2024; 192:106703. [PMID: 38763315 DOI: 10.1016/j.micpath.2024.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Streptococcus equissp.zooepidemicus (SEZ) is a crucial pathogen and contributes to various infections in numerous animal species. Swine streptococcicosis outbreak caused by SEZ has been reported in several countries in recent years. SzM protein is a cell membrane-anchored protein, which exhibits as an important virulence factor of SEZ. Effects of SzM protein on host innate immune need further study. Here, recombinant SzM (rSzM) protein of the SEZ was obtained, and mice were intraperitoneally injected with rSzM protein. We discovered that rSzM protein can recruit neutrophils into the injected site. In further study, neutrophils were isolated and treated with rSzM protein, NETs release were triggered by rSzM protein independently, and GSDMD protein was promoted-expressed and activated. In order to investigate the role of GSDMD in NETs formation, neutrophils isolated from WT mice and GSDMD-/- mice were treated with rSzM protein. The results showed that GSDMD deficiency suppressed the NETs release. In conclusion, SzM protein of SEZ can trigger the NETs release in a GSDMD-depending manner.
Collapse
Affiliation(s)
- Yajuan Li
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Pengju Zhang
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Jingyu Yu
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China
| | - Shun Li
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Qinqin Sun
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China.
| |
Collapse
|
5
|
Li Y, Lin Z, Yu J, Liu Y, Li S, Huang Y, Ayodele Olaolu O, Fu Q. Neutrophil accumulation raises defence against Streptococcus equi ssp. zooepidemicus in the absence of Gasdermin D. Int Immunopharmacol 2024; 131:111891. [PMID: 38498953 DOI: 10.1016/j.intimp.2024.111891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Streptococcus equi ssp. zooepidemicus (SEZ) predominantly acts as a zoonotic pathogen, capable of infecting a diverse range of animal species including human. Gasdermin D (GSDMD) exhibited comprehensive functions in host against different pathogenic microorganism. This study aimed to investigate the role of GSDMD in host against SEZ. Mice were administrated with SEZ via intranasal intubation for 24 h (3 × 106CFU), GSDMD protein expression significantly increased in the lung tissue of mice infected with SEZ. For further research on the role of GSDMD during SEZ infection, GSDMD-/- mice and WT mice were treated with SEZ via intranasal intubation for 24 h (3 × 106CFU). GSDMD-/- mice showed less severe lung tissue due to fewer bacteria colonization. Numerous neutrophils were recruited into lung tissues in GSDMD-/- mice, related to the release of CXCL1 and CXCL2 regulated by p65 phosphorylation. In further study, neutrophils of WT and GSDMD-/- mice were isolated and treated with SEZ (multiplicity of infection, MOI = 10, 4 h). The absence of GSDMD alleviated the death of neutrophils, in addition, GSDMD deficiency could promote translocation of p65 from the cytoplasm into the nucleus in neutrophil, which may contribute to the release of IL-1β and TNF-α. This study demonstrated a novel function of GSDMD in host immune response to SEZ invading, indicating that GSDMD deficiency ameliorated SEZ infection through enhancing neutrophil accumulation into infected site, and activating NF-κB pathway in neutrophil to release cytokines against SEZ. Our study suggested that inhibition of host GSDMD may be an effective method against SEZ.
Collapse
Affiliation(s)
- Yajuan Li
- School of Life Science and Engineering, Foshan University, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, China
| | - Zihua Lin
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Jingyu Yu
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Shun Li
- School of Life Science and Engineering, Foshan University, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, China
| | - Oladejo Ayodele Olaolu
- Department of Animal Health Technology, Oyo State College of Agriculture and Technolog Igboor, Igboora, Nigeria
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, China.
| |
Collapse
|
6
|
Wang Y, Wang T, Han Z, Wang R, Hu Y, Yang Z, Shen T, Zheng Y, Luo J, Ma Y, Luo Y, Jiao L. Explore the role of long noncoding RNAs and mRNAs in intracranial atherosclerotic stenosis: From the perspective of neutrophils. Brain Circ 2023; 9:240-250. [PMID: 38284107 PMCID: PMC10821680 DOI: 10.4103/bc.bc_63_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024] Open
Abstract
CONTEXT Circulating neutrophils and long noncoding RNAs (lncRNAs) play various roles in intracranial atherosclerotic stenosis (ICAS). OBJECTIVE Our study aimed to detect differentially expressed (DE) lncRNAs and mRNAs in circulating neutrophils and explore the pathogenesis of atherosclerosis from the perspective of neutrophils. METHODS Nineteen patients with ICAS and 15 healthy controls were enrolled. The peripheral blood of the participants was collected, and neutrophils were separated. The expression profiles of lncRNAs and mRNAs in neutrophils from five patients and five healthy controls were obtained, and DE lncRNAs and mRNAs were selected. Six lncRNAs were selected and validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and ceRNA and lncRNA-RNA binding protein (RBP)-mRNA networks were constructed. Correlation analysis between lncRNAs and mRNAs was performed. Functional enrichment annotations were also performed. RESULTS Volcano plots and heat maps displayed the expression profiles and DE lncRNAs and mRNAs, respectively. The qRT-PCR results revealed that the four lncRNAs showed a tendency consistent with the expression profile, with statistical significance. The ceRNA network revealed three pairs of regulatory networks: lncRNA RP3-406A7.3-NAGLU, lncRNA HOTAIRM1-MVK/IL-25/GBF1/CNOT4/ANKK1/PLEKHG6, and lncRNA RP11-701H16.4-ZNF416. The lncRNA-RBP-mRNA network showed five pairs of regulatory networks: lncRNA RP11-701H16.4-TEK, lncRNA RP11-701H16.4-MED17, lncRNA SNHG19-NADH-ubiquinone oxidoreductase core subunit V1, lncRNA RP3-406A7.3-Angel1, and lncRNA HOTAIRM1-CARD16. CONCLUSIONS Our study identified and verified four lncRNAs in neutrophils derived from peripheral blood, which may explain the transcriptional alteration of neutrophils during the pathophysiological process of ICAS. Our results provide insights for research related to the pathogenic mechanisms and drug design of ICAS.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yue Hu
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tong Shen
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Ma
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Shi X, Zhu W, Chen T, Cui W, Li X, Xu S. Paraquat induces apoptosis, programmed necrosis, and immune dysfunction in CIK cells via the PTEN/PI3K/AKT axis. FISH & SHELLFISH IMMUNOLOGY 2022; 130:309-316. [PMID: 36126840 DOI: 10.1016/j.fsi.2022.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Paraquat (PQ) is a highly water-soluble, non-selective herbicide. Due to water pollution and lack of specific medicines, it is extremely harmful to humans and aquatic animals. Oxidative stress and apoptosis can affect the immune function of the body. However, the effects and mechanisms of PQ on the immune function, apoptosis and programmed necrosis on CIK cells are still unclear. Therefore, we constructed low (L, 50 μmol/L), medium (M, 100 μmol/L), and high (H, 150 μmol/L) dose models of PQ exposure on CIK cells. The expression of oxidative stress-related indexes (MDA, CAT, GSH-Px and SOD) and interrelated genes were examined by flow cytometry, qRT-PCR, and western blotting methods. Our data demonstrated that PQ treatment caused an increase in MDA content and the decreases in the activities of antioxidase and antioxidants (SOD, GSH-Px and CAT) on CIK cells (p < 0.05). We also discovered the PTEN/PI3K/AKT pathway was significantly activated in a dose dependent manner (p < 0.05). Furthermore, the proportion of programmed necrosis cells increased dramatically at PQ doses from 0 μmol/L to 150 μmol/L. Apoptosis and necrosis-related genes also showed dose-dependent changes (p < 0.05). Briefly, PQ exposure leads to apoptosis and programmed necrosis via the oxidative stress and PTEN/PI3K/AKT pathway, thereby causing immune dysfunction of CIK cells. This study enriches the toxic influences of PQ on the cells of aquatic organisms and provides a reference for comparative medicine.
Collapse
Affiliation(s)
- Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenjing Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wei Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
8
|
Xu G, Guo Z, Liu Y, Yang Y, Lin Y, Li C, Huang Y, Fu Q. Gasdermin D protects against Streptococcus equi subsp. zooepidemicus infection through macrophage pyroptosis. Front Immunol 2022; 13:1005925. [PMID: 36311722 PMCID: PMC9614658 DOI: 10.3389/fimmu.2022.1005925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus, SEZ) is an essential zoonotic bacterial pathogen that can cause various inflammation, such as meningitis, endocarditis, and pneumonia. Gasdermin D (GSDMD) is involved in cytokine release and cell death, indicating an important role in controlling the microbial infection. This study investigated the protective role of GSDMD in mice infected with SEZ and examined the role of GSDMD in peritoneal macrophages in the infection. GSDMD-deficient mice were more susceptible to intraperitoneal infection with SEZ, and the white pulp structure of the spleen was seriously damaged in GSDMD-deficient mice. Although the increased proportion of macrophages did not depend on GSDMD in both spleen and peritoneal lavage fluid (PLF), deficiency of GSDMD caused the minor release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) during the infection in vivo. In vitro, SEZ infection induced more release of IL-1β, IL-18, and lactate dehydrogenase (LDH) in wild-type macrophages than in GSDMD-deficient macrophages. Finally, we demonstrated that pore formation and pyroptosis of macrophages depended on GSDMD. Our findings highlight the host defense mechanisms of GSDMD against SEZ infection, providing a potential therapeutic target in SEZ infection.
Collapse
Affiliation(s)
- Guobin Xu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Guo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yalin Yang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yongjin Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chunliu Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Foshan, China
- Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
- *Correspondence: Qiang Fu,
| |
Collapse
|