1
|
Wiles D, Pearson JS, Beddoe T. Harnessing Plant-Derived Terpenoids for Novel Approaches in Combating Bacterial and Parasite Infections in Veterinary and Agricultural Settings. Curr Microbiol 2025; 82:134. [PMID: 39937282 PMCID: PMC11821797 DOI: 10.1007/s00284-025-04113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/01/2025] [Indexed: 02/13/2025]
Abstract
The rising resistance to conventional antimicrobial therapies in veterinary contexts poses a formidable challenge. While various innovative treatment strategies for pathogenic infections have emerged, their success still needs to be improved, warranting continued research. Recent investigations into natural products as potential sources for biologically active therapeutics have gained traction. Phytochemicals present a promising alternative in combating a spectrum of pathogens, including bacteria, fungi and parasites. One such class of phytochemicals with mounting potential is the structurally diverse terpenes. These chemicals contribute to plants' characteristic odour and medicinal effects and have been widely investigated in the scientific literature for their exceptional antibacterial activity. Their efficacy is demonstrated through diverse mechanisms, encompassing damage to bacterial membranes, suppression of virulence factors, and interference with enzymes, toxins, and biofilm formation. This review comprehensively examines terpenes' in vitro and in vivo activity and their derivatives against pathogens, elucidating their potential against antimicrobial resistance (AMR) and the underlying mechanisms specific to each terpene class. The findings underscore the burgeoning potential of terpene therapy as a viable alternative or supplementary approach to conventional antibiotics in addressing bacterial and parasitic infections in livestock and companion animals.
Collapse
Affiliation(s)
- Danielle Wiles
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3083, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Microbiology, Monash University, Clayton, VIC, 3168, Australia
- School of Medicine, University of St Andrews, St Andrews, Fife, KY16 9TF, UK
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3083, Australia.
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
2
|
Karimi MR, Jariani P, Yang JL, Naghavi MR. A comprehensive review of the molecular and genetic mechanisms underlying gum and resin synthesis in Ferula species. Int J Biol Macromol 2024; 269:132168. [PMID: 38729496 DOI: 10.1016/j.ijbiomac.2024.132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Ferula spp. are plants that produce oleo-gum-resins (OGRs), which are plant exudates with various colors. These OGRs have various industrial applications in pharmacology, perfumery, and food. The main constituents of these OGRs are terpenoids, a diverse group of organic compounds with different structures and functions. The biosynthesis of OGRs in Ferula spp., particularly galbanum, holds considerable economic and ecological importance. However, the molecular and genetic underpinnings of this biosynthetic pathway remain largely enigmatic. This review provides an overview of the current state of knowledge on the biosynthesis of OGRs in Ferula spp., highlighting the major enzymes, genes, and pathways involved in the synthesis of different terpenoid classes, such as monoterpenes, sesquiterpenes, and triterpenes. It also examines the potential of using omics techniques, such as transcriptomics and metabolomics, and genome editing tools, such as CRISPR/Cas, to increase the yield and quality of Ferula OGRs, as well as to create novel bioactive compounds with enhanced properties. Moreover, this review addresses the current challenges and opportunities of applying gene editing in Ferula spp., and suggests some directions for future research and development.
Collapse
Affiliation(s)
- Mohammad Reza Karimi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Parisa Jariani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
3
|
Osanloo M, Pishamad S, Ghanbariasad A, Zarenezhad E, Alipanah M, Alipanah H. Comparison effects of Ferula gummosa essential oil and Beta-pinene Alginate nanoparticles on human melanoma and breast cancer cells proliferation and apoptotic index in short term normobaric hyperoxic model. BMC Complement Med Ther 2023; 23:428. [PMID: 38017466 PMCID: PMC10683214 DOI: 10.1186/s12906-023-04266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Breast cancer is the most common cancer among women, and melanoma is the most dreadful type of skin cancer. Due to the side effects of chemotherapy drugs, the development of new herbal nano-medicines has been considered. METHODS This study first investigated the chemical composition of Ferula gummosa essential oil using GC-MS analysis; β-pinene, with 61.57%, was the major compound. Next, alginate nanoparticles containing β-pinene and the essential oil with particle sizes of 174 ± 7 and 137 ± 6 nm were prepared. Meanwhile, their zeta potentials were 12.4 ± 0.7 and 28.1 ± 1 mV. Besides, the successful loading of β-pinene and the essential oil in nanoparticles was confirmed using ATR-FTIR analysis. After that, their effects on viability and apoptotic index of human melanoma and breast cancer cells were investigated in normoxia and normobaric hyperoxia (NBO) conditions. RESULTS The best efficacy on A-375 and MDA-MB-231 cells was achieved by alginate nanoparticles containing the EO at hyperoxic and normoxia conditions; IC50 76 and 104 µg/mL. Besides, it affected apoptosis-involved genes; as Bax/Bcl-2 ratio was higher than 1, conditions for induction of apoptosis were obtained. Higher sensitivity was observed in the A-375 cell line treated with Alg-EO in the NBO model. CONCLUSIONS Alginate nanoparticles containing F. gummosa EO could be considered for further investigation in anticancer studies. Also, it may be expected that NBO can be a new strategy for delaying cancer progression and improving nanotherapy efficacy.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayyeh Pishamad
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Media Alipanah
- Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
4
|
Koljančić N, Vyviurska O, Špánik I. Aroma Compounds in Essential Oils: Analyzing Chemical Composition Using Two-Dimensional Gas Chromatography-High Resolution Time-of-Flight Mass Spectrometry Combined with Chemometrics. PLANTS (BASEL, SWITZERLAND) 2023; 12:2362. [PMID: 37375987 DOI: 10.3390/plants12122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Analyzing essential oils is a challenging task for chemists because their composition can vary depending on various factors. The separation potential of volatile compounds using enantioselective two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC×GC-HRTOF-MS) with three different stationary phases in the first dimension was evaluated to classify different types of rose essential oils. The results showed that selecting only ten specific compounds was enough for efficient sample classification instead of the initial 100 compounds. The study also investigated the separation efficiencies of three stationary phases in the first dimension: Chirasil-Dex, MEGA-DEX DET-β, and Rt-βDEXsp. Chirasil-Dex had the largest separation factor and separation space, ranging from 47.35% to 56.38%, while Rt-βDEXsp had the smallest, ranging from 23.36% to 26.21%. MEGA-DEX DET-β and Chirasil-Dex allowed group-type separation based on factors such as polarity, H-bonding ability, and polarizability, whereas group-type separation with Rt-βDEXsp was almost imperceptible. The modulation period was 6 s with Chirasil-Dex and 8 s with the other two set-ups. Overall, the study showed that analyzing essential oils using GC×GC-HRTOF-MS with a specific selection of compounds and stationary phase can be effective in classifying different oil types.
Collapse
Affiliation(s)
- Nemanja Koljančić
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Olga Vyviurska
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Ivan Špánik
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
5
|
Panda SK, Daemen M, Sahoo G, Luyten W. Essential Oils as Novel Anthelmintic Drug Candidates. Molecules 2022; 27:8327. [PMID: 36500419 PMCID: PMC9735941 DOI: 10.3390/molecules27238327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
Helminths, with an estimated 1.5 billion annual global infections, are one of the major health challenges worldwide. The current strategy of the World Health Organization to prevent helminth infection includes increasing hygienic awareness, providing better sanitation and preventative anthelmintic drug therapy in vulnerable populations. Nowadays, anthelmintic drugs are used heavily in livestock, both in case of infection and as a preventative measure. However, this has led to the development of resistance against several of the most common drugs, such as levamisole, ivermectin and thiabendazole. As many as 70% of the livestock in developed countries now has helminths that are drug resistant, and multiple resistance is common. Because of this, novel anthelmintics are urgently needed to help combat large-scale production losses. Prior to this review, no comprehensive review of the anthelmintic effects of essential oils and their components existed. Multiple review articles have been published on the uses of a single plant and its extracts that only briefly touch upon their anthelmintic activity. This review aims to provide a detailed overview of essential oils and their components as anthelmintic treatment against a wider variety of helminths.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
- Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar 751004, Odisha, India
- Department of Zoology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Marijn Daemen
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Walter Luyten
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Laboratory and field efficacy of terpene combinations (carvacrol, thymol and menthol) against the poultry red mite (Dermanyssus gallinae). Vet Parasitol 2022; 313:109842. [DOI: 10.1016/j.vetpar.2022.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
7
|
Abouhosseini Tabari M, Jafari AH, Maggi F, Mazzara E, Youssefi MR, Moghaddas E, Yazdani Rostam MM, Rezaei F. Scolicidal activity of some medicinal plant essential oils on Echinococcus granulosus protoscolices. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | - Amir Hossein Jafari
- Young Research Club and Elite, Babol Branch, Islamic Azad University, Babol, Iran
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Mohammad Reza Youssefi
- Department of Veterinary Parasitology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Elham Moghaddas
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Rezaei
- Department of Veterinary Parasitology, Babol Branch, Islamic Azad University, Babol, Iran
| |
Collapse
|
8
|
Herbal Medicines against Hydatid Disease: A Systematic Review (2000-2021). Life (Basel) 2022; 12:life12050676. [PMID: 35629345 PMCID: PMC9145516 DOI: 10.3390/life12050676] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Echinococcosis is a serious public health issue that affects people and livestock all over the world. Many synthetic and natural products have been examined in vitro and in vivo on Echinococcus species but only a few are used clinically, however, they may cause some complications and side effects. To overcome these limitations, new horizons of herbal drugs to cure echinococcosis are opening with every passing day. To summarize the developments during the last 21 years, we conducted this review of the literature to identify medicinal herbs utilized throughout the world that have anti-Echinococcus activity. From 2000 to 2021, data were carefully obtained from four English databases: Science Direct, PubMed, Scopus, and OpenGrey. Botanical name, extraction technique, extract quantities, efficacy, duration of treatment, year of publication, and half-maximal inhibitory concentration (IC50) values were all well noted. Ninety-one published papers, with 78 in vitro and 15 in vivo, fulfilled our selection criteria. Fifty-eight different plant species were thoroughly tested against Echinococcus granulosus. Zataria multiflora, Nigella sativa, Berberis vulgaris, Zingiber officinale (ginger), and Allium sativum were the most often utilized anti-Echinococcus herbs and the leaves of the herbs were extensively used. The pooled value of IC50 was 61 (95% CI 60−61.9) according to the random effect model and a large degree of diversity among studies was observed. The current systematic study described the medicinal plants with anti-Echinococcus activity, which could be investigated in future experimental and clinical studies to identify their in vivo efficacy, lethal effects, and mechanisms of action.
Collapse
|
9
|
Wang S, Ma Y, Wang W, Dai Y, Sun H, Li J, Wang S, Li F. Status and prospect of novel treatment options toward alveolar and cystic echinococcosis. Acta Trop 2022; 226:106252. [PMID: 34808118 DOI: 10.1016/j.actatropica.2021.106252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are the two most important global parasitic infectious diseases caused by species of Echinococcus granulosus and E. multilocularis, respectively. Although numerous trials have been performed in search of novel therapeutic options to curb the neglected zoonosis, no other nonsurgical options are currently available to replace the licensed anti echinococcal drugs albendazole (ABZ) and mebendazole (MBZ). A safer and more effective treatment plan for echinococcosis is therefore urgently needed to compensate for this therapeutic shortfall. Here, we present a review of the literature for state-of-the-art valuable anti-parasitic compounds and novel strategies that have proved effective against CE and AE, which includes details about the pharmaceutical type, practical approach, experimental plan, model application and protoscolecidal effects in vivo and in vitro. The content includes the current application of traditional clinical chemicals, the preparation of new compounds with various drug loadings, repurposing findings, combined programs, the prospects for Chinese herbal medicines, non-drug administrations and the exploration of target inhibitors based on open-source information for parasitic genes. Next the conventional experimental projects and pharmacodynamic evaluation methods are systematically summarized and evaluated. The demands to optimize the construction of the echinococcosis model and improve the dynamic monitoring method in vivo are also discussed given the shortcomings of in vivo models and monitoring methods.
Collapse
Affiliation(s)
- Sibo Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yibo Ma
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Weishan Wang
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yi Dai
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Haohao Sun
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jing Li
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shan Wang
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Abouhosseini Tabari M, Kashani Rad M, Youssefi MR, Maggi F, Cespi M, Pavoni L, Bonacucina G. Development and characterization of monoterpene loaded microemulsions as novel scolicidal agents. J Biomed Mater Res B Appl Biomater 2021; 110:606-613. [PMID: 34549508 DOI: 10.1002/jbm.b.34939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 11/06/2022]
Abstract
Cystic echinococcosis (CE) is one of the most important zoonotic diseases. The primary treatment is surgery and chemical sterilization of the parasitic layers by injection of a scolicidal agent. Available scolicidals possess side effects, and may cause postoperative complications. Several studies reported the scolicidal properties of monoterpene phenols and alcohols such as carvacrol, thymol, and geraniol. The present study aimed to develop, characterize, and assess monoterpene loaded microemulsions as novel green scolicidals products. For this purpose, microemulsions composing 0.37%, 0.75%, and 1.5% of monoterpenoid(s), thymol, carvacrol, and geraniol, alone or in binary or ternary mixtures were formulated. Samples were analyzed by visual inspection, polarizing optical microscope, and dynamic light scattering (DLS). The stability of the samples was evaluated up to a 3-month storage. For the scolicidal bioassay, samples at different concentrations of 200, 100, 50, 25, and 10 μg/ml were added to wells containing 104 viable protoscoleces and mortality rates were recorded at 2, 5, 10, and 20 min after exposure. Results of the present study showed that microemulsions formulated with 0.75% of pure carvacrol or the binary mixture of thymol and carvacrol at 0.375% are promising scolicidal agents.
Collapse
Affiliation(s)
| | - Milad Kashani Rad
- Faculty of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran
| | - Mohammad Reza Youssefi
- Department of Veterinary Parasitology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Marco Cespi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Lucia Pavoni
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | |
Collapse
|
11
|
Taghipour A, Ghaffarifar F, Horton J, Dalimi A, Sharifi Z. Silybum marianum ethanolic extract: in vitro effects on protoscolices of Echinococcus granulosus G1 strain with emphasis on other Iranian medicinal plants. Trop Med Health 2021; 49:71. [PMID: 34496975 PMCID: PMC8424884 DOI: 10.1186/s41182-021-00363-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cystic echinococcosis (CE), is a parasitic zoonosis caused by Echinococcus granulosus (E. granulosus) larvae in liver and lungs of both humans and animals. Surgical intervention is the mainstay for CE treatment, using scolicidal agents that inactivate live protoscolices. This study evaluated the scolicidal effects of Silybum marianum ethanolic extract and its combination with albendazole in vitro for the first time. Moreover, in a literature review, we investigated the effects of a wide range of Iranian medicinal plants on protoscolices of E. granulosus. METHODS S. marianum ethanolic extract was prepared and high-performance liquid chromatography (HPLC) analysis was used to establish the proportions of its component compounds in the extract. Cytotoxicity was evaluated in mouse macrophage cells (J774A.1 cell line) using MTT method. Next, the scolicidal activity of the extract alone and combined with albendazole was tested as triplicate at various concentrations incubated for 5, 10, 20, 30, and 60 min. Finally, protoscolex viability was determined using 0.1% eosin as a vital stain. PCR-RFLP and DNA sequencing techniques were used to characterize the genotype of E. granulosus. RESULTS HPLC analysis showed that S. marianum ethanolic extract contained mostly silydianin (14.41%), isosilybin A (10.50%), and silychristin (10.46%). The greatest scolicidal effects were obtained with the combination of S. marianum with albendazole (79%), S. marianum ethanolic extract alone (77%) and albendazole (69%), at a concentration of 500 μg/ml for 60 min, respectively (P < 0.05). Molecular analysis showed that all the cysts used were G1 genotype. CONCLUSION The data suggest that S. marianum ethanolic extract is a potential scolicide in vitro; however, further investigations are required to determine its efficacy in vivo.
Collapse
Affiliation(s)
- Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
12
|
Sousa RMOF, Cunha AC, Fernandes-Ferreira M. The potential of Apiaceae species as sources of singular phytochemicals and plant-based pesticides. PHYTOCHEMISTRY 2021; 187:112714. [PMID: 33845406 DOI: 10.1016/j.phytochem.2021.112714] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/31/2021] [Accepted: 02/21/2021] [Indexed: 05/23/2023]
Abstract
The Apiaceae Lindl. (=Umbelliferae Juss.), which includes several economical important vegetables, herbs, and spices, is one of the most numerous plant family. Umbelliferous crops (namely anise, fennel, carrot, coriander, parsley, etc.) are also valuable sources of botanical flavoring agents and fragrances. In addition, Apiaceae species yield a wide variety of distinctive specialized metabolites (i.e, volatile phenylpropanoids, furanocoumarins, sesquiterpene coumarins, polyacetylenes, and phthalides), some of them been described as uncommon natural phytochemicals exclusive of the family, which offers a great potential for bioprospection. Numerous studies have pointed out the outstanding biological activity of extracts and several classes of phytochemicals from Apiaceae species. Emphasis has been given to essential oils (EOs) and their constituents activities, most likely because this type of plant added value product benefits from a larger acceptance and application potential in integrated pest management (IPM) and integrated vector management (IVM) programs. Several species of the family offer a variety of unique compounds with great potential as biopesticidal and/or synergizing agents. Investigations covering their activity toward agricultural pests and phytopathogens have increased in the last years, nevertheless the interest remains strongly focus on arthropod species, predominantly those acting as vectors of human diseases. From our survey, it is patent the gap of knowledge concerning the potential molluscicidal properties of Apiaceae extracts/phytochemicals, as well as their herbicidal activities against invasive plant species. In this review, we propose to highlight the potential of Apiaceae species as suitable sources of bioactive phytochemicals with great relevance within the frame of plant-based pesticides R&D, and will discuss their applicability in real-world scenarios considering the recent developments regarding the design of stable formulations incorporating Apiaceae bioactive products. We expect that this review will encourage researchers to consider undervalued Apiaceae species as alternative sources of bioactive compounds and will give a contribute to the field by suggesting new research topics.
Collapse
Affiliation(s)
- Rose Marie O F Sousa
- Biology Department, Faculty of Science, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal; GreenUPorto - Sustainable Agrifood Production, Research Centre, Department of Biology, Faculty of Science, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal.
| | - Ana C Cunha
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; Biology Department & CBMA - Centre of Molecular and Environmental Biology (CBMA), School of Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - Manuel Fernandes-Ferreira
- Biology Department, Faculty of Science, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal; GreenUPorto - Sustainable Agrifood Production, Research Centre, Department of Biology, Faculty of Science, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; MAPPROD Lda, Rua António de Mariz, 22, 4715-279, Braga, Portugal.
| |
Collapse
|
13
|
Sonigra P, Meena M. Metabolic Profile, Bioactivities, and Variations in the Chemical Constituents of Essential Oils of the Ferula Genus (Apiaceae). Front Pharmacol 2021; 11:608649. [PMID: 33776754 PMCID: PMC7994278 DOI: 10.3389/fphar.2020.608649] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
The genus Ferula is the third largest and a well-known genus of the Apiaceae family. It is categorized in the Peucedaneae tribe and Ferulinae subtribe of the Apiaceae family. At present, about 180 Ferula species have been reported. The genus is mainly distributed throughout central and South-West Asia (especially Iran and Afghanistan), the far-East, North India, and the Mediterranean. The genus Ferula is characterized by the presence of oleo-gum-resins (asafoetida, sagapenum, galbanum, and ammoniacum) and their use in natural and conventional pharmaceuticals. The main phytochemicals present in the genus Ferula are as follows: coumarin, coumarin esters, sesquiterpenes, sesquiterpene lactones, monoterpene, monoterpene coumarins, prenylated coumarins, sulfur-containing compounds, phytoestrogen, flavonoids and carbohydrates. This genus is considered to be a valuable group of medicinal plants due to its many different biological and pharmacological uses as volatile oils (essential oils). Numerous biological activities are shown by the chemical components of the essential oils obtained from different Ferula species. Because this genus includes many bioactivities such as antimicrobial, insecticidal, antioxidant, cytotoxic, etc., researchers are now focusing on this genus. Several reviews are already available on this particular genus, including information about the importance and the uses of all the phytochemicals found in the species of Ferula. Despite this, no review that specifically provides information about the biological activities of Ferula-derived essential oils, has been published yet. Therefore, the present review has been conducted to provide important information about the chemical profile, factors affecting the chemical composition, and biological activities of essential oils of the Ferula species.
Collapse
|
14
|
Ali R, Khan S, Khan M, Adnan M, Ali I, Khan TA, Haleem S, Rooman M, Norin S, Khan SN. A systematic review of medicinal plants used against Echinococcus granulosus. PLoS One 2020; 15:e0240456. [PMID: 33048959 PMCID: PMC7553295 DOI: 10.1371/journal.pone.0240456] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic helminthiasis caused by different species of the genus Echinococcus, and is a major economic and public health concern worldwide. Synthetic anthelmintics are most commonly used to control CE, however, prolonged use of these drugs may result in many adverse effects. This study aims to discuss the in vitro/in vivo scolicidal efficacy of different medicinal plants and their components used against Echinococcus granulosus. Google Scholar, ScienceDirect, PubMed and Scopus were used to retrieve the published literature from 2000-2020. A total of 62 published articles met the eligibility criteria and were reviewed. A total of 52 plant species belonging to 22 families have been reported to be evaluated as scolicidal agents against E. granulosus worldwide. Most extensively used medicinal plants against E. granulosus belong to the family Lamiaceae (25.0%) followed by Apiaceae (11.3%). Among various plant parts, leaves (36.0%) were most commonly used. Essential oils of Zataria multiflora and Ferula asafetida at a concentration of 0.02, and 0.06 mg/ml showed 100% in vitro scolicidal activity after 10 min post application, respectively. Z. multiflora also depicted high in vivo efficacy by decreasing weight and size while also causing extensive damage to the germinal layer of the cysts. Plant-based compounds like berberine, thymol, and thymoquinone have shown high efficacy against E. granulosus. These plant species and compounds could be potentially used for the development of an effective drug against E. granulosus, if further investigated for in vivo efficacy, toxicity, and mechanism of drug action in future research.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Marina Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ijaz Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Taj Ali Khan
- Department of Biotechnology and Genetics Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sumbal Haleem
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Rooman
- Department of Zoology, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Sadia Norin
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
15
|
In Vitro Scolicidal Activity of the Sesquiterpenes Isofuranodiene, α-Bisabolol and Farnesol on Echinococcus granulosus Protoscoleces. Molecules 2020; 25:molecules25163593. [PMID: 32784679 PMCID: PMC7464821 DOI: 10.3390/molecules25163593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/13/2023] Open
Abstract
Cystic echinococcosis (CE) remains an important challenge both in humans and animals. There is no safe and suitable remedy for CE, so the discovery of new compounds with promising scolicidal effects, particularly from herbal sources, is of great importance for therapeutic uses in the treatment and prevention of CE reappearance. Sesquiterpenes are C15 organic compounds made up of three isoprene units and mostly occurring as fragrant components of essential oils. They are of economic importance for the cosmetic and pharmaceutical industry, and recently attracted the attention of the scientific community for their remarkable parasiticidal properties. In the present study, we have focused on three known sesquiterpenes, isofuranodiene (IFD), α-bisabolol (BSB), and farnesol (FOH), as important phytoconstituents of the essential oils of wild celery (Smyrnium olusatrum), chamomile (Matricaria chamomilla), and acacia farnese (Vachellia farnesiana), respectively. Protoscoleces were recovered from fertile hydatid cysts and were exposed to different concentrations of the three tested compounds for different exposure times. The viability of protoscoleces was confirmed by 0.1% eosin staining. Results of scolicidal activity evaluations showed that IFD possessed the best effect against Echinococcus granulosus protoscoleces (LC50 and LC90 values of 8.87 and 25.48 µg/mL, respectively), followed by BSB (LC50 of 103.2 µg/mL) and FOH (LC50 of 113.68 µg/mL). The overall toxicity of IFD differed significantly from those of FOH and BSB, while there was no significant difference in toxicity between the latter compounds (p > 0.05). The present study showed that IFD seems to be a promising scolicidal agent and can be further tested to become a candidate for CE treatment.
Collapse
|