1
|
Wen J, Xiang Q, Guo J, Zhang J, Yang N, Huang Y, Chen Y, Hu T, Rao C. Pharmacological activities of Zanthoxylum L. plants and its exploitation and utilization. Heliyon 2024; 10:e33207. [PMID: 39022083 PMCID: PMC11252797 DOI: 10.1016/j.heliyon.2024.e33207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and exploitation and utilizations of Zanthoxylum L. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. This article uses "Zanthoxylum L." "Zanthorylum bungeanum" as the keywords and collects relevant information on Zanthoxylum L. plants through electronic searches (Elsevier, PubMed, ACS, Web of Science, Science Direct, CNKI, Google Scholar), relevant books, and classic literature about Chinese herb. The plants of this genus are rich in volatile oils, alkaloids, amides, lignans, coumarins and organic acids, and has a wide range of pharmacological activities, including but not limited to anti-inflammatory, analgesic, anti-tumor, hypoglycemic, hypolipidemic, antioxidant and anti-infectious. This article reviewed both Chinese and international research progress on the active ingredients and pharmacological activities of Zanthoxylum L. as well as the applications of this genus in the fields of food, medicinal and daily chemicals, and clarified the material basis of its pharmacological activities. Based on traditional usage, phytochemicals, and pharmacological properties, of Zanthoxylum L. species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Zanthoxylum L. is a potential medicinal and edible plant with diverse pharmacological effects. Due to its various advantages, it may have vast application potential in the food and medicinal industries and daily chemicals. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of Zanthoxylum L. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
2
|
Reséndiz-González G, Olmedo-Juárez A, González-Garduño R, Cortes-Morales JA, González-Cortazar M, Sánchez-Mendoza AE, López-Arellano ME, Mercado-Márquez C, Lara-Bueno A, Higuera-Piedrahita RI. Anthelmintic efficacy of an organic fraction from Guazuma ulmifolia leaves and evaluation of reactive oxidative stress on Haemonchus contortus. Exp Parasitol 2024; 261:108768. [PMID: 38679124 DOI: 10.1016/j.exppara.2024.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
This study describes the anthelmintic efficacy of an organic fraction (EtOAc-F) from Guazuma ulmifolia leaves and the evaluation of its reactive oxidative stress on Haemonchus contortus. The first step was to assess the anthelmintic effect of EtOAc-F at 0.0, 3.5, 7.0 and 14 mg kg of body weight (BW) in gerbil's (Meriones unguiculatus) artificially infected with H. contortus infective larvae (L3). The second step was to evaluate the preliminary toxicity after oral administration of the EtOAc-F in gerbils. Finally, the third step was to determine the relative expression of biomarkers such as glutathione (GPx), catalase (CAT), and superoxide dismutase (SOD) against H. contortus L3 post-exposition to EtOAc-F. Additionally, the less-polar compounds of EtOAc-F were identified by gas mass spectrophotometry (GC-MS). The highest anthelmintic efficacy (97.34%) of the organic fraction was found in the gerbils treated with the 14 mg/kg of BW. Histopathological analysis did not reveal changes in tissues. The relative expression reflects overexpression of GPx (p<0.05, fold change: 14.35) and over expression of SOD (p≤0.05, fold change: 0.18) in H. contortus L3 exposed to 97.44 mg/mL of EtOAc-F compared with negative control. The GC-MS analysis revealed the presence of 4-hydroxybenzaldehyde (1), leucoanthocyanidin derivative (2), coniferyl alcohol (3), ferulic acid methyl ester acetate (4), 2,3,4-trimethoxycinnamic acid (5) and epiyangambin (6) as major compounds. According to these results, the EtOAc-F from G. ulmifolia leaves exhibit anthelmintic effect and increased the stress biomarkers on H. contortus.
Collapse
Affiliation(s)
- Guillermo Reséndiz-González
- Universidad Autónoma Chapingo, Departamento de Zootecnia, Posgrado en Producción Animal, Carretera Federal México-Texcoco Km 38.5, CP 56230, Texcoco, Mexico
| | - Agustín Olmedo-Juárez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Carretera Federal Cuernavaca-Cuautla No. 8534, C.P. 62574, Col. Progreso, Jiutepec, Morelos, Mexico
| | - Roberto González-Garduño
- Universidad Autónoma Chapingo, Departamento de Zootecnia, Posgrado en Producción Animal, Carretera Federal México-Texcoco Km 38.5, CP 56230, Texcoco, Mexico
| | - Jorge Alberto Cortes-Morales
- Universidad Autónoma del Estado de Morelos, Centro de Investigación en Biodiversidad y Conservación, Av. Universidad 1001, Colonia Chamilpa, Cuernavaca, CP 62209, Mexico
| | - Manasés González-Cortazar
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica Del Sur, Argentina No.1, Xochitepec, CP 62790, Mexico
| | - Ana Elvia Sánchez-Mendoza
- Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Cuautitlán, Unidad de Investigación Multidisciplinaria, Laboratorio 3, Carretera Cuautitlán-Teoloyucan Km 2.5, 54714, San Sebastián Xhala, Cuautitlán, Mexico
| | - María Eugenia López-Arellano
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Carretera Federal Cuernavaca-Cuautla No. 8534, C.P. 62574, Col. Progreso, Jiutepec, Morelos, Mexico
| | - Crisóforo Mercado-Márquez
- Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Cuautitlán, Unidad de Investigación Multidisciplinaria, Laboratorio 3, Carretera Cuautitlán-Teoloyucan Km 2.5, 54714, San Sebastián Xhala, Cuautitlán, Mexico
| | - Alejandro Lara-Bueno
- Universidad Autónoma Chapingo, Departamento de Zootecnia, Posgrado en Producción Animal, Carretera Federal México-Texcoco Km 38.5, CP 56230, Texcoco, Mexico.
| | - Rosa Isabel Higuera-Piedrahita
- Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Cuautitlán, Unidad de Investigación Multidisciplinaria, Laboratorio 3, Carretera Cuautitlán-Teoloyucan Km 2.5, 54714, San Sebastián Xhala, Cuautitlán, Mexico.
| |
Collapse
|
3
|
Agrawal N, Goyal D, Goyal A. A review on multi-therapeutic potential of (-)-cubebin: experimental evidences. Nat Prod Res 2023; 37:4290-4301. [PMID: 36775642 DOI: 10.1080/14786419.2023.2177849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 02/14/2023]
Abstract
Lignans are a large category of polyphenolic compounds that have low molecular weight and are widely distributed in the plant kingdom. They have been recognized for their potential antioxidizing and antiproliferative action. One of the most important lignans is cubebin which is abundantly isolated from the leaves and seeds of Piper cubeba and Piper nigrum. Cubebin possesses numerous biological actions such as antileukemic, trypanocidal, antimycobacterial, analgesic, anti-inflammatory, histamine antagonist, antifungal, and antispasmodic. This review discusses the in vitro and in vivo pharmacological studies on cubebin related to biochemistry and pharmacological applications and it ensures that it widely shows therapeutic potential. We expect that these therapeutic actions will set a new track in the formation of novel biological agents by the derivatization of cubebin. This review will assuredly fascinate countless researchers to begin further experimentation that might lead to novel agents for the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Deepika Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
4
|
Mbosso Teinkela JE, Nguemfo EL, Fokou Nzodjou T, Bogning Zangueu C, Kalinski JC, Tsakem B, Assob Nguedia JC, Siwe Noundou X. Antihypertensive potential of the stem bark of Canarium schweinfurthii Engl. (Burseraceae) in wistar rats: UPLC-ESI-QToF-MS/MS-based prediction of antihypertensive phytochemicals. Heliyon 2023; 9:e21841. [PMID: 38027816 PMCID: PMC10663920 DOI: 10.1016/j.heliyon.2023.e21841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Canarium schweinfurthii, also called ''Elemierd'Afrique'', is used in Cameroonian folk medicine (bark decoction) to treat patients suffering from hypertension.Aim of the study: This study aimed at evaluating the antihypertensive activities of the stem bark of Canarium schweinfurthii and identifying potential compounds present in its extract that may support or oppose its ethnomedicinial use. MATERIALS AND METHODS Stem bark extract of Canarium schweinfurthii was prepared by maceration using 70 % ethanol followed by redissolution in methanol and hyphenated. Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) analysis for the detection and characterisation of secondary metabolites. Antihypertensive effects were assessed in Wistar rats after induction of hypertension with sodium chloride (NaCl) 18 % at a dose of 0.01mL/gbody weight once a day for four weeks.Hemodynamic parameters were measured weekly by anon-invasive method using the CODA system. RESULTS The ethanolic bark extract of C. schweinfurthii significantly inhibited the increase of blood pressure with a maximum of 23.18 % (systolic pressure, p < 0.0001), 24.77 % (diastolic pressure, p < 0.001) and 22.95 % (mean pressure, p < 0.0001) at a dose of 200 mg/kgbody weight at the 4th week, compared to agroup of Wistar rats that received only NaCl (negative control). Similarly, the extract significantly inhibited the increase in heart rate by 18.84 % (p < 0.001) at 200 mg/kgbody weight at week four. Hematological parameters did not differ significantly between the extract-treated and control groups. The UPLC-MS/MS spectrometric analysis provided evidence for the presence of several C30 terpenoids containing three or five oxygen atoms and exhibiting pentacyclic triterpenoid structures, as well as C29 terpenoids and related compounds containing nitrogen in addition to oxygen, using spectral matching, and in silico molecular formula and structure prediction. Additionally, two features were annotated with high-confidence as lignans, structurally closely related to hinokinin and dehydrocubebin through MS/MS-based in silico structure prediction using CSI: Finger ID in SIRIUS5. The lignans have been previously reported from stem bark of plants belonging to the Burseraceae family. Conclusion: The ethanolic stem bark extract of C. schweinfurthii demonstrated antihypertensive properties on the tested Wistar rats. These results support the ethnopharmacological use of C. schweinfurthii concoctions for the treatment of hypertension and suggest a protective effect against salt damage, hypothetically by the up regulation of antioxidative enzymes and/or lipids, mitigatings membrane peroxidation.
Collapse
Affiliation(s)
- Jean Emmanuel Mbosso Teinkela
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701 Douala, Cameroon
| | - Edwige Laure Nguemfo
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701 Douala, Cameroon
| | - Thierry Fokou Nzodjou
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701 Douala, Cameroon
| | - Calvin Bogning Zangueu
- Department of Biology and Physiology of Animal Organisms, Faculty of Sciences, University of Douala, P.O. Box 24157 Douala, Cameroon
| | - Jarmo-Charles Kalinski
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda 6140, South Africa
| | - Bienvenu Tsakem
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Jules Clement Assob Nguedia
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701 Douala, Cameroon
| | - Xavier Siwe Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 60, Pretoria 0204, South Africa
| |
Collapse
|
5
|
Jato J, Waindok P, Ngnodandi FNBF, Orman E, Agyare C, Bekoe EO, Strube C, Hensel A, Liebau E, Spiegler V. Anthelmintic Activities of Extract and Ellagitannins from Phyllanthus urinaria against Caenorhabditis elegans and Zoonotic or Animal Parasitic Nematodes. PLANTA MEDICA 2023; 89:1215-1228. [PMID: 37459860 DOI: 10.1055/a-2117-9426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The aerial parts of Phyllanthus urinaria are used in traditional medicine in West Africa against helminthiasis, but their anthelmintic potential has not been evaluated until now. Within the current study, a hydroacetonic extract (AWE) and fractions and isolated ellagitannins from P. urinaria were, therefore, tested in vitro against Caenorhabditis elegans and the larvae of the animal parasites Toxocara canis, Ascaris suum, Ancylostoma caninum, and Trichuris suis. Compounds 1: - 13: , mainly representing ellagitannins, were isolated using different chromatographic methods, and their structures were elucidated by HR-MS and 1H/13C-NMR. AWE exerted concentration-dependent lethal effects (LC50 of 2.6 mg/mL) against C. elegans and inhibited larval migration of all animal parasites tested (T. suis L1 IC50 24.3 µg/mL, A. suum L3 IC50 35.7 µg/mL, A. caninum L3 IC50 112.8 µg/mL, T. canis L3 IC50 1513.2 µg/mL). The anthelmintic activity of AWE was mainly related to the polar, tannin-containing fractions. Geraniin 1: , the major ellagitannin in the extract, showed the strongest anthelmintic activity in general (IC50 between 0.6 and 804 µM, depending on parasite species) and was the only compound active against A. caninum (IC50 of 35.0 µM). Furosin 9: was least active despite structural similarities to 1: . Among the parasites tested, Trichuris suis L1 larvae turned out to be most sensitive with IC50 of 0.6, 6.4, 4.0, 4.8, and 2.6 µM for geraniin 1: , repandusinic acid A 3: , punicafolin 8: , furosin 9: , and phyllanthusiin A 10: , respectively.
Collapse
Affiliation(s)
- Jonathan Jato
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
- Kwame Nkrumah University of Science and Technology, Faculty of Pharmacy and Pharmaceutical Sciences, Kumasi, Ghana
- University of Health and Allied Sciences, School of Pharmacy, Ho, Ghana
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster, Germany
| | - Patrick Waindok
- University of Veterinary Medicine Hannover, Institute for Parasitology, Centre for Infection Medicine, Hannover, Germany
| | | | - Emmanuel Orman
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
- University of Health and Allied Sciences, School of Pharmacy, Ho, Ghana
| | - Christian Agyare
- Kwame Nkrumah University of Science and Technology, Faculty of Pharmacy and Pharmaceutical Sciences, Kumasi, Ghana
| | - Emelia Oppong Bekoe
- University of Ghana, College of Health Science, School of Pharmacy, Accra, Ghana
| | - Christina Strube
- University of Veterinary Medicine Hannover, Institute for Parasitology, Centre for Infection Medicine, Hannover, Germany
| | - Andreas Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Eva Liebau
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster, Germany
| | - Verena Spiegler
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| |
Collapse
|
6
|
Abdelmohsen UR, Bayoumi SAL, Mohamed NM, Mostafa YA, Ngwa CJ, Pradel G, Farag SF. Naturally occurring phenylethanoids and phenylpropanoids: antimalarial potential. RSC Adv 2023; 13:26804-26811. [PMID: 37692342 PMCID: PMC10483269 DOI: 10.1039/d3ra04242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
Malaria as an infectious disease is one of the world's most dangerous parasitic diseases. There is an urgent need for the development of new antimalarial drugs. Natural products are a very rich source of new bioactive compounds. Our research aims to shed light on the recent studies which demonstrated the antimalarial potential of phenylpropanoids as a major natural-products class. This study involves an in silico analysis of naturally-occurring phenylpropanoids and phenylethanoids which showed 25 compounds with moderate to strong binding affinity to various amino acid residues lining the active site; P. falciparum kinase (PfPK5), P. falciparum cytochrome bc1 complex (cyt bc1), and P. falciparum lysyl-tRNA synthetase (PfKRS1); of Plasmodium falciparum parasite, a unicellular protozoan which causes the most severe and life-threatening malaria. Furthermore, the study was augmented by the assessment of antiplasmodial activity of glandularin, a naturally occurring dibenzylbutyrolactolic lignan, against chloroquine-sensitive 3D7 strain of P. falciparum using SYBR green I-based fluorescence assay, which showed high antimalarial activity with IC50 value of 11.2 μM after 24 hours of incubation. Our results highlight phenylpropanoids and glandularin in particular as a promising chemical lead for development of antimalarial drugs.
Collapse
Affiliation(s)
- Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 7 Universities Zone 61111 New Minia City Egypt
| | - Soad A L Bayoumi
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut Assiut 77771 Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University 71526 Assiut Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut Assiut 77771 Egypt
| | - Che J Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University 52074 Aachen Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University 52074 Aachen Germany
| | - Salwa F Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Department of Pharmacognosy, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| |
Collapse
|
7
|
Chylinski C, Degnes KF, Aasen IM, Ptochos S, Blomstrand BM, Mahnert KC, Enemark HL, Thamsborg SM, Steinshamn H, Athanasiadou S. Condensed tannins, novel compounds and sources of variation determine the antiparasitic activity of Nordic conifer bark against gastrointestinal nematodes. Sci Rep 2023; 13:13498. [PMID: 37596334 PMCID: PMC10439207 DOI: 10.1038/s41598-023-38476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/09/2023] [Indexed: 08/20/2023] Open
Abstract
The antiparasitic potential of plants could offer a vital solution to alleviating the costs of gastrointestinal nematode (GIN) infections in ruminant production globally. Leveraging known bioactive molecules, however, is complex, where plant species, extraction processes and seasonality impact bioavailability and efficacy. This study assessed the impact of a comprehensive set of factors on the antiparasitic activity of Norwegian conifers to identify bark compounds specific against GIN. Antiparasitic activity was determined using in vitro assays targeting morphologically distinct life stages of ovine GIN: the egg hatch assay and larval motility assay. In depth characterisation of the chemical composition of the bark extracts was carried out using chromatographic separation, UV-absorbance, and molecular mass profiles to identify compounds implicated in the activity. Three key findings emerged: (1) the activity of bark extracts varied markedly from 0 to 100% antiparasitic efficacy, owing to tree species, extraction solvent and seasonality; (2) the GIN exhibited species-and stage-specific susceptibility to the bark extracts; (3) the presence of condensed tannins, amongst other compounds, was associated with anthelmintic activity. These findings add new insights into urgently needed alternative parasite control strategies in livestock.
Collapse
Affiliation(s)
- Caroline Chylinski
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Roslin, EH25 9RG, UK
| | | | - Inga Marie Aasen
- Department of Biotechnology and Nanomedicine, SINTEF, 7465, Trondheim, Norway
| | - Sokratis Ptochos
- Department of Animal Health, Animal Welfare and Food Safety, Norwegian Veterinary Institute, 1433, Ås, Norway
| | | | | | - Heidi Larsen Enemark
- Department of Animal Health, Animal Welfare and Food Safety, Norwegian Veterinary Institute, 1433, Ås, Norway
| | - Stig Milan Thamsborg
- Veterinary Parasitology, University of Copenhagen, Dyrlægevej 100, 1870, Frederiksberg, Denmark
| | - Håvard Steinshamn
- Division of Food Production and Society, Grasslands and Livestock, Norwegian Institute of Bioeconomy Research, 6630, Tingvoll, Norway
| | - Spiridoula Athanasiadou
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Roslin, EH25 9RG, UK.
| |
Collapse
|
8
|
Drissi B, Mahdi I, Yassir M, Ben Bakrim W, Bouissane L, Sobeh M. Cubeb ( Piper cubeba L.f.): A comprehensive review of its botany, phytochemistry, traditional uses, and pharmacological properties. Front Nutr 2022; 9:1048520. [PMID: 36483927 PMCID: PMC9725028 DOI: 10.3389/fnut.2022.1048520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 06/21/2024] Open
Abstract
Piper cubeba L.f. (Piperaceae), known as cubeb, is a popular traditional herbal medicine used for the treatment of many diseases, especially digestive and respiratory disorders. The plant is rich in essential oil, found mainly in fruits, and this makes it economically important. Many traditional utilizations have been also validated from the plant and its isolated compounds owing to their antioxidant, antibacterial, anti-inflammatory and anticancer effects. These biological activities are attributed to the phytochemicals (phenolic compounds, lignans and alkaloids) and the essential oil of the plant. The present work aims to provide an up-to-date review on the traditional uses, phytochemistry and pharmacology of the plant and discusses the future perspectives to promote its valorization for nutritional- and health-promoting effects.
Collapse
Affiliation(s)
- Badreddine Drissi
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Ismail Mahdi
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Mouna Yassir
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
9
|
Brito JR, Wilairatana P, Roquini DB, Parra BC, Gonçalves MM, Souza DCS, Ferreira EA, Salvadori MC, Teixeira FS, Lago JHG, de Moraes J. Neolignans isolated from Saururus cernuus L. (Saururaceae) exhibit efficacy against Schistosoma mansoni. Sci Rep 2022; 12:19320. [PMID: 36369516 PMCID: PMC9652300 DOI: 10.1038/s41598-022-23110-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis, a parasitic disease caused by the blood fluke of the genus Schistosoma, affects over 230 million people, especially in developing countries. Despite the significant economic and public health consequences, only one drug is currently available for treatment of schistosomiasis, praziquantel. Thus, there is an urgent demand for new anthelmintic agents. Based on our continuous studies involving the chemical prospection of floristic biodiversity aiming to discover new bioactive compounds, this work reports the in vitro antiparasitic activity against Schistosoma mansoni adult worms of neolignans threo-austrobailignan-6 and verrucosin, both isolated from Saururus cernuus L. (Saururaceae). These neolignans showed a significant in vitro schistosomicidal activity, with EC50 values of 12.6-28.1 µM. Further analysis revealed a pronounced reduction in the number of S. mansoni eggs. Scanning electron microscopy analysis revealed morphological alterations when schistosomes were exposed to either threo-austrobailignan-6 or verrucosin. These relevant antischistosomal properties were accompanied by low cytotoxicity potential against the animal (Vero) and human (HaCaT) cell lines, resulting in a high selectivity index. Considering the promising chemical and biological properties of threo-austrobailignan-6 and verrucosin, this research should be of interest to those in the area of neglected diseases and in particular antischistosomal drug discovery.
Collapse
Affiliation(s)
- Juliana R Brito
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP, 09972-270, Brazil
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Daniel B Roquini
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, SP, 07023-070, Brazil
| | - Beatriz C Parra
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, SP, 07023-070, Brazil
| | - Marina M Gonçalves
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, 09210-180, Brazil
| | - Dalete Christine S Souza
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, 09210-180, Brazil
| | - Edgard A Ferreira
- School of Engineering, Mackenzie Presbyterian University, São Paulo, SP, 01302-907, Brazil
| | - Maria C Salvadori
- Institute of Physics, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Fernanda S Teixeira
- Institute of Physics, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - João Henrique G Lago
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, 09210-180, Brazil.
| | - Josué de Moraes
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, SP, 07023-070, Brazil.
| |
Collapse
|
10
|
Gomes AC, Borges A, Zoca DG, Silva MLAE, Machado ARDSR, Machado AM, Santos MFC, de Laurentiz RDS. Larvicidal potential of extracts and isolated compounds from Piper cubeba fruits against Aedes aegypti (Diptera: Culicidae) larvae. Nat Prod Res 2022:1-8. [PMID: 36214554 DOI: 10.1080/14786419.2022.2131784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aedes aegypti is the primary vector of virus transmission that causes dengue, yellow fever, chikungunya and zika. The primary prevention method has been vector control and synthetic insecticides that can cause environmental side effects. Thus, the work aimed to evaluate the larvicidal potential of extracts and isolated compounds from Piper cubeba against A. aegypti larvae. The larvicidal activity method was executed according to the World Health Organization protocol. The larvae were analyzed by scanning electron microscopy (SEM). Through molecular docking, the action mechanism was investigated. The hydroalcoholic and hexane extracts showed similar larvicidal activity with LC50 of 191.1 μg/mL and 185.84 μg/mL, respectively. Between isolated compounds, hinokinin presented LC50= 97.74 μg/mL. The SEM analysis showed structural damage to the larva's tegument caused by extracts and isolated compounds. Therefore, the results demonstrate the larvicidal action of hinokinin and extracts, which can lead to the development of new natural larvicides.
Collapse
Affiliation(s)
- Ana Carolina Gomes
- Departamento de Física e Química, Faculdade de Engenharia de Ilha Solteira, UNESP – Univ Estadual Paulista, Ilha Solteira, São Paulo, Brazil
| | - Alexandre Borges
- Faculdade de Medicina, Centro Universitário – UNIFUNEC, Santa Fé do Sul, São Paulo, Brazil
| | - Daniela Garcia Zoca
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, São Paulo, Brazil
| | | | | | - Alex Martins Machado
- Laboratório de Virologia da, Universidade Federal de Mato Grosso do Sul – UFMS, Três Lagoas, Mato Grosso do Sul, Brazil
| | - Mario F. C. Santos
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alto Universitário, Alegre, Espírito Santo, Brazil
| | - Rosangela da Silva de Laurentiz
- Departamento de Física e Química, Faculdade de Engenharia de Ilha Solteira, UNESP – Univ Estadual Paulista, Ilha Solteira, São Paulo, Brazil
| |
Collapse
|
11
|
In Vitro Nematocidal Effect and Anthelmintic Activity of Artemisia cina Against Haemonchus contortus in Gerbils and Relative Expression of Hc29 Gene in Transitional Larvae (L 3-L 4). Acta Parasitol 2021; 66:938-946. [PMID: 33721186 DOI: 10.1007/s11686-021-00364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE (1) To assess the in vitro activity of Artemisia cina against Haemonchus contortus L3 (HcL3) and in transitional (L3-L4) larvae (HcTrL3-L4); (2) to quantify the relative expression of the Hc29 gene in HcTrL3-L4 exposed to the A. cina n-hexane extract; and (3) to assess the anthelmintic activity (AA) of the A. cina organic extracts in gerbils artificially infected with H. contortus (HcArt/inf/gerbs). METHODS The in vitro assay was carried out in 96-well microtitration plates. The following A. cina extracts: ethyl acetate (Ac-EtOAcEx), n-hexane (Ac-n-HexEx), and methanol (Ac-MethEx) were assessed at 1 and 2 mg/mL against HcL3 and HcTrL3-L4 at 24 h exposure. Relative expression of the Hc29 gene in HcTrL3-L4 was obtained by RT-PCR. For assessing the AA, six groups of five HcArt/inf/gerbs were used. Groups were treated orally with 4 mg/kg BW of A. cina extracts. Five days after treatment, the gerbils were necropsied and nematodes counted. RESULTS The highest in vitro activities (75 and 82.6%) were shown by Ac-n-HexEx at 1 and 2 mg/mL, respectively. For HcTrL3-L4 the highest in vitro activities (69 and 23%) were shown by Ac-n-HexEx and isoguaiacine at 0.625 mg/mL, respectively. Also, upregulation of H. contortus Hc29 gene by 13- and 80-fold (p < 0.01) was observed on the HcTrL3-L4 stage after exposure to Ac-n-HexEx extract and isoguaiacine at 0.078 mg/mL, respectively. Reduction percentage was 100% in HcArt/inf/gerbs treated with Ac-n-HexEx. CONCLUSIONS We conclude that the Ac-n-HexEx and isoguaiacine compound had anthelmintic efficacy against H. contortus and L3 and HcTrL3-L4.
Collapse
|
12
|
Viana Cruz DL, Sumita TC, Silva Leão Ferreira M, Soares da Silva J, Pinto ACDS, Marques Barcellos JF, Rafael MS. Histopathological, cytotoxicological, and genotoxic effects of the semi-synthetic compound dillapiole n-butyl ether in Balb/C mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:604-615. [PMID: 32787530 DOI: 10.1080/15287394.2020.1804026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dillapiole n-butyl ether is a substance derived from dillapiole, which exhibits potential insecticidal effects on Aedes aegypti, the principal vector of the Dengue fever, Zika, and Chikungunya viruses, as well as Aedes albopictus, a vector of Dengue fever. As these mosquitoes are resistant to synthetic insecticides, dillapiole n-butyl ether may represent a valuable, plant-based alternative for their control. Dillapiole n-butyl ether has insecticidal and genotoxic effects on A. aegypti and A. albopictus, as shown by the reduction in clutch size and egg viability, and increased mortality rates, as well as a high frequency of micronuclei and chromosomal aberrations. However, the potential cytotoxic and genotoxic effects of this substance in mammals are still unknown. In Balb/C mice, structural changes were detected in hepatic, renal, and cardiac tissues, which were directly proportional to the concentration of the dose applied, in both genders. The induction of genotoxic, mutagenic, and cytotoxic effects was also observed at the highest concentrations (150 and 328 mg/kg). Further research will be necessary to better characterize the potential genotoxicity of this substance at lower concentrations, for the evaluation of the potential health risks related to its presence in environmental features, such as drinking water.
Collapse
Affiliation(s)
- Daniel Luís Viana Cruz
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia - INPA , Manaus, AM, Brazil
| | - Tania Cristina Sumita
- Laboratório Temático Biotério Central, Instituto Nacional de Pesquisas da Amazônia - INPA , Manaus, AM, Brazil
| | | | - Junielson Soares da Silva
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia - INPA , Manaus, AM, Brazil
| | - Ana Cristina da Silva Pinto
- Laboratório de Vetores da Malária e Dengue, Coordenação de Sociedade, Ambiente e Saúde - COSAS /INPA , Manaus, AM, Brazil
| | | | - Míriam Silva Rafael
- Laboratório de Vetores da Malária e Dengue, Coordenação de Sociedade, Ambiente e Saúde - COSAS /INPA , Manaus, AM, Brazil
| |
Collapse
|