1
|
Vats A, Laimins L. How human papillomavirus (HPV) targets DNA repair pathways for viral replication: from guardian to accomplice. Microbiol Mol Biol Rev 2025; 89:e0015323. [PMID: 39868790 PMCID: PMC11948491 DOI: 10.1128/mmbr.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles. HPVs activate key DDR pathways such as ATM, ATR, and FA, which are critical for maintaining genomic integrity but are often dysregulated in cancers. Importantly, these DDR pathways are essential for HPV replication in undifferentiated cells and amplification upon differentiation. The ability to modulate these DDR pathways not only enables HPV persistence but also contributes to cellular transformation. In this review, we discuss the recent advances in understanding the mechanisms by which HPV manipulates the host DDR pathways and how these depend upon enhanced topoisomerase activity and R-loop formation. Furthermore, the strategies to manipulate DDR pathways utilized by high-risk HPVs are compared with those used by other DNA viruses that exhibit similarities and distinct differences.
Collapse
Affiliation(s)
- Arushi Vats
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Laimonis Laimins
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Bénard EA, Carceller AM, Mayrand M, Lacroix J, Niyibizi J, Laporte L, Comète E, Coutlée F, Trottier H. Viral Load of Human Papillomavirus (HPV) During Pregnancy and Its Association With HPV Vertical Transmission. J Med Virol 2025; 97:e70221. [PMID: 39912394 PMCID: PMC11800320 DOI: 10.1002/jmv.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
Little is known on the dynamics of human papillomavirus (HPV) viral load during pregnancy and on the impact of viral load on HPV vertical transmission. We described viral loads for several genotypes during pregnancy and analyse its association with vertical transmission. Data were analysed from the HERITAGE study, a cohort of pregnant women recruited between 2010 and 2016 in three centres in Canada. Vaginal samples were collected at the first and third trimesters of pregnancy, placental samples were collected at birth, and conjunctival, oral, pharyngeal, and genital samples were collected in children at birth and 3 months were tested for HPV DNA and viral load by Linear Array essay. The association between viral load and vertical transmission was measured using logistic regression. Odd ratios (ORs) and their 95% Confidence intervals (CI) were adjusted for age of the mother. We included women in the cohort infected with the 13 most common genotypes during pregnancy (n = 287). A decrease in HPV viral load was observed during pregnancy (median difference between the third and first trimester of pregnancy = -0.005 copies/cell [p < 0.05]). Women with more than 2 HPV copies/cell (compared to those with ≤ 2 copies) at first trimester had a statistically significant higher risk of vertical transmission (adjusted OR = 6.41; 95% CI: 1.10-37.34 for any genotypes and OR = 17.17; 95% CI: 1.18-250.28 for HPV-16). Viral load values analysed continuously or categorized with different cut-offs showed comparable results. HPV viral load varied during pregnancy and was strongly associated with HPV vertical transmission. The results provide a better understanding of risk factors associated with vertical transmission.
Collapse
Affiliation(s)
- Eméra Alice Bénard
- Department of Social and Preventive MedicineUniversité de MontréalMontrealCanada
- Centre de Recherche du Centre Hospitalier Universitaire Sainte‐Justine, Université de MontréalMontrealCanada
| | - Ana Maria Carceller
- Centre de Recherche du Centre Hospitalier Universitaire Sainte‐Justine, Université de MontréalMontrealCanada
- Centre Hospitalier Universitaire Sainte‐Justine, Université de MontréalMontrealCanada
- Department of PediatricsCentre Hospitalier Universitaire Sainte‐Justine, Université de MontréalMontrealCanada
| | - Marie‐Hélène Mayrand
- Centre de Recherche du Centre Hospitalier de l'Université de MontréalMontrealCanada
- Department of Obstetrics and GynecologyUniversité de MontréalMontrealCanada
| | - Jacques Lacroix
- Department of PediatricsCentre Hospitalier Universitaire Sainte‐Justine, Université de MontréalMontrealCanada
| | - Joseph Niyibizi
- Department of Social and Preventive MedicineUniversité de MontréalMontrealCanada
- Centre de Recherche du Centre Hospitalier Universitaire Sainte‐Justine, Université de MontréalMontrealCanada
| | - Louise Laporte
- Centre de Recherche du Centre Hospitalier Universitaire Sainte‐Justine, Université de MontréalMontrealCanada
| | - Emilie Comète
- Centre de Recherche du Centre Hospitalier de l'Université de MontréalMontrealCanada
| | - François Coutlée
- Department of Social and Preventive MedicineUniversité de MontréalMontrealCanada
- Centre de Recherche du Centre Hospitalier Universitaire Sainte‐Justine, Université de MontréalMontrealCanada
- Centre de Recherche du Centre Hospitalier de l'Université de MontréalMontrealCanada
- Département Clinique de Médecine de Laboratoire et de MédecineServices de Biologie Moléculaire et D'Infectiologie
- Centre Hospitalier de l'Université de MontréalMontréalQuébecCanada
- Département de MicrobiologieInfectiologie et Immunologie, Université de MontréalMontrealQCCanada
| | - Helen Trottier
- Department of Social and Preventive MedicineUniversité de MontréalMontrealCanada
- Centre de Recherche du Centre Hospitalier Universitaire Sainte‐Justine, Université de MontréalMontrealCanada
| |
Collapse
|
3
|
Zhao Y, Zhao M, Zhang W. Identification of a novel papillomavirus in oral swabs from giant pandas ( Ailuropoda melanoleuca). Front Vet Sci 2025; 11:1457471. [PMID: 39830168 PMCID: PMC11738909 DOI: 10.3389/fvets.2024.1457471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
To fully characterize papillomavirus diversity in giant pandas (Ailuropoda melanoleuca), we identified a novel papillomavirus (named AmPV5, GenBank accession number MZ357114) in oral swabs from giant pandas with the help of viral metagenomics technology in this study. The complete circular genome of AmPV5 is 7,935 bp in length, with a GC content of 39.1%. It encodes five early genes (E1, E2, E4, E6, and E7), two late genes (L1 and L2), and features conserved zinc-binding domains (CXXC- (X)28/29-CXXC) in E6 and E7 genes. E7 protein has an LxCxE domain (pRB binding) in its N-terminal region. The nucleotide sequence of AmPV5 L1 gene shares < 70% identity with other related sequences available in the GenBank database. Phylogenetic analysis indicated that AmPV5 fell within the Lambdapapillomavirus genus but formed a monophyletic branch away from other papillomaviruses found in Ailuropoda melanoleuca, Canis, Felis catus, Panthera uncia, Enhydra lutris, and Procyon lotor. According to the International Committee on Taxonomy of Viruses (ICTV) classification guidelines, AmPV5 is classified as a new species within the Lambdapapillomavirus genus. The discovery provides valuable insights into the viral diversity in giant pandas and highlights the need for continued surveillance of wildlife pathogens. Future studies should explore the potential role of AmPV5 in the health and disease ecology of this endangered species.
Collapse
Affiliation(s)
| | | | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Wang Y, Chen F, Qu W, Gong Y, Wang Y, Chen L, Zhou Q, Mo J, Zhang H, Lin L, Bi T, Wang X, Gu J, Li Y, Sui L. Alternative splicing in the genome of HPV and its regulation. Front Cell Infect Microbiol 2024; 14:1443868. [PMID: 39502170 PMCID: PMC11534716 DOI: 10.3389/fcimb.2024.1443868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus (HR-HPV) is the main cause of cervical cancer. These chronic infections are characterized by high expression of the HPV E6 and E7 oncogenes and the absence of the L1 and L2 capsid proteins. The regulation of HPV gene expression plays a crucial role in both the viral life cycle and rare oncogenic events. Alternative splicing of HPV mRNA is a key mechanism in post-transcriptional regulation. Through alternative splicing, HPV mRNA is diversified into various splice isoforms with distinct coding potentials, encoding multiple proteins and influencing the expression of HPV genes. The spliced mRNAs derived from a donor splicing site within the E6 ORF and one of the different acceptor sites located in the early mRNA contain E6 truncated mRNAs, named E6*. E6* is one of the extensively studied splicing isoforms. However, the role of E6* proteins in cancer progression remains controversial. Here, we reviewed and compared the alternative splicing events occurring in the genomes of HR-HPV and LR-HPV. Recently, new HPV alternative splicing regulatory proteins have been continuously discovered, and we have updated the regulation of HPV alternative splicing. In addition, we summarized the functions of known splice isoforms from three aspects: anti-tumorigenic, tumorigenic, and other cancer-related functions, including not only E6*, but also E6^E7, E8^E2, and so on. Comprehending their contributions to cancer development enhances insights into the carcinogenic mechanisms of HPV and explores the potential utility of alternative splicing in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Fang Chen
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wenjie Qu
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingxin Gong
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yan Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Limei Chen
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qi Zhou
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiayin Mo
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hongwei Zhang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Lin Lin
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Tianyi Bi
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xujie Wang
- Department of Obstetrics and Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Jiashi Gu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Shanghai, China
| | - Yanyun Li
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Long Sui
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
5
|
Foro Ramos EDS, da Silva Couto R, Tozetto-Mendoza TR, Bortoletto P, Barbosa EMG, Ferreira NE, Linhares IM, Spandorfer SD, da Costa AC, Leal E, Mendes-Correa MC, Witkin SS. Characterization of multiple human papillomavirus types in the human vagina following ovarian hormonal stimulation. Virol J 2024; 21:229. [PMID: 39334144 PMCID: PMC11429140 DOI: 10.1186/s12985-024-02507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The objective of study was to characterize HPV in vaginal samples from women being seen at the Center for Reproductive Medicine and Infertility at Weill Cornell Medicine before and following ovarian stimulation. A total of 29 women made samples available for analysis by viral metagenomics. Eighteen women were HPV-positive, six (33.3%) at their initial visit and 15 (83.3%) following hormone stimulation (p = 0.0059). Pairwise comparison of nucleotide sequences and phylogenetic analysis showed the classification sequences into two genera: Alphapapillomavirus and Gammapapillomavirus. Sequences were from 8 HPV types: HPV 51 (n = 2), HPV 68 (n = 1), HPV 83 (n = 9), HPV 84 (n = 2), HPV 121 (n = 6), HPV 175 (n = 1) and HPV 190 (n = 1). Additionally, C16b and C30 likely represent new types. In summary, multiple HPV types are present in the vagina of reproductive age women and are induced by hormone used to stimulate ovulation.
Collapse
Affiliation(s)
| | - Roseane da Silva Couto
- Viral Diversity Laboratory, Institute of Biological Sciences, Federal University of Pará, Belem, Pará, Brazil
| | - Tania Regina Tozetto-Mendoza
- Medical Research Laboratory in Virology (LIM 52), Faculty of Medicine, University of São Paulo-Institute of Tropical Medicine de São Paulo, São Paulo, Brazil
| | - Pietro Bortoletto
- Boston IVF, Waltham, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Erick Matheus Garcia Barbosa
- Medical Research Laboratory in Virology (LIM 52), Faculty of Medicine, University of São Paulo-Institute of Tropical Medicine de São Paulo, São Paulo, Brazil
| | - Noely Evangelista Ferreira
- Medical Research Laboratory in Virology (LIM 52), Faculty of Medicine, University of São Paulo-Institute of Tropical Medicine de São Paulo, São Paulo, Brazil
| | - Iara M Linhares
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Steven D Spandorfer
- Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, USA
| | - Antonio Charlys da Costa
- Medical Research Laboratory in Virology (LIM 52), Faculty of Medicine, University of São Paulo-Institute of Tropical Medicine de São Paulo, São Paulo, Brazil.
| | - Elcio Leal
- Viral Diversity Laboratory, Institute of Biological Sciences, Federal University of Pará, Belem, Pará, Brazil.
| | - Maria Cassia Mendes-Correa
- Medical Research Laboratory in Virology (LIM 52), Faculty of Medicine, University of São Paulo-Institute of Tropical Medicine de São Paulo, São Paulo, Brazil.
| | - Steven S Witkin
- Medical Research Laboratory in Virology (LIM 52), Faculty of Medicine, University of São Paulo-Institute of Tropical Medicine de São Paulo, São Paulo, Brazil.
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
6
|
López-Pérez M, Aguirre-Garrido F, Herrera-Zúñiga L, Fernández FJ. Gene as a dynamical notion: An extensive and integrative vision. Redefining the gene concept, from traditional to genic-interaction, as a new dynamical version. Biosystems 2023; 234:105060. [PMID: 37844827 DOI: 10.1016/j.biosystems.2023.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The current concept of gene has been very useful during the 20th and 21st centuries. However, recent advances in molecular biology and bioinformatics, which have further diversified the functional and adaptive profile of genetic information and its integration with cell physiology and environmental response, have contributed to focusing on additional new gene properties besides the traditional definition. Considering the inherent complexity of gene expression, whose adaptive objective must be referred to the Tortoise-Hare model, in which two tendencies converge, one focused on rapid adaptation to achieve survival, and the other that prevents an over-adaptation effect. In this context, a revision of the gene concept must be made, which must include these new mechanisms and approaches. In this paper, we propose a new conception of the idea of a gene that moves from a static and defined version of hereditary information to a dynamic idea that preponderates gene interaction (circumscribed to that established between protein-protein, protein-nucleic acid, and nucleic acid-nucleic acid) and the selection it exerts, as the irreducible element that works in a coordinated way in a genomic regulatory network (GRN).
Collapse
Affiliation(s)
- Marcos López-Pérez
- Environmental Sciences Department, Universidad Autónoma Metropolitana (Lerma Unit) Av. de las Garzas N° 10, Col. El Panteón, Municipio de Lerma de Villada, Estado de México, C.P. 52005, Mexico.
| | - Félix Aguirre-Garrido
- Environmental Sciences Department, Universidad Autónoma Metropolitana (Lerma Unit) Av. de las Garzas N° 10, Col. El Panteón, Municipio de Lerma de Villada, Estado de México, C.P. 52005, Mexico
| | - Leonardo Herrera-Zúñiga
- Chemistry Department, Universidad Autónoma Metropolitana (Iztapalapa Unit), C.P. 09340, Mexico City, Mexico
| | - Francisco J Fernández
- Biotechnology Department, Universidad Autónoma Metropolitana (Iztapalapa Unit), C.P. 09340, Mexico City, Mexico.
| |
Collapse
|
7
|
Chaudhary P, Proulx J, Park IW. Ubiquitin-protein ligase E3A (UBE3A) mediation of viral infection and human diseases. Virus Res 2023; 335:199191. [PMID: 37541588 PMCID: PMC10430597 DOI: 10.1016/j.virusres.2023.199191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
The Ubiquitin-protein ligase E3A, UBE3A, also known as E6-associated protein (E6-AP), is known to play an essential role in regulating the degradation of various proteins by transferring Ub from E2 Ub conjugating enzymes to the substrate proteins. Several studies indicate that UBE3A regulates the stabilities of key viral proteins in the virus-infected cells and, thereby, the infected virus-mediated diseases, even if it were reported that UBE3A participates in non-viral-related human diseases. Furthermore, mutations such as deletions and duplications in the maternally inherited gene in the brain cause human neurodevelopmental disorders such as Angelman syndrome (AS) and autism. It is also known that UBE3A functions as a transcriptional coactivator for the expression of steroid hormone receptors. These reports establish that UBE3A is distinguished by its multitudinous functions that are paramount to viral pathology and human diseases. This review is focused on molecular mechanisms for such intensive participation of UBE3A in disease formation and virus regulation.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| | - Jessica Proulx
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
8
|
Mori S, Ishii Y, Takeuchi T, Kukimoto I. Nuclear proinflammatory cytokine S100A9 enhances expression of human papillomavirus oncogenes via transcription factor TEAD1. J Virol 2023; 97:e0081523. [PMID: 37578237 PMCID: PMC10506480 DOI: 10.1128/jvi.00815-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023] Open
Abstract
Transcription of the human papillomavirus (HPV) oncogenes, E6 and E7, is regulated by the long control region (LCR) of the viral genome. Although various transcription factors have been reported to bind to the LCR, little is known about the transcriptional cofactors that modulate HPV oncogene expression in association with these transcription factors. Here, we performed in vitro DNA-pulldown purification of nuclear proteins in cervical cancer cells, followed by proteomic analyses to identify transcriptional cofactors that bind to the HPV16 LCR via the transcription factor TEAD1. We detected the proinflammatory cytokine S100A9 that localized to the nucleus of cervical cancer cells and associated with the LCR via direct interaction with TEAD1. Nuclear S100A9 levels and its association with the LCR were increased in cervical cancer cells by treatment with a proinflammatory phorbol ester. Knockdown of S100A9 decreased HPV oncogene expression and reduced the growth of cervical cancer cells and their susceptibility to cisplatin, whereas forced nuclear expression of S100A9 using nuclear localization signals exerted opposite effects. Thus, we conclude that nuclear S100A9 binds to the HPV LCR via TEAD1 and enhances viral oncogene expression by acting as a transcriptional coactivator. IMPORTANCE Human papillomavirus (HPV) infection is the primary cause of cervical cancer, and the viral oncogenes E6 and E7 play crucial roles in carcinogenesis. Although cervical inflammation contributes to the development of cervical cancer, the molecular mechanisms underlying the role of these inflammatory responses in HPV carcinogenesis are not fully understood. Our study shows that S100A9, a proinflammatory cytokine, is induced in the nucleus of cervical cancer cells by inflammatory stimuli, and it enhances HPV oncogene expression by acting as a transcriptional coactivator of TEAD1. These findings provide new molecular insights into the relationship between inflammation and viral carcinogenesis.
Collapse
Affiliation(s)
- Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiyuki Ishii
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takamasa Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
9
|
Agha‐Hosseini F, Hafezi Motlagh K. The correlation between human papillomavirus and oral lichen planus: A systematic review of the literature. Immun Inflamm Dis 2023; 11:e960. [PMID: 37647448 PMCID: PMC10408375 DOI: 10.1002/iid3.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 09/01/2023] Open
Abstract
INTRODUCTION Oral lichen planus (OLP) is a chronic inflammatory disorder with cell-induced immunopathological responses and is considered a potential malignancy disorder in the oral cavity. Due to the high prevalence of OLP as well as the potential for malignancy, human papillomaviruses (HPVs) may play an important role in it. Although previous studies have explored the possible relationship between HPV and OLP, the findings have been conflicting and nonconclusive. This study aims to review the studies that investigated HPV-16 and HPV-18 in OLP. METHODS AND MATERIALS The research protocol followed the Preferred Reporting Items for Systematic Reviews (PRISMA2020) checklist. The online databases Pubmed, Scopus, Embase, Google Scholar, and Cochrane were searched using the following individual keywords: "OLP" OR "Oral Lichen Planus" OR "HPV" OR "Human Papillomavirus." The search strategy resulted in the selection of 80 articles. The articles were evaluated, and after duplication removal, 53 abstracts were reviewed, resulting in the selection of 25 studies according to inclusion and exclusion criteria. The risk of bias assessment was done by using the Modified Newcastle-Ottawa quality assessment scale. The overall prevalence of HPV in OLP lesions varied from 2.7% to 70%, depending on the type of diagnostic method used. CONCLUSION Despite the studies conducted on the relationship between OLP and HPV infection, there is still no conclusive evidence that HPV can play a role in the etiopathogenesis of OLP, either in clinical manifestations or in the malignant transformation of lesions.
Collapse
Affiliation(s)
- Farzaneh Agha‐Hosseini
- Dental Research CenterDentistry Research Institute, Tehran University of Medical SciencesTehranIran
- Department of Oral Medicine, Faculty of DentistryTehran University of Medical SciencesTehranIran
- The Academy of Medical SciencesTehranIran
| | - Kimia Hafezi Motlagh
- Department of Oral Medicine, School of DentistryTehran University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Luna AJ, Young JM, Sterk RT, Bondu V, Schultz FA, Kusewitt DF, Kang H, Ozbun MA. The antiviral effects of a MEK1/2 inhibitor promote tumor regression in a preclinical model of human papillomavirus infection-induced tumorigenesis. Antiviral Res 2023; 216:105667. [PMID: 37429527 PMCID: PMC10530289 DOI: 10.1016/j.antiviral.2023.105667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Human papillomaviruses (HPVs) are a significant public health concern due to their widespread transmission, morbidity, and oncogenic potential. Despite efficacious vaccines, millions of unvaccinated individuals and those with existing infections will develop HPV-related diseases for the next two decades and beyond. The continuing burden of HPV-related diseases is exacerbated by the lack of effective therapies or cures for infections, highlighting the need to identify and develop antivirals. The experimental murine papillomavirus type 1 (MmuPV1) model provides opportunities to study papillomavirus pathogenesis in cutaneous epithelium, the oral cavity, and the anogenital tract. However, to date the MmuPV1 infection model has not been used to demonstrate the effectiveness of potential antivirals. We previously reported that inhibitors of cellular MEK/ERK signaling suppress oncogenic HPV early gene expression in three-dimensional tissue cultures. Herein, we adapted the MmuPV1 infection model to determine whether MEK inhibitors have anti-papillomavirus properties in vivo. We demonstrate that oral delivery of a MEK1/2 inhibitor promotes papilloma regression in immunodeficient mice that otherwise would have developed persistent infections. Quantitative histological analyses reveal that inhibition of MEK/ERK signaling reduces E6/E7 mRNA, MmuPV1 DNA, and L1 protein expression within MmuPV1-induced lesions. These data suggest that MEK1/2 signaling is essential for both early and late MmuPV1 replication events supporting our previous findings with oncogenic HPVs. We also provide evidence that MEK inhibitors protect mice from developing secondary tumors. Thus, our data suggest that MEK inhibitors have potent antiviral and anti-tumor properties in a preclinical mouse model and merit further investigation as papillomavirus antiviral therapies.
Collapse
Affiliation(s)
- Adrian J Luna
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Jesse M Young
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Rosa T Sterk
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Virginie Bondu
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Fred A Schultz
- Department of Pathology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Donna F Kusewitt
- Department of Pathology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Huining Kang
- Department of Internal Medicine, Division of Epidemiology, Biostatistics and Preventive Medicine, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Michelle A Ozbun
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
11
|
Gyöngyösi E, László B, Szalmás A, Kónya J, Veress G. Transcriptional activity of the long control region in human papillomavirus type 33 intratype variants. Virol J 2023; 20:152. [PMID: 37461035 DOI: 10.1186/s12985-023-02114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND High-risk human papillomaviruses (HPVs) are responsible for the development of cervical and other anogenital cancers. Intratype sequence variants of certain high-risk HPV types (e.g. 16, 18 and 31) are thought to have different oncogenic potential, partly due to nucleotide sequence variation in the viral long control region (LCR). The LCR has an important role in the regulation of viral replication and transcription. The purpose of this study was to explore sequence variation in the LCR of HPV 33 intratype variants in Hungary and to see whether there are differences in the transcriptional activities of the variants. METHODS The complete HPV 33 LCR was amplified from HPV 33 positive cervical samples. After sequencing the LCR variants, multiple sequence alignment and phylogenetic analyses were carried out. Representative HPV 33 LCR sequence variants were selected for cloning and functional analysis. After transient transfection of HeLa cells, luciferase reporter assays were used to analyse the transcriptional activities of different LCR variants. RESULTS Altogether 10 different variants were identified by sequence analysis of the HPV 33 LCR. The results of phylogenetic analysis showed that 3 variants belonged to sublineage A1, while the other 7 variants clustered with sublineage A2. Variants belonging to sublineage A2 had significantly lower transcriptional activities than variants belonging to sublineage A1. Within sublineage A2, the two variants analysed had significantly different transcriptional activities, which was shown to be caused by the A7879G variation. CONCLUSIONS Nucleotide variation in the HPV 33 LCR can result in altered transcriptional activity of the intratype variants. Our results can help to understand the correlation between LCR polymorphism and the oncogenic potential of HPV 33 variants.
Collapse
Affiliation(s)
- Eszter Gyöngyösi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Brigitta László
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Anita Szalmás
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - József Kónya
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - György Veress
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
| |
Collapse
|
12
|
Luna AJ, Young JM, Sterk RT, Bondu V, Schultz FA, Kusewitt DF, Kang H, Ozbun MA. Inhibition of Cellular MEK/ERK Signaling Suppresses Murine Papillomavirus Type 1 Replicative Activities and Promotes Tumor Regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532042. [PMID: 36993217 PMCID: PMC10054951 DOI: 10.1101/2023.03.14.532042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Human papillomaviruses (HPVs) are a significant public health concern due to their widespread transmission, morbidity, and oncogenic potential. Despite efficacious vaccines, millions of unvaccinated individuals and those with existing infections will develop HPV-related diseases for the next two decades. The continuing burden of HPV-related diseases is exacerbated by the lack of effective therapies or cures for most infections, highlighting the need to identify and develop antivirals. The experimental murine papillomavirus type 1 (MmuPV1) model provides opportunities to study papillomavirus pathogenesis in cutaneous epithelium, the oral cavity, and the anogenital tract. However, to date the MmuPV1 infection model has not been used to demonstrate the effectiveness of potential antivirals. We previously reported that inhibitors of cellular MEK/ERK signaling suppress oncogenic HPV early gene expression in vitro . Herein, we adapted the MmuPV1 infection model to determine whether MEK inhibitors have anti-papillomavirus properties in vivo . We demonstrate that oral delivery of a MEK1/2 inhibitor promotes papilloma regression in immunodeficient mice that otherwise would have developed persistent infections. Quantitative histological analyses revealed that inhibition of MEK/ERK signaling reduces E6/E7 mRNAs, MmuPV1 DNA, and L1 protein expression within MmuPV1-induced lesions. These data suggest that MEK1/2 signaling is essential for both early and late MmuPV1 replication events supporting our previous findings with oncogenic HPVs. We also provide evidence that MEK inhibitors protect mice from developing secondary tumors. Thus, our data suggest that MEK inhibitors have potent anti-viral and anti-tumor properties in a preclinical mouse model and merit further investigation as papillomavirus antiviral therapies. Significance Statement Persistent human papillomavirus (HPV) infections cause significant morbidity and oncogenic HPV infections can progress to anogenital and oropharyngeal cancers. Despite the availability of effective prophylactic HPV vaccines, millions of unvaccinated individuals, and those currently infected will develop HPV-related diseases over the next two decades and beyond. Thus, it remains critical to identify effective antivirals against papillomaviruses. Using a mouse papillomavirus model of HPV infection, this study reveals that cellular MEK1/2 signaling supports viral tumorigenesis. The MEK1/2 inhibitor, trametinib, demonstrates potent antiviral activities and promotes tumor regression. This work provides insight into the conserved regulation of papillomavirus gene expression by MEK1/2 signaling and reveals this cellular pathway as a promising therapeutic target for the treatment of papillomavirus diseases.
Collapse
|
13
|
Ishii Y, Mori S, Kukimoto I. [Identification of new host factors supporting the human papillomavirus life cycle]. Uirusu 2023; 73:189-198. [PMID: 39343554 DOI: 10.2222/jsv.73.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
|
14
|
Cruz-Gregorio A, Aranda-Rivera AK. Human Papilloma Virus-Infected Cells. Subcell Biochem 2023; 106:213-226. [PMID: 38159229 DOI: 10.1007/978-3-031-40086-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Human papillomavirus (HPV) is associated with infection of different tissues, such as the cervix, anus, vagina, penis, vulva, oropharynx, throat, tonsils, back of the tongue, skin, the lungs, among other tissues. HPV infection may or may not be associated with the development of cancer, where HPVs not related to cancer are defined as low-risk HPVs and are associated with papillomatosis disease. In contrast, high-risk HPVs (HR-HPVs) are associated with developing cancers in areas that HR-HPV infects, such as the cervix. In general, infection of HPV target cells is regulated by specific molecules and receptors that induce various conformational changes of HPV capsid proteins, allowing activation of HPV endocytosis mechanisms and the arrival of the HPV genome to the human cell nucleus. After the transcription of the HPV genome, the HPV genome duplicates exponentially to lodge in a new HPV capsid, inducing the process of exocytosis of HPV virions and thus releasing a new HPV viral particle with a high potential of infection. This infection process allows the HPV viral life cycle to conclude and enables the growth of HPV virions. Understanding the entire infection process has been a topic that researchers have studied and developed for decades; however, there are many things to still understand about HPV infection. A thorough understanding of these HPV infection processes will allow new potential treatments for HPV-associated cancer and papillomatosis. This chapter focuses on HPV infection, the process that will enable HPV to complete its HPV life cycle, emphasizing the critical role of different molecules in allowing this infection and its completion during the HPV viral life cycle.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
15
|
Hu H, Ling Y, Wang X, Wang H, Zhu N, Li Y, Xu H. Viral Metagenomics Reveals a Putative Novel HPV Type in Anogenital Wart Tissues. Pathogens 2022; 11:pathogens11121452. [PMID: 36558785 PMCID: PMC9781650 DOI: 10.3390/pathogens11121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Viral metagenomics is widely employed to identify novel viruses in biological samples. Recently, although numerous novel human papillomavirus (HPV) types have been identified in clinical samples including anogenital warts (AGWs), many novel HPV sequences remain to be discovered. In this study, a putative novel HPV type designated as HPV-JDFY01 was discovered from library GW05 with 63 sequence reads by the viral metagenomic technique. Its complete genomic sequence was determined by PCR to bridge the gaps between contigs combining Sanger sequencing. The complete genome of HPV-JDFY01 is a 7186 bp encoding 7 open reading frames (ORFs) (E6, E7, E1, E2, E4, L2 and L1) and contains a 487 bp long control region (LCR) between L1 and E6. Sequence and phylogeny analysis indicated that HPV-JDFY01 shared the highest sequence identity of 74.2% with HPV-mSK_244 (MH777383) and well clustered into the genus Gammapapillomavirus. It has the classical genomic organization of Gammapapillomaviruses. Epidemiological investigation showed that one out of the 413 AGW tissue samples was positive for HPV-JDFY01. Further research with large size and different type of samples should be performed to elucidate the epidemiologic status of HPV-JDFY01.
Collapse
Affiliation(s)
- Huimin Hu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Department of Dermatology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian 223002, China
| | - Yu Ling
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Xuan Wang
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Hao Wang
- Department of Dermatology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian 223002, China
| | - Niannan Zhu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yumei Li
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Hui Xu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Correspondence: ; Tel.: +86-051185026785
| |
Collapse
|
16
|
Castro-Oropeza R, Piña-Sánchez P. Epigenetic and Transcriptomic Regulation Landscape in HPV+ Cancers: Biological and Clinical Implications. Front Genet 2022; 13:886613. [PMID: 35774512 PMCID: PMC9237502 DOI: 10.3389/fgene.2022.886613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Human Papillomavirus (HPV) is an oncogenic virus that causes the highest number of viral-associated cancer cases and deaths worldwide, with more than 690,000 new cases per year and 342,000 deaths only for cervical cancer (CC). Although the incidence and mortality rates for CC are declining in countries where screening and vaccination programs have been implemented, other types of cancer in which HPV is involved, such as oropharyngeal cancer, are increasing, particularly in men. Mutational and transcriptional profiles of various HPV-associated neoplasms have been described, and accumulated evidence has shown the oncogenic capacity of E6, E7, and E5 genes of high-risk HPV. Interestingly, transcriptomic analysis has revealed that although a vast majority of the human genome is transcribed into RNAs, only 2% of transcripts are translated into proteins. The remaining transcripts lacking protein-coding potential are called non-coding RNAs. In addition to the transfer and ribosomal RNAs, there are regulatory non-coding RNAs classified according to size and structure in long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and small RNAs; such as microRNAs (miRNAs), piwi-associated RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and endogenous short-interfering RNAs. Recent evidence has shown that lncRNAs, miRNAs, and circRNAs are aberrantly expressed under pathological conditions such as cancer. In addition, those transcripts are dysregulated in HPV-related neoplasms, and their expression correlates with tumor progression, metastasis, poor prognosis, and recurrence. Nuclear lncRNAs are epigenetic regulators involved in controlling gene expression at the transcriptional level through chromatin modification and remodeling. Moreover, disruption of the expression profiles of those lncRNAs affects multiple biological processes such as cell proliferation, apoptosis, and migration. This review highlights the epigenetic alterations induced by HPV, from infection to neoplastic transformation. We condense the epigenetic role of non-coding RNA alterations and their potential as biomarkers in transformation's early stages and clinical applications. We also summarize the molecular mechanisms of action of nuclear lncRNAs to understand better their role in the epigenetic control of gene expression and how they can drive the malignant phenotype of HPV-related neoplasia. Finally, we review several chemical and epigenetic therapy options to prevent and treat HPV-associated neoplasms.
Collapse
Affiliation(s)
| | - Patricia Piña-Sánchez
- Molecular Oncology Laboratory, Oncology Research Unit, Oncology Hospital, IMSS National Medical Center, Mexico City, Mexico
| |
Collapse
|
17
|
Lang Kuhs KA, Faden DL, Chen L, Smith DK, Pinheiro M, Wood CB, Davis S, Yeager M, Boland JF, Cullen M, Steinberg M, Bass S, Wang X, Liu P, Mehrad M, Tucker T, Lewis JS, Ferris RL, Mirabello L. Genetic variation within the human papillomavirus type 16 genome is associated with oropharyngeal cancer prognosis. Ann Oncol 2022; 33:638-648. [PMID: 35306154 PMCID: PMC9350957 DOI: 10.1016/j.annonc.2022.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023] Open
Abstract
PURPOSE A significant barrier to adoption of de-escalated treatment protocols for human papillomavirus-driven oropharyngeal cancer (HPV-OPC) is that few predictors of poor prognosis exist. We conducted the first large whole-genome sequencing (WGS) study to characterize the genetic variation of the HPV type 16 (HPV16) genome and to evaluate its association with HPV-OPC patient survival. PATIENTS AND METHODS A total of 460 OPC tumor specimens from two large United States medical centers (1980-2017) underwent HPV16 whole-genome sequencing. Site-specific variable positions [single nucleotide polymorphisms (SNPs)] across the HPV16 genome were identified. Cox proportional hazards model estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for overall survival by HPV16 SNPs. Harrell C-index and time-dependent positive predictive value (PPV) curves and areas under the PPV curves were used to evaluate the predictive accuracy of HPV16 SNPs for overall survival. RESULTS A total of 384 OPC tumor specimens (83.48%) passed quality control filters with sufficient depth and coverage of HPV16 genome sequencing to be analyzed. Some 284 HPV16 SNPs with a minor allele frequency ≥1% were identified. Eight HPV16 SNPs were significantly associated with worse survival after false discovery rate correction (individual prevalence: 1.0%-5.5%; combined prevalence: 15.10%); E1 gene position 1053 [HR for overall survival (HRos): 3.75, 95% CI 1.77-7.95; Pfdr = 0.0099]; L2 gene positions 4410 (HRos: 5.32, 95% CI 1.91-14.81; Pfdr = 0.0120), 4539 (HRos: 6.54, 95% CI 2.03-21.08; Pfdr = 0.0117); 5050 (HRos: 6.53, 95% CI 2.34-18.24; Pfdr = 0.0030), and 5254 (HRos: 7.76, 95% CI 2.41-24.98; Pfdr = 0.0030); and L1 gene positions 5962 (HRos: 4.40, 95% CI 1.88-10.31; Pfdr = 0.0110) and 6025 (HRos: 5.71, 95% CI 2.43-13.41; Pfdr = 0.0008) and position 7173 within the upstream regulatory region (HRos: 9.90, 95% CI 3.05-32.12; Pfdr = 0.0007). Median survival time for patients with ≥1 high-risk HPV16 SNPs was 3.96 years compared with 18.67 years for patients without a high-risk SNP; log-rank test P < 0.001. HPV16 SNPs significantly improved the predictive accuracy for overall survival above traditional factors (age, smoking, stage, treatment); increase in C-index was 0.069 (95% CI 0.019-0.119, P < 0.001); increase in area under the PPV curve for predicting 5-year survival was 0.068 (95% CI 0.015-0.111, P = 0.008). CONCLUSIONS HPV16 genetic variation is associated with HPV-OPC prognosis and can improve prognostic accuracy.
Collapse
Affiliation(s)
- K A Lang Kuhs
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, USA; Department of Medicine, Vanderbilt University Medical Cancer, Nashville, USA.
| | - D L Faden
- Department of Otolaryngology, Massachusetts Eye and Ear, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Broad Institute of MIT and Harvard, Cambridge, USA
| | - L Chen
- Division of Cancer Biostatistics, Department of Internal Medicine and Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, USA
| | - D K Smith
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, USA
| | - M Pinheiro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, USA
| | - C B Wood
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, USA; Department of Otolaryngology - Head and Neck Surgery, University of Tennessee Health Science Center, Memphis, USA
| | - S Davis
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, USA
| | - M Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, USA
| | - J F Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, USA
| | - M Cullen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, USA
| | - M Steinberg
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, USA
| | - S Bass
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, USA
| | - X Wang
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, USA
| | - P Liu
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - M Mehrad
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - T Tucker
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, USA
| | - J S Lewis
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - R L Ferris
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, USA; Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - L Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, USA
| |
Collapse
|
18
|
Kuehner F, Stubenrauch F. Functions of Papillomavirus E8^E2 Proteins in Tissue Culture and In Vivo. Viruses 2022; 14:v14050953. [PMID: 35632695 PMCID: PMC9143700 DOI: 10.3390/v14050953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022] Open
Abstract
Papillomaviruses (PV) replicate in undifferentiated keratinocytes at low levels and to high levels in differentiated cells. The restricted replication in undifferentiated cells is mainly due to the expression of the conserved viral E8^E2 repressor protein, a fusion protein consisting of E8 and the hinge, DNA-binding, and dimerization domain of E2. E8^E2 binds to viral genomes and represses viral transcription and genome replication by recruiting cellular NCoR/SMRT-HDAC3 corepressor complexes. Tissue culture experiments have revealed that E8^E2 modulates long-term maintenance of extrachromosomal genomes, productive replication, and immortalization properties in a virus type-dependent manner. Furthermore, in vivo experiments have indicated that Mus musculus PV1 E8^E2 is required for tumor formation in immune-deficient mice. In summary, E8^E2 is a crucial inhibitor whose levels might determine the outcome of PV infections.
Collapse
|
19
|
Brimer N, Vande Pol S. Human papillomavirus type 16 E6 induces cell competition. PLoS Pathog 2022; 18:e1010431. [PMID: 35320322 PMCID: PMC8979454 DOI: 10.1371/journal.ppat.1010431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
High-risk human papillomavirus (HPV) infections induce squamous epithelial tumors in which the virus replicates. Initially, the virus-infected cells are untransformed, but expand in both number and area at the expense of uninfected squamous epithelial cells. We have developed an in vitro assay in which colonies of post-confluent HPV16 expressing cells outcompete and displace confluent surrounding uninfected keratinocytes. The enhanced colony competition induced by the complete HPV16 genome is conferred by E6 expression alone, not by individual expression of E5 or E7, and requires E6 interaction with p53. E6-expressing keratinocytes undermine and displace adjacent normal keratinocytes from contact with the attachment substrate, thereby expanding the area of the E6-expressing colony at the expense of normal keratinocytes. These new results separate classic oncogenicity that is primarily conferred by HPV16 E7 from cell competition that we show is primarily conferred by E6 and provides a new biological role for E6 oncoproteins from high-risk human papillomaviruses. Microbial infections can change the fate and behavior of normal vertebrate cells to resemble oncogenic cells. High-risk papillomaviruses induce infected squamous epithelial cells to form tumors, some of which evolve into malignancies. The present work shows that the enhanced competitiveness of HPV16-infected cells for the basal cell surface is primarily due to the expression of the E6 oncoprotein and not the E7 or E5 oncoproteins. Compared to normal keratinocytes, E6 induces a super-competitor phenotype while E5 and E7 do not. This work shows the importance of measuring oncoprotein traits not only as cell autonomous traits, but in the context of competition with uninfected cells and shows the potential of papillomavirus oncoproteins to be novel genetic probes for the analysis of cell competition.
Collapse
Affiliation(s)
- Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Dual Role of YY1 in HPV Life Cycle and Cervical Cancer Development. Int J Mol Sci 2022; 23:ijms23073453. [PMID: 35408813 PMCID: PMC8998550 DOI: 10.3390/ijms23073453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Human papillomaviruses (HPVs) are considered to be key etiological agents responsible for the induction and development of cervical cancer. However, it has been suggested that HPV infection alone may not be sufficient to promote cervical carcinogenesis, and other unknown factors might be required to establish the disease. One of the suggested proteins whose deregulation has been linked with oncogenesis is transcription factor Yin Yang 1 (YY1). YY1 is a multifunctional protein that is involved not only in the regulation of gene transcription and protein modification, but can also control important cell signaling pathways, such as cell growth, development, differentiation, and apoptosis. Vital functions of YY1 also indicate that the protein could be involved in tumorigenesis. The overexpression of this protein has been observed in different tumors, and its level has been correlated with poor prognoses of many types of cancers. YY1 can also regulate the transcription of viral genes. It has been documented that YY1 can bind to the HPV long control region and regulate the expression of viral oncogenes E6 and E7; however, its role in the HPV life cycle and cervical cancer development is different. In this review, we explore the role of YY1 in regulating the expression of cellular and viral genes and subsequently investigate how these changes inadvertently contribute toward the development of cervical malignancy.
Collapse
|
21
|
Li W, Yang S, Xu P, Zhang D, Tong Y, Chen L, Jia B, Li A, Lian C, Ru D, Zhang B, Liu M, Chen C, Fu W, Yuan S, Gu C, Wang L, Li W, Liang Y, Yang Z, Ren X, Wang S, Zhang X, Song Y, Xie Y, Lu H, Xu J, Wang H, Yu W. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine 2022; 76:103861. [PMID: 35124429 PMCID: PMC8811534 DOI: 10.1016/j.ebiom.2022.103861] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Since late 2019, SARS-CoV-2 infection has resulted in COVID-19 accompanied by diverse clinical manifestations. However, the underlying mechanism of how SARS-CoV-2 interacts with host and develops multiple symptoms is largely unexplored. METHODS Bioinformatics analysis determined the sequence similarity between SARS-CoV-2 and human genomes. Diverse fragments of SARS-CoV-2 genome containing Human Identical Sequences (HIS) were cloned into the lentiviral vector. HEK293T, MRC5 and HUVEC were infected with laboratory-packaged lentivirus or transfected with plasmids or antagomirs for HIS. Quantitative RT-PCR and chromatin immunoprecipitation assay detected gene expression and H3K27ac enrichment, respectively. UV-Vis spectroscopy assessed the interaction between HIS and their target locus. Enzyme-linked immunosorbent assay evaluated the hyaluronan (HA) levels of culture supernatant and plasma of COVID-19 patients. FINDINGS Five short sequences (24-27 nt length) sharing identity between SARS-CoV-2 and human genome were identified. These RNA elements were highly conserved in primates. The genomic fragments containing HIS were predicted to form hairpin structures in silico similar to miRNA precursors. HIS may function through direct genomic interaction leading to activation of host enhancers, and upregulation of adjacent and distant genes, including cytokine genes and hyaluronan synthase 2 (HAS2). HIS antagomirs and Cas13d-mediated HIS degradation reduced HAS2 expression. Severe COVID-19 patients displayed decreased lymphocytes and elevated D-dimer, and C-reactive proteins, as well as increased plasma hyaluronan. Hymecromone inhibited hyaluronan production in vitro, and thus could be further investigated as a therapeutic option for preventing severe outcome in COVID-19 patients. INTERPRETATION HIS of SARS-CoV-2 could promote COVID-19 progression by upregulating hyaluronan, providing novel targets for treatment. FUNDING The National Key R&D Program of China (2018YFC1005004), Major Special Projects of Basic Research of Shanghai Science and Technology Commission (18JC1411101), and the National Natural Science Foundation of China (31872814, 32000505).
Collapse
Affiliation(s)
- Wei Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Peng Xu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Ben Jia
- Shanghai Epiprobe Biotechnology Co., Ltd, Shanghai 200233, China
| | - Ang Li
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Cheng Lian
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Daoping Ru
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Baolong Zhang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Mengxing Liu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Cancan Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Weihui Fu
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Songhua Yuan
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenxuan Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Ying Liang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Zhicong Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Xiaoguang Ren
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Shaoxuan Wang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Xiaoyan Zhang
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jianqing Xu
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China.
| |
Collapse
|
22
|
Chen J, Zhao S, Tan W, Wang T, Wu S, Wang C, Jiang Y, Zhou T, Zhang Z, Zhao L. Attenuated Salmonella carrying plasmid co-expressing HPV16 L1 and siRNA-E6 for cervical cancer therapy. Sci Rep 2021; 11:20083. [PMID: 34635698 PMCID: PMC8505555 DOI: 10.1038/s41598-021-99425-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022] Open
Abstract
Human papillomavirus (HPV) infection is the major etiological factor for cervical cancer. HPV prophylactic vaccines based on L1 virus-like particles have been considered as an effective prevention method. However, existing recombination vaccines are too expensive for developing countries. DNA vaccines might be a lower-cost and effective alternative. In this study, a plasmid (pcDNA3.1-HPV16-L1) and a co-expressing plasmid (pcDNA3.1-HPV16-L1-siE6) carried by attenuated Salmonella were constructed and their prevention and treatment effect on cervical cancer were observed, respectively. The results showed that pcDNA3.1-HPV16-L1 carried by attenuated Salmonella could induce the production of HPV16-L1 antibodies, IL-2 and INF-γ in mice serum, which presented its prevention effect on HPV. Subsequently, E6 and E7 gene silencing by pCG-siE6 inhibited the growth of cervical cancer both in vitro and in vivo. Furthermore, L1 up-regulation and E6/E7 down-regulation caused by co-expressing plasmid (pcDNA3.1-HPV16-L1-siE6) contributed to a significant anti-tumor effect on the mice. This study suggests that pcDNA3.1-HPV16-L1-siE6 carried by attenuated Salmonella has a synergistic effect of immune regulation and RNA interference in cervical cancer treatment.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China
- Department of Gynecology, Second Hospital, Jilin University, Changchun, China
| | - Shuhua Zhao
- Department of Gynecology, Second Hospital, Jilin University, Changchun, China
| | - Wenxi Tan
- Department of Gynecology, Second Hospital, Jilin University, Changchun, China
| | - Taiwei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China
| | - Shan Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University, School of Medicine, Zhejiang, China
| | - Changshuai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China
| | - Yu Jiang
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China
| | - Tuo Zhou
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China
| | - Zhuo Zhang
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China.
| |
Collapse
|
23
|
Groves IJ, Drane ELA, Michalski M, Monahan JM, Scarpini CG, Smith SP, Bussotti G, Várnai C, Schoenfelder S, Fraser P, Enright AJ, Coleman N. Short- and long-range cis interactions between integrated HPV genomes and cellular chromatin dysregulate host gene expression in early cervical carcinogenesis. PLoS Pathog 2021; 17:e1009875. [PMID: 34432858 PMCID: PMC8439666 DOI: 10.1371/journal.ppat.1009875] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/14/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art 'HPV integrated site capture' (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a 'looping' mechanism by which flanking host regions become amplified. Furthermore, using our 'HPV16-specific Region Capture Hi-C' technique, we have determined that chromatin interactions between the integrated virus genome and host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive local host gene dysregulation through the disruption of host:host interactions within (but not exceeding) host structures known as topologically associating domains (TADs). This mechanism of HPV-induced host gene expression modulation indicates that integration of virus genomes near to or within a 'cancer-causing gene' is not essential to influence their expression and that these modifications to genome interactions could have a major role in selection of HPV integrants at the early stage of cervical neoplastic progression.
Collapse
Affiliation(s)
- Ian J. Groves
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Emma L. A. Drane
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Marco Michalski
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jack M. Monahan
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Cinzia G. Scarpini
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen P. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Giovanni Bussotti
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Csilla Várnai
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Nanog, in Cooperation with AP1, Increases the Expression of E6/E7 Oncogenes from HPV Types 16/18. Viruses 2021; 13:v13081482. [PMID: 34452350 PMCID: PMC8402821 DOI: 10.3390/v13081482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Persistent infections with some types of human papillomavirus (HPV) constitute the major etiological factor for cervical cancer development. Nanog, a stem cell transcription factor has been shown to increase during cancer progression. We wanted to determine whether Nanog could modulate transcription of E6 and E7 oncogenes. We used luciferase reporters under the regulation of the long control region (LCR) of HPV types 16 and 18 (HPV16/18) and performed RT-qPCR. We found that Nanog increases activity of both viral regulatory regions and elevates endogenous E6/E7 mRNA levels in cervical cancer-derived cells. We demonstrated by in vitro mutagenesis that changes at Nanog-binding sites found in the HPV18 LCR significantly inhibit transcriptional activation. Chromatin immunoprecipitation (ChIP) assays showed that Nanog binds in vivo to the HPV18 LCR, and its overexpression increases its binding as well as that of c-Jun. Surprisingly, we observed that mutation of AP1-binding sites also affect Nanog's ability to activate transcription, suggesting cooperation between the two factors. We searched for putative Nanog-binding sites in the LCR of several HPVs and surprisingly found them only in those types associated with cancer development. Our study shows, for the first time, a role for Nanog in the regulation of E6/E7 transcription of HPV16/18.
Collapse
|
25
|
McBride AA, Warburton A, Khurana S. Multiple Roles of Brd4 in the Infectious Cycle of Human Papillomaviruses. Front Mol Biosci 2021; 8:725794. [PMID: 34386523 PMCID: PMC8353396 DOI: 10.3389/fmolb.2021.725794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Human Papillomaviruses (HPV) reproduce in stratified epithelia by establishing a reservoir of low- level infection in the dividing basal cells and restricting the production of viral particles to terminally differentiated cells. These small DNA viruses hijack pivotal cellular processes and pathways to support the persistent infectious cycle. One cellular factor that is key to multiple stages of viral replication and transcription is the BET (bromodomain and extra-terminal domain) protein, Brd4 (Bromodomain containing protein 4). Here we provide an overview of the multiple interactions of Brd4 that occur throughout the HPV infectious cycle.
Collapse
Affiliation(s)
- Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
26
|
Regulation of HPV18 Genome Replication, Establishment and Persistence by Sequences in the Viral Upstream Regulatory Region. J Virol 2021; 95:e0068621. [PMID: 34232709 DOI: 10.1128/jvi.00686-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During persistent human papillomavirus infection, the viral genome replicates as an extrachromosomal plasmid that is efficiently partitioned to daughter cells during cell division. We have previously shown that an element which overlaps the HPV18 transcriptional enhancer promotes stable DNA replication of replicons containing the viral replication origin. Here we perform comprehensive analyses to elucidate the function of this maintenance element. We conclude that no unique element or binding site in this region is absolutely required for persistent replication and partitioning, and instead propose that the overall chromatin architecture of this region is important to promote efficient use of the replication origin. These results have important implications on the genome partitioning mechanism of papillomaviruses. Importance Persistent infection with oncogenic HPVs is responsible for ∼5% human cancers. The viral DNA replicates as an extrachromosomal plasmid and is partitioned to daughter cells in dividing keratinocytes. Using a complementation assay that allows us to separate viral transcription and replication, we provide insight into viral sequences that are required for long term replication and persistence in keratinocytes. Understanding how viral genomes replicate persistently for such long periods of time will guide the development of anti-viral therapies.
Collapse
|
27
|
Tian Y, Khwatenge CN, Li J, De Jesus Andino F, Robert J, Sang Y. Targeted Transcriptomics of Frog Virus 3 in Infected Frog Tissues Reveal Non-Coding Regulatory Elements and microRNAs in the Ranaviral Genome and Their Potential Interaction with Host Immune Response. Front Immunol 2021; 12:705253. [PMID: 34220869 PMCID: PMC8248673 DOI: 10.3389/fimmu.2021.705253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Background Frog Virus 3 (FV3) is a large dsDNA virus belonging to Ranaviruses of family Iridoviridae. Ranaviruses infect cold-blood vertebrates including amphibians, fish and reptiles, and contribute to catastrophic amphibian declines. FV3 has a genome at ~105 kb that contains nearly 100 coding genes and 50 intergenic regions as annotated in its reference genome. Previous studies have mainly focused on coding genes and rarely addressed potential non-coding regulatory role of intergenic regions. Results Using a whole transcriptomic analysis of total RNA samples containing both the viral and cellular transcripts from FV3-infected frog tissues, we detected virus-specific reads mapping in non-coding intergenic regions, in addition to reads from coding genes. Further analyses identified multiple cis-regulatory elements (CREs) in intergenic regions neighboring highly transcribed coding genes. These CREs include not only a virus TATA-Box present in FV3 core promoters as in eukaryotic genes, but also viral mimics of CREs interacting with several transcription factors including CEBPs, CREBs, IRFs, NF-κB, and STATs, which are critical for regulation of cellular immunity and cytokine responses. Our study suggests that intergenic regions immediately upstream of highly expressed FV3 genes have evolved to bind IRFs, NF-κB, and STATs more efficiently. Moreover, we found an enrichment of putative microRNA (miRNA) sequences in more than five intergenic regions of the FV3 genome. Our sequence analysis indicates that a fraction of these viral miRNAs is targeting the 3'-UTR regions of Xenopus genes involved in interferon (IFN)-dependent responses, including particularly those encoding IFN receptor subunits and IFN-regulatory factors (IRFs). Conclusions Using the FV3 model, this study provides a first genome-wide analysis of non-coding regulatory mechanisms adopted by ranaviruses to epigenetically regulate both viral and host gene expressions, which have co-evolved to interact especially with the host IFN response.
Collapse
Affiliation(s)
- Yun Tian
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Collins N. Khwatenge
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Jiuyi Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Francisco De Jesus Andino
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
28
|
Molecular and Phylogenetic Characterization of Novel Papillomaviruses Isolated from Oral and Anogenital Neoplasms of Japanese Macaques ( Macaca fuscata). Viruses 2021; 13:v13040630. [PMID: 33916990 PMCID: PMC8067741 DOI: 10.3390/v13040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/04/2022] Open
Abstract
Papillomaviruses (PVs) are a diverse group of host species-specific DNA viruses, etiologically linked with various benign and malignant neoplasms of cutaneous and mucosal epithelia. Here, we describe the detection and characterization of the first two PVs naturally infecting Japanese macaques (Macaca fuscata), including the determination of their etiological association(s) with the development of original neoplasms. The molecular and phylogenetic analyses were performed on complete genome sequences of Macaca fuscata PV types 1 (MfuPV1) and 2 (MfuPV2), which were completely sequenced in samples of a malignant oral tumor and benign anogenital neoplasm of Japanese macaques, respectively. Subsequently, two type-specific quantitative real-time PCRs were developed to estimate viral loads of MfuPV1 and MfuPV2 and to evaluate their etiological roles. The in silico molecular analyses revealed that both viral genomes encode characteristic PV proteins with conserved functional domains and have a non-coding genomic region with regulatory sequences to regulate and complete the viral life cycle. However, additional experimental evidence is needed to finally confirm the presence and biological functionality of the molecular features of both novel PVs. While MfuPV1, together with PVs identified in other macaques, is classified into the Alphapapillomavirus (Alpha-PV) species 12, MfuPV2 is most likely a representative of the novel viral species within the Alpha-PV genus. Their relatively high viral loads suggest that both PVs are etiologically linked with the development of the original neoplasms.
Collapse
|
29
|
MEK/ERK signaling is a critical regulator of high-risk human papillomavirus oncogene expression revealing therapeutic targets for HPV-induced tumors. PLoS Pathog 2021; 17:e1009216. [PMID: 33481911 PMCID: PMC7857559 DOI: 10.1371/journal.ppat.1009216] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/03/2021] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
Intracellular pathogens have evolved to utilize normal cellular processes to complete their replicative cycles. Pathogens that interface with proliferative cell signaling pathways risk infections that can lead to cancers, but the factors that influence malignant outcomes are incompletely understood. Human papillomaviruses (HPVs) predominantly cause benign hyperplasia in stratifying epithelial tissues. However, a subset of carcinogenic or “high-risk” HPV (hr-HPV) genotypes are etiologically linked to nearly 5% of all human cancers. Progression of hr-HPV-induced lesions to malignancies is characterized by increased expression of the E6 and E7 oncogenes and the oncogenic functions of these viral proteins have been widely studied. Yet, the mechanisms that regulate hr-HPV oncogene transcription and suppress their expression in benign lesions remain poorly understood. Here, we demonstrate that EGFR/MEK/ERK signaling, influenced by epithelial contact inhibition and tissue differentiation cues, regulates hr-HPV oncogene expression. Using monolayer cells, epithelial organotypic tissue models, and neoplastic tissue biopsy materials, we show that cell-extrinsic activation of ERK overrides cellular control to promote HPV oncogene expression and the neoplastic phenotype. Our data suggest that HPVs are adapted to use the EGFR/MEK/ERK signaling pathway to regulate their productive replicative cycles. Mechanistic studies show that EGFR/MEK/ERK signaling influences AP-1 transcription factor activity and AP-1 factor knockdown reduces oncogene transcription. Furthermore, pharmacological inhibitors of EGFR, MEK, and ERK signaling quash HPV oncogene expression and the neoplastic phenotype, revealing a potential clinical strategy to suppress uncontrolled cell proliferation, reduce oncogene expression and treat HPV neoplasia. Human papillomavirus (HPV) infections occur in differentiating squamous epithelium and induce hyperplasia during the viral replicative cycle. Although HPV oncogene expression is necessary to promote cellular proliferation for viral genome amplification in the middle epithelial layers, oncogene levels are thereafter suppressed to permit differentiation-induced late gene expression in the uppermost epithelial cells. Yet, the mechanisms responsible for controlling HPV oncogene expression are not well understood. Here, we demonstrate that EGFR/MEK/ERK signaling, which is subject to the normal cellular cues of contact inhibition and epithelial tissue differentiation, is a critical regulator of hr-HPV oncogene expression. We found that extrinsic activation of ERK overrides cellular control to promote oncogene expression and the neoplastic phenotype. Many epidemiologically defined risk factors activate the EGFR/MEK/ERK pathway, suggesting a common mechanism whereby they may promote HPV persistence and disease progression. Lastly, we show that HPV oncogene transcription and protein expression remain susceptible to MEK/ERK control in early neoplastic tissues and tumor cells and that targeted inhibition of MEK/ERK signaling might be exploited therapeutically for HPV-induced infections and tumors.
Collapse
|
30
|
Updates in the cause of sinonasal inverted papilloma and malignant transformation to squamous cell carcinoma. Curr Opin Otolaryngol Head Neck Surg 2020; 29:59-64. [PMID: 33337611 DOI: 10.1097/moo.0000000000000692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW The purpose of this study was to give an overview of recently published articles investigating the cause of inverted papilloma and possible mechanisms mediating malignant transformation into squamous cell carcinoma (SCCa). RECENT FINDINGS Inverted papilloma is a sinonasal tumour that is benign in nature, but has a tendency for local invasion, recurrence and malignant degeneration. Its pathogenesis has not been elucidated and the etiological role for human papillomavirus virus (HPV) has been controversial. Recent reports have varied in detection method (mRNA ISH, DNA ISH and PCR amplification of highly conserved regions of the viral genome), ranging from 0 to 100%. Advances in meta-genomics have permitted detection of HPV viral signatures that were previously cost-prohibitive, and there appears to be a potential role for both low-risk and high-risk in the cause of the disease. Activating EGFR mutations have also been identified to be correlated with malignant transformation, which may be exclusive of HPV infection. Furthermore, more comprehensive approaches in detecting genomic markers have been reported, with HOX-related genes and epithelial-mesenchymal-transition-related gene sets appear to be differentially upregulated. SUMMARY Sinonasal inverted papilloma is a diverse disease that is predominantly benign, but it harbours the potential for malignant degeneration in the SCCa with cause yet to be elucidated. Current evidence supports a potential role for high-risk HPV in a subset of SCCa, with the role of low-risk HPV yet to be defined. Historic studies of individual and small groups of molecular markers have not consistently adequate characterize signalling pathways underpinning the oncogenesis, and comprehensive genomic studies are needed to better understand the disease.
Collapse
|
31
|
Sobhy NM, Singh V, El Damaty HM, Mor SK, Youssef CRB, Goyal SM. Molecular characterization of a novel Camelus dromedarius papillomavirus. Comp Immunol Microbiol Infect Dis 2020; 73:101561. [PMID: 33091861 DOI: 10.1016/j.cimid.2020.101561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 11/28/2022]
Abstract
Papillomaviruses affect both human and non-human hosts. In camels, papillomatosis is caused by Camelus dromedarius papillomavirus type 1 and 2 (CdPV1 and CdPV2, respectively). In late 2018, an outbreak of camelpox occurred in a herd of fattening camels in Egypt. Several animals were found to be co-infected with camelpox and camel papillomaviruses. The morbidity with papillomatosis was 35 %. The infection was confirmed by PCR then Illumina sequencing revealed the presence of a complete genome of two CdPVs. One of these was CdPV1 (MT130101) and the other was a putative novel virus, tentatively named as CdPV3 (MT130100). Seven ORFs and a long upstream regulatory region were identified in the genomes of both viruses. Pairwise comparisons of L1 gene revealed 98.92 % nt identity between MT130101/CdPV1/Egypt/2018 and HQ912790/CdPV1/Sudan/2009 with 100 % coverage. However, MT130100/CdPV3/ Egypt/2018 showed only 68.99 % nt identity with the closest genome HQ912791/CdPV2/Sudan/2009. Phylogenetic analyses indicated that CdPV1 and CdPV3 belonged to the genus Deltapapillomavirus. These results should be useful for future CdPVs molecular surveillance and construction of evolutionary characteristics of this virus.
Collapse
Affiliation(s)
- Nader M Sobhy
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt; Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Vikash Singh
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Hend M El Damaty
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Sunil K Mor
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Christiana R B Youssef
- Department of Microbiology, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia 44519, Egypt
| | - Sagar M Goyal
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
32
|
Kajitani N, Schwartz S. Role of Viral Ribonucleoproteins in Human Papillomavirus Type 16 Gene Expression. Viruses 2020; 12:E1110. [PMID: 33007936 PMCID: PMC7600041 DOI: 10.3390/v12101110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPVs) depend on the cellular RNA-processing machineries including alternative RNA splicing and polyadenylation to coordinate HPV gene expression. HPV RNA processing is controlled by cis-regulatory RNA elements and trans-regulatory factors since the HPV splice sites are suboptimal. The definition of HPV exons and introns may differ between individual HPV mRNA species and is complicated by the fact that many HPV protein-coding sequences overlap. The formation of HPV ribonucleoproteins consisting of HPV pre-mRNAs and multiple cellular RNA-binding proteins may result in the different outcomes of HPV gene expression, which contributes to the HPV life cycle progression and HPV-associated cancer development. In this review, we summarize the regulation of HPV16 gene expression at the level of RNA processing with focus on the interactions between HPV16 pre-mRNAs and cellular RNA-binding factors.
Collapse
Affiliation(s)
- Naoko Kajitani
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden;
| | | |
Collapse
|
33
|
Heterogeneous Nuclear Ribonucleoprotein A1 (hnRNP A1) and hnRNP A2 Inhibit Splicing to Human Papillomavirus 16 Splice Site SA409 through a UAG-Containing Sequence in the E7 Coding Region. J Virol 2020; 94:JVI.01509-20. [PMID: 32759322 PMCID: PMC7527060 DOI: 10.1128/jvi.01509-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomavirus type 16 (HPV16) belongs to the high-risk-group of HPVs and is causing a variety of anogenital cancers and head and neck cancer. The two HPV16 oncoproteins E6 and E7 prevent apoptosis and promote mitosis and are essential for completion of the HPV16 life cycle and for transformation of the infected cell and maintenance of malignancy. E6 and E7 are produced from two mRNAs that are generated in a mutually exclusive manner by alternative splicing. While E6 protein is made from the unspliced mRNA, E7 is made from the spliced version of the same pre-mRNA. Since sufficient quantities of both E6 and E7 are required for malignant transformation, this intricate arrangement of gene expression renders E6 and E7 expression vulnerable to external interference. Since antiviral drugs to HPV16 are not available, a detailed knowledge of the regulation of HPV16 E6 and E7 mRNA splicing may uncover novel targets for therapy. Human papillomavirus 16 (HPV16) 5′-splice site SD226 and 3′-splice site SA409 are required for production of the HPV16 E7 mRNAs, whereas unspliced mRNAs produce E6 mRNAs. The E6 and E7 proteins are essential in the HPV16 replication cycle but are also the major HPV16 proteins required for induction and maintenance of malignancy caused by HPV16 infection. Thus, a balanced expression of unspliced and spliced mRNAs is required for production of sufficient quantities of E6 and E7 proteins under physiological and pathophysiological conditions. If splicing becomes too efficient, the levels of unspliced E6 mRNAs will decrease below a threshold level that is no longer able to produce E6 protein quantities high enough to significantly reduce p53 protein levels. Similarly, if splicing becomes too inefficient, the levels of spliced E7 mRNAs will decrease below a threshold level that is no longer able to produce E7 protein quantities high enough to significantly reduce pRb protein levels. To determine how splicing between SD226 and SA409 is regulated, we have investigated how SA409 is controlled by the cellular proteins hnRNP A1 and hnRNP A2, two proteins that have been shown previously to control HPV16 gene expression. We found that hnRNP A1 and A2 interacted directly and specifically with a C-less RNA element located between HPV16 nucleotide positions 594 and 604 downstream of SA409. Overexpression of hnRNP A1 inhibited SA409 and promoted production of unspliced E6 mRNAs at the expense of the E7 mRNAs, whereas overexpression of hnRNP A2 inhibited SA409 to redirect splicing to SA742, a downstream 3′-splice site that is used for generation of HPV16 E6̂E7, E1, and E4 mRNAs. Thus, high levels of either hnRNP A1 or hnRNP A2 inhibited production of the promitotic HPV16 E7 protein. We show that the hnRNP A1 and A2 proteins control the relative levels of the HPV16 unspliced and spliced HPV16 E6 and E7 mRNAs and function as inhibitors of HPV16 E7 expression. IMPORTANCE Human papillomavirus type 16 (HPV16) belongs to the high-risk-group of HPVs and is causing a variety of anogenital cancers and head and neck cancer. The two HPV16 oncoproteins E6 and E7 prevent apoptosis and promote mitosis and are essential for completion of the HPV16 life cycle and for transformation of the infected cell and maintenance of malignancy. E6 and E7 are produced from two mRNAs that are generated in a mutually exclusive manner by alternative splicing. While E6 protein is made from the unspliced mRNA, E7 is made from the spliced version of the same pre-mRNA. Since sufficient quantities of both E6 and E7 are required for malignant transformation, this intricate arrangement of gene expression renders E6 and E7 expression vulnerable to external interference. Since antiviral drugs to HPV16 are not available, a detailed knowledge of the regulation of HPV16 E6 and E7 mRNA splicing may uncover novel targets for therapy.
Collapse
|
34
|
Silva RCO, Lima RDCP, Cordeiro MN, Dos Santos DL, Pena LJ, Gurgel APAD, Batista MVA, Chagas BS, Freitas AC. Functional evaluation of human papillomavirus type 31 long control region variants. Genomics 2020; 112:5066-5071. [PMID: 32898643 DOI: 10.1016/j.ygeno.2020.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/28/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022]
Abstract
Persistent infections by high-risk human papillomavirus (HR-HPV) are a necessary condition, but not sufficient for cervical cancer development. Genetic variants of HR-HPV appear to be related to the risk of persistent infections. The study performed a functional evaluation of variants of the HPV-31 promoter region (LCR). For this, cloning and subcloning of variants HPV-31/UFPE-21 HPV-31/UFPE-89, HPV-31/UFPE-66, E2 gene and prototype HPV-31 were performed. Transfection with different concentrations of E2 was done and the concentration of 25 ng was determined to be ideal for LCR activation. HPV-31/UFPE-21 and HPV-31/UFPE-89 have a greater ability to alter Nluc reporter gene expression levels and HPV-31/UFPE-66 showed decreased levels of gene expression of Nluc reporter gene compared to control. Statistical analysis showed a significant difference between the polymorphic LCR regions and the control (p < 0.0001). A more refined profile of variants of HPV-31 and its importance for the prognosis of cervical lesions begins to be drawn.
Collapse
Affiliation(s)
- Ruany C O Silva
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Brazil
| | - Rita de Cássia P Lima
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Brazil
| | - Marcelo N Cordeiro
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Brazil
| | - Daffany L Dos Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Brazil
| | - Lindomar J Pena
- Department of Virology and Experimental Therapy, Research Center Aggeu Magalhães, Oswaldo Cruz Foundation, Pernambuco, Brazil
| | - Ana P A D Gurgel
- Department of Engineering and Environment, Federal University of Paraiba, Paraiba, Brazil
| | - Marcus V A Batista
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, Brazil
| | - Bárbara S Chagas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Brazil
| | - Antonio C Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Brazil.
| |
Collapse
|
35
|
Pace J, Youens-Clark K, Freeman C, Hurwitz B, Van Doorslaer K. PuMA: A papillomavirus genome annotation tool. Virus Evol 2020; 6:veaa068. [PMID: 33381306 PMCID: PMC7751161 DOI: 10.1093/ve/veaa068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-throughput sequencing technologies provide unprecedented power to identify novel viruses from a wide variety of (environmental) samples. The field of ‘viral metagenomics’ has dramatically expanded our understanding of viral diversity. Viral metagenomic approaches imply that many novel viruses will not be described by researchers who are experts on (the genomic organization of) that virus family. We have developed the papillomavirus annotation tool (PuMA) to provide researchers with a convenient and reproducible method to annotate and report novel papillomaviruses. PuMA currently correctly annotates 99% of the papillomavirus genes when benchmarked against the 655 reference genomes in the papillomavirus episteme. Compared to another viral annotation pipeline, PuMA annotates more viral features while being more accurate. To demonstrate its general applicability, we also developed a preliminary version of PuMA that can annotate polyomaviruses. PuMA is available on GitHub (https://github.com/KVD-lab/puma) and through the iMicrobe online environment (https://www.imicrobe.us/#/apps/puma).
Collapse
Affiliation(s)
- Josh Pace
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1200 E. University Blvd. Tucson, AZ 85721-0073, USA
| | - Ken Youens-Clark
- Department of Biosystems Engineering, University of Arizona, 1200 E. University Blvd. Tucson, AZ 85721-0073, USA
| | - Cordell Freeman
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1200 E. University Blvd. Tucson, AZ 85721-0073, USA
| | - Bonnie Hurwitz
- Department of Biosystems Engineering, University of Arizona, 1200 E. University Blvd. Tucson, AZ 85721-0073, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1200 E. University Blvd. Tucson, AZ 85721-0073, USA
| |
Collapse
|
36
|
Borvető F, Bravo IG, Willemsen A. Papillomaviruses infecting cetaceans exhibit signs of genome adaptation following a recombination event. Virus Evol 2020; 6:veaa038. [PMID: 32665861 PMCID: PMC7326301 DOI: 10.1093/ve/veaa038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Papillomaviruses (PVs) have evolved through a complex evolutionary scenario where virus-host co-evolution alone is not enough to explain the phenotypic and genotypic PV diversity observed today. Other evolutionary processes, such as host switch and recombination, also appear to play an important role in PV evolution. In this study, we have examined the genomic impact of a recombination event between distantly related PVs infecting Cetartiodactyla (even-toed ungulates and cetaceans). Our phylogenetic analyses suggest that one single recombination was responsible for the generation of extant 'chimeric' PV genomes infecting cetaceans. By correlating the phylogenetic relationships to the genomic content, we observed important differences between the recombinant and non-recombinant cetartiodactyle PV genomes. Notably, recombinant PVs contain a unique set of conserved motifs in the upstream regulatory region (URR). We interpret these regulatory changes as an adaptive response to drastic changes in the PV genome. In terms of codon usage preferences (CUPrefs), we did not detect any particular differences between orthologous open reading frames in recombinant and non-recombinant PVs. Instead, our results are in line with previous observations suggesting that CUPrefs in PVs are rather linked to gene expression patterns as well as to gene function. We show that the non-coding URR of PVs infecting cetaceans, the central regulatory element in these viruses, exhibits signs of adaptation following a recombination event. Our results suggest that also in PVs, the evolution of gene regulation can play an important role in speciation and adaptation to novel environments.
Collapse
Affiliation(s)
- Fanni Borvető
- Centre National de la Recherche Scientifique (CNRS), Laboratory MIVEGEC (CNRS IRD Univ, Montpellier), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Ignacio G Bravo
- Centre National de la Recherche Scientifique (CNRS), Laboratory MIVEGEC (CNRS IRD Univ, Montpellier), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Anouk Willemsen
- Centre National de la Recherche Scientifique (CNRS), Laboratory MIVEGEC (CNRS IRD Univ, Montpellier), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
- Corresponding author: E-mail:
| |
Collapse
|
37
|
Dinka H, Milkesa A. Unfolding SARS-CoV-2 viral genome to understand its gene expression regulation. INFECTION GENETICS AND EVOLUTION 2020; 84:104386. [PMID: 32473977 PMCID: PMC7256514 DOI: 10.1016/j.meegid.2020.104386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 01/07/2023]
Abstract
SARS-CoV-2 is a new virus responsible for an outbreak of respiratory illness known as COVID-19, which has spread to several countries around the world and a global effort is being undertaken to characterize the molecular features and evolutionary origins of this virus. In silico analysis of the transcription start sites, promoter regions, transcription factors and their binding sites, gene ontology, CpG islands for SARS-CoV-2 viral genome are a first step to understand the regulation mechanisms of gene expression and its association with genetic variations in the genomes. For this purpose, we first computationally surveyed all SARS-CoV-2 virus genes with the open reading frames from NCBI database and found eleven sequences to accomplish the mentioned features by using bioinformatics tools. Our analysis revealed that all (100%) of the SARS-CoV-2 virus genes have more than one TSS. By taking all TSSs with the highest predictive score we determined promoter regions and identified five common candidate motifs (MVI, MVII, MVIII, MVIV and MVV) of which MVI was found to be shared by all promoter regions of SARS-CoV-2 virus genes with the least E-value (3.8e-056, statistically highly significant). In our further analysis of MVI we showed MVI serve as binding sites for a single transcription factor (TF) family, EXPREG, involved in the regulatory mode of these genes. From EXPREG family four TFs that belongs to Cyclic AMP (cAMP) receptor protein (CRP) and Catabolite control protein A (CcpA) group mostly serve as transcriptional activator whereas two TFs that belong to LexA group always serve as transcriptional repressor in different kinds of cellular processes and molecular functions. Therefore, we unfolded SARS-CoV-2 viral genome to shed light on its gene expression regulation that could help to design and evaluate diagnostic tests, to track and trace the ongoing outbreak and to identify potential intervention options. Computationally surveyed all SARS-CoV-2 genes with the open reading frames from NCBI database showed eleven gene sequences Our analysis revealed that all (100%) of the SARS-CoV-2 genes have more than one TSS. We determined promoter regions and identified five common candidate motifs of which MVI was found to be shared by all promoter regions of SARS-CoV-2 genes. We showed MVI serve as binding sites for a single transcription factor family, EXPREG, involved in the regulatory mode of these genes.
Collapse
Affiliation(s)
- Hunduma Dinka
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O.Box 1888, Adama, Ethiopia.
| | - Ashenafi Milkesa
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O.Box 1888, Adama, Ethiopia
| |
Collapse
|
38
|
Zheng Y, Cui X, Nilsson K, Yu H, Gong L, Wu C, Schwartz S. Efficient production of HPV16 E2 protein from HPV16 late mRNAs spliced from SD880 to SA2709. Virus Res 2020; 285:198004. [PMID: 32380211 DOI: 10.1016/j.virusres.2020.198004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022]
Abstract
Human papillomaviruses (HPVs) produce a large number of alternatively spliced mRNAs, including a number of differently spliced mRNAs with the potential to produce E2 protein. To identify the alternatively spliced HPV16 mRNA with the highest ability to produce E2 protein, we have generated E2 cDNA expression plasmids representing the most common, alternatively spliced E2 mRNAs, and assessed their translational potential. Our results revealed that an mRNA initiated at the HPV16 late promoter p670 and spliced from the HPV16 5'-splice site SD880 to the HPV16 3'-splice site SA2709, located immediately upstream of the E2 ATG, produced higher levels of E2 than any of the other alternatively spliced, E2-encoding mRNAs. Utilization of a known, alternative 3'-splice site located upstream of the E2 ATG named SA2582, generated mRNAs with lower ability to produce E2 than mRNAs spliced to SA2709. Finally, analysis of HPV16 mRNA splicing demonstrated that SA2709 was more efficiently spliced to the upstream 5'-splice site SD880 than to the upstream 5'-splice site SD226. In conclusion, the HPV16 mRNA with the greatest ability to produce E2 protein is generated from the HPV16 late promoter and is spliced between HPV16 5'-splice site SD880 and HPV16 3'-splice site SA2709.
Collapse
Affiliation(s)
- Yunji Zheng
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden
| | - Xiaoxu Cui
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden
| | - Kersti Nilsson
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden
| | - Haoran Yu
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden
| | - Lijing Gong
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden; China Institute of Sport and Health Sciences, Beijing Sport University, Xinxi Road 48, Haidian District, 100084, Beijing, China
| | - Chengjun Wu
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden; The First Affiliated Hospital of Shandong First Medical University, No.16766 Jingshi Road, Jinan, Shandong Province, 250014, China; Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, No.18877 Jingshi Road, Jinan, Shandong Province, 250062, China.
| | - Stefan Schwartz
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden.
| |
Collapse
|
39
|
The Transcriptional Cofactor VGLL1 Drives Transcription of Human Papillomavirus Early Genes via TEAD1. J Virol 2020; 94:JVI.01945-19. [PMID: 32132238 DOI: 10.1128/jvi.01945-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
The TEAD family of transcription factors requires associating cofactors to induce gene expression. TEAD1 is known to activate the early promoter of human papillomavirus (HPV), but the precise mechanisms of TEAD1-mediated transactivation of the HPV promoter, including its relevant cofactors, remain unexplored. Here, we reveal that VGLL1, a TEAD-interacting cofactor, contributes to HPV early gene expression. Knockdown of VGLL1 and/or TEAD1 led to a decrease in viral early gene expression in human cervical keratinocytes and cervical cancer cell lines. We identified 11 TEAD1 target sites in the HPV16 long control region (LCR) by in vitro DNA pulldown assays; 8 of these sites contributed to the transcriptional activation of the early promoter in luciferase reporter assays. VGLL1 bound to the HPV16 LCR via its interaction with TEAD1 both in vitro and in vivo Furthermore, introducing HPV16 and HPV18 whole genomes into primary human keratinocytes led to increased levels of VGLL1, due in part to the upregulation of TEADs. These results suggest that multiple VGLL1/TEAD1 complexes are recruited to the LCR to support the efficient transcription of HPV early genes.IMPORTANCE Although a number of transcription factors have been reported to be involved in HPV gene expression, little is known about the cofactors that support HPV transcription. In this study, we demonstrate that the transcriptional cofactor VGLL1 plays a prominent role in HPV early gene expression, dependent on its association with the transcription factor TEAD1. Whereas TEAD1 is ubiquitously expressed in a variety of tissues, VGLL1 displays tissue-specific expression and is implicated in the development and differentiation of epithelial lineage tissues, where HPV gene expression occurs. Our results suggest that VGLL1 may contribute to the epithelial specificity of HPV gene expression, providing new insights into the mechanisms that regulate HPV infection. Further, VGLL1 is also critical for the growth of cervical cancer cells and may represent a novel therapeutic target for HPV-associated cancers.
Collapse
|
40
|
Orientation-dependent toxic effect of human papillomavirus type 33 long control region DNA in Escherichia coli cells. Virus Genes 2020; 56:298-305. [PMID: 32246353 PMCID: PMC7220894 DOI: 10.1007/s11262-020-01754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/20/2020] [Indexed: 11/15/2022]
Abstract
The functional analysis of human papillomavirus (HPV) sequence variation requires the molecular cloning of different genomic regions of virus variants. In this study, we report an unexpected difficulty experienced when trying to clone HPV33 long control region (LCR) variants in Escherichia coli. Standard cloning strategies proved to be inappropriate to clone HPV33 LCR variants in the forward orientation into a eukaryotic reporter vector (pGL2-Basic). However, by slight modification of culture conditions (incubation at 25 °C instead of 37 °C), constructs containing the HPV33 LCR variants in the forward orientation were obtained. Transformation experiments performed with different HPV33 LCR constructs indicated that there is a sequence element in the 5′ LCR of HPV33 causing temperature-dependent toxic effect in E. coli. Sequence analysis revealed the presence of an open reading frame (ORF) in the 5′ part of HPV33 LCR potentially encoding a 116-amino acid polypeptide. Protein structure prediction suggested that this putative protein might have a structural similarity to transmembrane proteins. Even a low-level expression of this protein may cause significant toxicity in the host bacteria. In silico analysis of the LCR of HPV33 and some other HPV types belonging to the species Alphapapillomavirus 9 (HPV31, 35 and 58) seemed to support the assumption that the ORFs found in the 5′ LCR of these HPVs are protein-coding sequences. Further studies should be performed to prove that these putative proteins are really expressed in the infected host cells and to identify their function.
Collapse
|
41
|
Garbuglia AR, Lapa D, Sias C, Capobianchi MR, Del Porto P. The Use of Both Therapeutic and Prophylactic Vaccines in the Therapy of Papillomavirus Disease. Front Immunol 2020; 11:188. [PMID: 32133000 PMCID: PMC7040023 DOI: 10.3389/fimmu.2020.00188] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted virus. The high-risk HPV types (i.e., HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) are considered to be the main etiological agents of genital tract cancers, such as cervical, vulvar, vaginal, penile, and anal cancers, and of a subset of head and neck cancers. Three prophylactic HPV vaccines are available that are bivalent (vs. HPV16, 18), tetravalent (vs. HPV6, 11, 16, 18), and non-avalent (vs. HPV6, 11, 16, 18, 31, 33,45, 52, 58). All of these vaccines are based on recombinant DNA technology, and they are prepared from the purified L1 protein that self-assembles to form the HPV type-specific empty shells (i.e., virus-like particles). These vaccines are highly immunogenic and induce specific antibodies. Therapeutic vaccines differ from prophylactic vaccines, as they are designed to generate cell-mediated immunity against transformed cells, rather than neutralizing antibodies. Among the HPV proteins, the E6 and E7 oncoproteins are considered almost ideal as targets for immunotherapy of cervical cancer, as they are essential for the onset and evolution of malignancy and are constitutively expressed in both premalignant and invasive lesions. Several strategies have been investigated for HPV therapeutic vaccines designed to enhance CD4+ and CD8+ T-cell responses, including genetic vaccines (i.e., DNA/ RNA/virus/ bacterial), and protein-based, peptide-based or dendritic-cell-based vaccines. However, no vaccine has yet been licensed for therapeutic use. Several studies have suggested that administration of prophylactic vaccines immediately after surgical treatment of CIN2 cervical lesions can be considered as an adjuvant to prevent reactivation or reinfection, and other studies have described the relevance of prophylactic vaccines in the management of genital warts. This review summarizes the leading features of therapeutic vaccines, which mainly target the early oncoproteins E6 and E7, and prophylactic vaccines, which are based on the L1 capsid protein. Through an analysis of the specific immunogenic properties of these two types of vaccines, we discuss why and how prophylactic vaccines can be effective in the treatment of HPV-related lesions and relapse.
Collapse
Affiliation(s)
- Anna Rosa Garbuglia
- Laboratory of Virology, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Catia Sias
- Laboratory of Virology, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Paola Del Porto
- Department of Biology and Biotechnology "C. Darwin," Sapienza University, Rome, Italy
| |
Collapse
|
42
|
Giaretta A, Toffolo GM, Elston TC. Stochastic modeling of human papillomavirusearly promoter gene regulation. J Theor Biol 2020; 486:110057. [PMID: 31672406 PMCID: PMC6937396 DOI: 10.1016/j.jtbi.2019.110057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/01/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
High risk forms of human papillomaviruses (HPVs) promote cancerous lesions and are implicated in almost all cervical cancer. Of particular relevance to cancer progression is regulation of the early promoter that controls gene expression in the initial phases of infection and can eventually lead to pre-cancer progression. Our goal was to develop a stochastic model to investigate the control mechanisms that regulate gene expression from the HPV early promoter. Our model integrates modules that account for transcriptional, post-transcriptional, translational and post-translational regulation of E1 and E2 early genes to form a functioning gene regulatory network. Each module consists of a set of biochemical steps whose stochastic evolution is governed by a chemical Master Equation and can be simulated using the Gillespie algorithm. To investigate the role of noise in gene expression, we compared our stochastic simulations with solutions to ordinary differential equations for the mean behavior of the system that are valid under the conditions of large molecular abundances and quasi-equilibrium for fast reactions. The model produced results consistent with known HPV biology. Our simulation results suggest that stochasticity plays a pivotal role in determining the dynamics of HPV gene expression. In particular, the combination of positive and negative feedback regulation generates stochastic bursts of gene expression. Analysis of the model reveals that regulation at the promoter affects burst amplitude and frequency, whereas splicing is more specialized to regulate burst frequency. Our results also suggest that splicing enhancers are a significant source of stochasticity in pre-mRNA abundance and that the number of viruses infecting the host cell represents a third important source of stochasticity in gene expression.
Collapse
Affiliation(s)
- Alberto Giaretta
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Timothy C Elston
- Department of Pharmacology, University of North Carolina, Chapel Hill, United States of America.
| |
Collapse
|
43
|
Drews CM, Brimer N, Vande Pol SB. Multiple regions of E6AP (UBE3A) contribute to interaction with papillomavirus E6 proteins and the activation of ubiquitin ligase activity. PLoS Pathog 2020; 16:e1008295. [PMID: 31971989 PMCID: PMC6999913 DOI: 10.1371/journal.ppat.1008295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/04/2020] [Accepted: 12/25/2019] [Indexed: 12/23/2022] Open
Abstract
The HECT domain E3 ubiquitin ligase E6AP (UBE3A) is critical for the development of human papillomavirus (HPV) associated cancers, the neurodevelopment disorder Angelman Syndrome, and some cases of autism spectrum disorders. How E6AP recognizes its cellular targets and how its ubiquitin ligase activity is triggered remain poorly understood, and HPV E6 proteins are models for these processes. We examined diverse E6 proteins from human and non-human papillomaviruses and identified two different modes of interaction between E6 and E6AP. In Type I interactions, E6 can interact directly with the LXXLL peptide motif alone of E6AP (isolated from the rest of E6AP), and then recruit cellular substrates such as p53. In Type II interactions, E6 proteins require additional auxiliary regions of E6AP in either the amino terminus or in the carboxy-terminal HECT domain to interact with the LXXLL peptide motif of E6AP. A region of E6AP amino-terminal to the LXXLL peptide motif both augments association with E6 proteins and is required for E6 proteins to trigger ubiquitin ligase activity in the carboxy-terminal HECT ubiquitin ligase domain of E6AP. In Type I interactions, E6 can associate with E6AP and recruit p53, but a Type II interaction is required for the degradation of p53 or NHERF1. Interestingly, different E6 proteins varied in E6AP auxiliary regions that contributed to enhanced association, indicating evolutionary drift in the formation of Type II interactions. This classification of E6-E6AP interaction types and identification of a region in the E6AP amino terminus that is important for both E6 association and stimulation of ubiquitin ligase activity will inform future structural data of the E6-E6AP complex and future studies aiming to interfere with the activity of the E6-E6AP complex.
Collapse
Affiliation(s)
- Camille M. Drews
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Scott B. Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
Papillomaviruses are one of the oldest viruses known, dating back 330 million years. During this long evolution, human papillomaviruses (HPV) have developed into hijackers of human cellular and immune systems in which they replicate and remain silent. Systematic studies on oral HPV infections and their outcomes are still scarce. Oral HPV infections have been linked to sexual behaviour, but recent evidence supports their horizontal, mouth‐to‐mouth, transmission. Most HPV infections in infants are acquired vertically from the mother during the intrauterine period, during delivery, or later via saliva. The best‐known benign clinical manifestations of HPV infection are oral papilloma/condyloma and focal epithelial hyperplasia. Evidence is emerging which suggests that some oral HPV infections might persist. Persistent HPV infection is mandatory for HPV‐associated malignant transformation. However, progression of HPV‐induced lesions to malignancy requires additional cofactors. In the early 1980s, we provided the first evidence that a subset of oral cancers and other head and neck cancers might be causally linked to HPV infection. This review summarizes current knowledge on the virus itself, its transmission modes, as well as the full spectrum of oral HPV infections – from asymptomatic infections to benign, potentially malignant oral lesions, and squamous cell carcinoma.
Collapse
Affiliation(s)
- Stina Syrjänen
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry, Faculty of Medicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| |
Collapse
|
45
|
Characterization of an HPV33 natural variant with enhanced transcriptional activity suggests a role for C/EBPβ in the regulation of the viral early promoter. Sci Rep 2019; 9:5113. [PMID: 30911096 PMCID: PMC6433916 DOI: 10.1038/s41598-019-41102-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
The Long Control Region (LCR) of the human papillomavirus (HPV) genome encompasses the early promoter (EP) that drives expression of the viral oncogenes in infected cells and HPV-associated cancers. Here, we report on a natural variant of HPV33 that displays higher EP activity than the prototype in transfected C33A and HeLa cervical carcinoma cells, and in the osteosarcoma U2OS cell line which supports replication of HPV episomes. This increased promoter activity was ascribed to a single nucleotide variation in the LCR, T7791C, in a putative binding site for the transcription factor C/EBPβ. T7791C abrogated binding of recombinant C/EBPβ to this site in vitro and stimulated the EP in vivo, suggesting that it abrogates a negatively-acting regulatory element. A second C/EBPβ binding site was identified in vitro that activated the EP in vivo and whose function and location in the epithelial-specific enhancer is shown to be conserved in the highly prevalent HPV18. These results suggest that C/EBPβ is both an activator and a repressor of the HPV33 EP, acting via two distinct binding sites. Prediction of C/EBPβ sites in the LCR of 186 HPV types suggests that C/EBPβ regulation of the EP is common among high‐risk viruses from the α genus.
Collapse
|
46
|
Repression of Human Papillomavirus Oncogene Expression under Hypoxia Is Mediated by PI3K/mTORC2/AKT Signaling. mBio 2019; 10:mBio.02323-18. [PMID: 30755508 PMCID: PMC6372795 DOI: 10.1128/mbio.02323-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncogenic HPV types are major human carcinogens. Under hypoxia, HPV-positive cancer cells can repress the viral E6/E7 oncogenes and induce a reversible growth arrest. This response could contribute to therapy resistance, immune evasion, and tumor recurrence upon reoxygenation. Here, we uncover evidence that HPV oncogene repression is mediated by hypoxia-induced activation of canonical PI3K/mTORC2/AKT signaling. AKT-dependent downregulation of E6/E7 is only observed under hypoxia and occurs, at least in part, at the transcriptional level. Quantitative proteome analyses identify additional factors as candidates to be involved in AKT-dependent E6/E7 repression and/or hypoxic PI3K/mTORC2/AKT activation. These results connect PI3K/mTORC2/AKT signaling with HPV oncogene regulation, providing new mechanistic insights into the cross talk between oncogenic HPVs and their host cells. Hypoxia is linked to therapeutic resistance and poor clinical prognosis for many tumor entities, including human papillomavirus (HPV)-positive cancers. Notably, HPV-positive cancer cells can induce a dormant state under hypoxia, characterized by a reversible growth arrest and strong repression of viral E6/E7 oncogene expression, which could contribute to therapy resistance, immune evasion and tumor recurrence. The present work aimed to gain mechanistic insights into the pathway(s) underlying HPV oncogene repression under hypoxia. We show that E6/E7 downregulation is mediated by hypoxia-induced stimulation of AKT signaling. Ablating AKT function in hypoxic HPV-positive cancer cells by using chemical inhibitors efficiently counteracts E6/E7 repression. Isoform-specific activation or downregulation of AKT1 and AKT2 reveals that both AKT isoforms contribute to hypoxic E6/E7 repression and act in a functionally redundant manner. Hypoxic AKT activation and consecutive E6/E7 repression is dependent on the activities of the canonical upstream AKT regulators phosphoinositide 3-kinase (PI3K) and mechanistic target of rapamycin (mTOR) complex 2 (mTORC2). Hypoxic downregulation of E6/E7 occurs, at least in part, at the transcriptional level. Modulation of E6/E7 expression by the PI3K/mTORC2/AKT cascade is hypoxia specific and not observed in normoxic HPV-positive cancer cells. Quantitative proteome analyses identify additional factors as candidates to be involved in hypoxia-induced activation of the PI3K/mTORC2/AKT signaling cascade and in the AKT-dependent repression of the E6/E7 oncogenes under hypoxia. Collectively, these data uncover a functional key role of the PI3K/mTORC2/AKT signaling cascade for viral oncogene repression in hypoxic HPV-positive cancer cells and provide new insights into the poorly understood cross talk between oncogenic HPVs and their host cells under hypoxia.
Collapse
|
47
|
Saranathan N, Vivekanandan P. G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends Microbiol 2019; 27:148-163. [PMID: 30224157 PMCID: PMC7127049 DOI: 10.1016/j.tim.2018.08.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid secondary structures formed by guanine-rich DNA and RNA sequences. In this review we aim to provide an overview of the biological roles of G4s in microbial genomes with emphasis on recent discoveries. G4s are enriched and conserved in the regulatory regions of microbes, including bacteria, fungi, and viruses. Importantly, G4s in hepatitis B virus (HBV) and hepatitis C virus (HCV) genomes modulate genes crucial for virus replication. Recent studies on Epstein-Barr virus (EBV) shed light on the role of G4s within the microbial transcripts as cis-acting regulatory signals that modulate translation and facilitate immune evasion. Furthermore, G4s in microbial genomes have been linked to radioresistance, antigenic variation, recombination, and latency. G4s in microbial genomes represent novel therapeutic targets for antimicrobial therapy.
Collapse
Affiliation(s)
- Nandhini Saranathan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
48
|
Wu C, Nilsson K, Zheng Y, Ekenstierna C, Sugiyama N, Forslund O, Kajitani N, Yu H, Wennerberg J, Ekblad L, Schwartz S. Short half-life of HPV16 E6 and E7 mRNAs sensitizes HPV16-positive tonsillar cancer cell line HN26 to DNA-damaging drugs. Int J Cancer 2019; 144:297-310. [PMID: 30303514 PMCID: PMC6587446 DOI: 10.1002/ijc.31918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
Abstract
Here we show that treatment of the HPV16-positive tonsillar cancer cell line HN26 with DNA alkylating cancer drug melphalan-induced p53 and activated apoptosis. Melphalan reduced the levels of RNA polymerase II and cellular transcription factor Sp1 that were associated with HPV16 DNA. The resulting inhibition of transcription caused a rapid loss of the HPV16 early mRNAs encoding E6 and E7 as a result of their inherent instability. As a consequence of HPV16 E6 and E7 down-regulation, the DNA damage inflicted on the cells by melphalan caused induction of p53 and activation of apoptosis in the HN26 cells. The BARD1-negative phenotype of the HN26 cells may have contributed to the failure to repair DNA damage caused by melphalan, as well as to the efficient apoptosis induction. Finally, nude mice carrying the HPV16 positive tonsillar cancer cells responded better to melphalan than to cisplatin, the chemotherapeutic drug of choice for tonsillar cancer. We concluded that the short half-life of the HPV16 E6 and E7 mRNAs renders HPV16-driven tonsillar cancer cells particularly sensitive to DNA damaging agents such as melphalan since melphalan both inhibits transcription and causes DNA damage.
Collapse
Affiliation(s)
- Chengjun Wu
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kersti Nilsson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Yunji Zheng
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Camilla Ekenstierna
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Skane University Hospital, Lund, Sweden
| | - Natsuki Sugiyama
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Skane University Hospital, Lund, Sweden
| | - Ola Forslund
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Naoko Kajitani
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Haoran Yu
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Johan Wennerberg
- Department of Clinical Sciences Lund, Oto-rhino-laryngology, Head and Neck Surgery, Lund University, Skane University Hospital, Lund, Sweden
| | - Lars Ekblad
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Skane University Hospital, Lund, Sweden
| | - Stefan Schwartz
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
49
|
Giaretta A. Stochastic Modeling of the Co-Regulation between Early and E8 Promoters in Human Papillomavirus. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:5026-5029. [PMID: 30441470 DOI: 10.1109/embc.2018.8513406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High risk HPV can induce cervical and oropharyngeal cancerous Iesions. The initial phase of the infection is characterized by a fine regulation of the viral DNA replication, in order to maintain 10-100 DNA copies per cell. Such regulation is primarily controlled by El and E2 proteins produced by the early promoter. The recently discovered E8 promoter is capable to co-regulate the early one in order to maintain a low and constant viral DNA copy number.The aim of this study is to develop a novel stochastic mathematical model of the co-regulation between the E8 and the early promoter, with the main purpose to rigorously show the E8 promoter capability to finely regulate the HPV transcripts which control the DNA replication in the first stages of the infection.The model, condensing the biological knowledge present in literature, describes the interaction between the two promoters and shows how the E8 co-regulation is capable to reject the stochastic noise of E2 gene expression to a higher extent than the early promoter negative auto-feedback. This proves the capability of the E8 promoter to finely control the HPV genomes copy number.
Collapse
|
50
|
Vanmechelen B, Maes RK, Sledge DG, Lockwood SL, Schwartz SL, Maes P. Genomic characterization of Erethizon dorsatum papillomavirus 2, a new papillomavirus species marked by its exceptional genome size. J Gen Virol 2018; 99:1699-1704. [PMID: 30355398 DOI: 10.1099/jgv.0.001164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report here the complete sequence and genome organization of a new papillomavirus, Erethizon dorsatum papillomavirus 2 (EdPV2), which was isolated from cutaneous lesions observed on the muzzle of a North American porcupine. The complete genome is 8809 nucleotides long and encodes five early (E6-E7-E1-E2-E4) and two late proteins (L2-L1). In addition to the upstream regulatory region, the EdPV2 genome contains an exceptionally large secondary non-coding region with no apparent functional relevance. EdPV2 is strongly divergent from the previously described porcupine papillomavirus EdPV1 and phylogenetic analysis shows EdPV2 clustering near members of the genus Pipapillomavirus, a group of rodent papillomaviruses. Pairwise sequence comparison based on the L1 open reading frame identifies Rattus norvegicus papillomavirus 1 as the closest related virus (59.97 % similarity). Based on its low sequence similarity to other known papillomaviruses, EdPV2 is thought to represent a new genus in the family Papillomaviridae.
Collapse
Affiliation(s)
- Bert Vanmechelen
- 1KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| | - Roger K Maes
- 2College of Veterinary Medicine, Michigan State University Veterinary Diagnostic Laboratory, Lansing, Michigan 48910, USA
| | - Dodd G Sledge
- 2College of Veterinary Medicine, Michigan State University Veterinary Diagnostic Laboratory, Lansing, Michigan 48910, USA
| | | | | | - Piet Maes
- 1KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| |
Collapse
|