1
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
2
|
Lambert GS, Rice BL, Maldonado RJK, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. Retrovirology 2024; 21:13. [PMID: 38898526 PMCID: PMC11186191 DOI: 10.1186/s12977-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Breanna L Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Rebecca J Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
3
|
Lambert GS, Rice BL, Kaddis Maldonado RJ, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.575255. [PMID: 38293010 PMCID: PMC10827203 DOI: 10.1101/2024.01.18.575255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retroviruses exploit a variety of host proteins to assemble and release virions from infected cells. To date, most studies that examined possible interacting partners of retroviral Gag proteins focused on host proteins that localize primarily to the cytoplasm or plasma membrane. Given the recent findings that several full-length Gag proteins localize to the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings that reveal previously unknown host processes. In this study, we systematically compared nuclear factors identified in published HIV-1 proteomic studies which had used a variety of experimental approaches. In addition, to contribute to this body of knowledge, we report results from a mass spectrometry approach using affinity-tagged (His6) HIV-1 and RSV Gag proteins mixed with nuclear extracts. Taken together, the previous studies-as well as our own-identified potential binding partners of HIV-1 and RSV Gag involved in several nuclear processes, including transcription, splicing, RNA modification, and chromatin remodeling. Although a subset of host proteins interacted with both Gag proteins, there were also unique host proteins belonging to each interactome dataset. To validate one of the novel findings, we demonstrated the interaction of RSV Gag with a member of the Mediator complex, Med26, which is required for RNA polymerase II-mediated transcription. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Breanna L. Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Zgheib S, Taha N, Zeiger M, Glushonkov O, Lequeu T, Anton H, Didier P, Boutant E, Mély Y, Réal E. The human cellular protein NoL12 is a specific partner of the HIV-1 nucleocapsid protein NCp7. J Virol 2023; 97:e0004023. [PMID: 37695057 PMCID: PMC10537728 DOI: 10.1128/jvi.00040-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) nucleocapsid protein (NCp7) is a nucleic acid chaperone protein with two highly conserved zinc fingers. To exert its key roles in the viral cycle, NCp7 interacts with several host proteins. Among them, the human NoL12 protein (hNoL12) was previously identified in genome wide screens as a potential partner of NCp7. hNoL12 is a highly conserved 25 kDa nucleolar RNA-binding protein implicated in the 5'end processing of ribosomal RNA in the nucleolus and thus in the assembly and maturation of ribosomes. In this work, we confirmed the NCp7/hNoL12 interaction in cells by Förster resonance energy transfer visualized by Fluorescence Lifetime Imaging Microscopy and co-immunoprecipitation. The interaction between NCp7 and hNoL12 was found to strongly depend on their both binding to RNA, as shown by the loss of interaction when the cell lysates were pretreated with RNase. Deletion mutants of hNoL12 were tested for their co-immunoprecipitation with NCp7, leading to the identification of the exonuclease domain of hNoL12 as the binding domain for NCp7. Finally, the interaction with hNoL12 was found to be specific of the mature NCp7 and to require NCp7 basic residues. IMPORTANCE HIV-1 mature nucleocapsid (NCp7) results from the maturation of the Gag precursor in the viral particle and is thus mostly abundant in the first phase of the infection which ends with the genomic viral DNA integration in the cell genome. Most if not all the nucleocapsid partners identified so far are not specific of the mature form. We described here the specific interaction in the nucleolus between NCp7 and the human nucleolar protein 12, a protein implicated in ribosomal RNA maturation and DNA damage response. This interaction takes place in the cell nucleolus, a subcellular compartment where NCp7 accumulates. The absence of binding between hNoL12 and Gag makes hNoL12 one of the few known specific cellular partners of NCp7.
Collapse
Affiliation(s)
- Sarwat Zgheib
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Nedal Taha
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Manon Zeiger
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Oleksandr Glushonkov
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Thiebault Lequeu
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Halina Anton
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Pascal Didier
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Emmanuel Boutant
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Eléonore Réal
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
5
|
Santos MF, Rappa G, Karbanová J, Diana P, Cirrincione G, Carbone D, Manna D, Aalam F, Wang D, Vanier C, Corbeil D, Lorico A. HIV-1-induced nuclear invaginations mediated by VAP-A, ORP3, and Rab7 complex explain infection of activated T cells. Nat Commun 2023; 14:4588. [PMID: 37563144 PMCID: PMC10415338 DOI: 10.1038/s41467-023-40227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
The mechanism of human immunodeficiency virus 1 (HIV-1) nuclear entry, required for productive infection, is not fully understood. Here, we report that in HeLa cells and activated CD4+ T cells infected with HIV-1 pseudotyped with VSV-G and native Env protein, respectively, Rab7+ late endosomes containing endocytosed HIV-1 promote the formation of nuclear envelope invaginations (NEIs) by a molecular mechanism involving the VOR complex, composed of the outer nuclear membrane protein VAP-A, hyperphosphorylated ORP3 and Rab7. Silencing VAP-A or ORP3 and drug-mediated impairment of Rab7 binding to ORP3-VAP-A inhibited the nuclear transfer of the HIV-1 components and productive infection. In HIV-1-resistant quiescent CD4+ T cells, ORP3 was not hyperphosphorylated and neither VOR complex nor NEIs were formed. This new cellular pathway and its molecular players are potential therapeutic targets, perhaps shared by other viruses that require nuclear entry to complete their life cycle.
Collapse
Affiliation(s)
- Mark F Santos
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Germana Rappa
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - David Manna
- Touro College of Osteopathic Medicine, Middletown, New York, NY, USA
| | - Feryal Aalam
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - David Wang
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Cheryl Vanier
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
- Imgen Research, LLC, 5495 South Rainbow #201, Las Vegas, NV, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| | - Aurelio Lorico
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| |
Collapse
|
6
|
Monette A, Niu M, Nijhoff Asser M, Gorelick RJ, Mouland AJ. Scaffolding viral protein NC nucleates phase separation of the HIV-1 biomolecular condensate. Cell Rep 2022; 40:111251. [PMID: 36001979 DOI: 10.1016/j.celrep.2022.111251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Membraneless biomolecular condensates (BMCs) contribute to the replication of a growing number of viruses but remain to be functionally characterized. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) proteins phase separated into condensates regulating virus assembly. Here we discover that intrinsically disordered human immunodeficiency virus-type 1 (HIV-1) core proteins condense with the viral genomic RNA (vRNA) to assemble as BMCs attaining a geometry characteristic of viral reverse transcription complexes. We explore the predisposition, mechanisms, and pharmacologic sensitivity of HIV-1 core BMCs in living cells. HIV-1 vRNA-interacting NC condensates were found to be scaffolds onto which client capsid, reverse transcriptase, and integrase condensates assemble. HIV-1 core BMCs exhibit fundamental characteristics of BMCs and are drug-sensitive. Lastly, protease-mediated maturation of Gag and Gag-Pol precursor proteins yield abundant and visible BMCs in cells. This study redefines HIV-1 core components as fluid BMCs and advances our understanding of the nature of viral cores during ingress.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.
| | - Meijuan Niu
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Maya Nijhoff Asser
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
7
|
Pereira-Montecinos C, Toro-Ascuy D, Ananías-Sáez C, Gaete-Argel A, Rojas-Fuentes C, Riquelme-Barrios S, Rojas-Araya B, García-de-Gracia F, Aguilera-Cortés P, Chnaiderman J, Acevedo ML, Valiente-Echeverría F, Soto-Rifo R. Epitranscriptomic regulation of HIV-1 full-length RNA packaging. Nucleic Acids Res 2022; 50:2302-2318. [PMID: 35137199 PMCID: PMC8887480 DOI: 10.1093/nar/gkac062] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/27/2022] Open
Abstract
During retroviral replication, the full-length RNA serves both as mRNA and genomic RNA. However, the mechanisms by which the HIV-1 Gag protein selects the two RNA molecules that will be packaged into nascent virions remain poorly understood. Here, we demonstrate that deposition of N6-methyladenosine (m6A) regulates full-length RNA packaging. While m6A deposition by METTL3/METTL14 onto the full-length RNA was associated with increased Gag synthesis and reduced packaging, FTO-mediated demethylation promoted the incorporation of the full-length RNA into viral particles. Interestingly, HIV-1 Gag associates with the RNA demethylase FTO in the nucleus and contributes to full-length RNA demethylation. We further identified two highly conserved adenosines within the 5'-UTR that have a crucial functional role in m6A methylation and packaging of the full-length RNA. Together, our data propose a novel epitranscriptomic mechanism allowing the selection of the HIV-1 full-length RNA molecules that will be used as viral genomes.
Collapse
Affiliation(s)
- Camila Pereira-Montecinos
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Toro-Ascuy
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catarina Ananías-Sáez
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Rojas-Fuentes
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sebastián Riquelme-Barrios
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Bárbara Rojas-Araya
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco García-de-Gracia
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paulina Aguilera-Cortés
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jonás Chnaiderman
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mónica L Acevedo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Scoca V, Di Nunzio F. Membraneless organelles restructured and built by pandemic viruses: HIV-1 and SARS-CoV-2. J Mol Cell Biol 2021; 13:259-268. [PMID: 33760045 PMCID: PMC8083626 DOI: 10.1093/jmcb/mjab020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses hijack host functions to invade their target cells and spread to new cells. Specifically, viruses learned to usurp liquid‒liquid phase separation (LLPS), a newly exploited mechanism, used by the cell to concentrate enzymes to accelerate and confine a wide variety of cellular processes. LLPS gives rise to actual membraneless organelles (MLOs), which do not only increase reaction rates but also act as a filter to select molecules to be retained or to be excluded from the liquid droplet. This is exactly what seems to happen with the condensation of SARS-CoV-2 nucleocapsid protein to favor the packaging of intact viral genomes, excluding viral subgenomic or host cellular RNAs. Another older pandemic virus, HIV-1, also takes advantage of LLPS in the host cell during the viral cycle. Recent discoveries highlighted that HIV-1 RNA genome condensates in nuclear MLOs accompanied by specific host and viral proteins, breaking the dogma of retroviruses that limited viral synthesis exclusively to the cytoplasmic compartment. Intriguing fundamental properties of viral/host LLPS remain still unclear. Future studies will contribute to deeply understanding the role of pathogen-induced MLOs in the epidemic invasion of pandemic viruses.
Collapse
Affiliation(s)
- Viviana Scoca
- Advanced Molecular Virology and Retroviral Dynamics Group, Department of Virology, Pasteur Institute, Paris, France
- BioSPC Doctoral School, Universitè de Paris, Paris, France
| | - Francesca Di Nunzio
- Advanced Molecular Virology and Retroviral Dynamics Group, Department of Virology, Pasteur Institute, Paris, France
| |
Collapse
|
9
|
Monette A, Mouland AJ. Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates. Viruses 2020; 12:E1179. [PMID: 33081049 PMCID: PMC7589941 DOI: 10.3390/v12101179] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
10
|
Gales JP, Kubina J, Geldreich A, Dimitrova M. Strength in Diversity: Nuclear Export of Viral RNAs. Viruses 2020; 12:E1014. [PMID: 32932882 PMCID: PMC7551171 DOI: 10.3390/v12091014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear export of cellular mRNAs is a complex process that requires the orchestrated participation of many proteins that are recruited during the early steps of mRNA synthesis and processing. This strategy allows the cell to guarantee the conformity of the messengers accessing the cytoplasm and the translation machinery. Most transcripts are exported by the exportin dimer Nuclear RNA export factor 1 (NXF1)-NTF2-related export protein 1 (NXT1) and the transcription-export complex 1 (TREX1). Some mRNAs that do not possess all the common messenger characteristics use either variants of the NXF1-NXT1 pathway or CRM1, a different exportin. Viruses whose mRNAs are synthesized in the nucleus (retroviruses, the vast majority of DNA viruses, and influenza viruses) exploit both these cellular export pathways. Viral mRNAs hijack the cellular export machinery via complex secondary structures recognized by cellular export factors and/or viral adapter proteins. This way, the viral transcripts succeed in escaping the host surveillance system and are efficiently exported for translation, allowing the infectious cycle to proceed. This review gives an overview of the cellular mRNA nuclear export mechanisms and presents detailed insights into the most important strategies that viruses use to export the different forms of their RNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Jón Pol Gales
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
- SVQV UMR-A 1131, INRAE, Université de Strasbourg, F-68000 Colmar, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| |
Collapse
|
11
|
Monette A, Niu M, Chen L, Rao S, Gorelick RJ, Mouland AJ. Pan-retroviral Nucleocapsid-Mediated Phase Separation Regulates Genomic RNA Positioning and Trafficking. Cell Rep 2020; 31:107520. [PMID: 32320662 PMCID: PMC8965748 DOI: 10.1016/j.celrep.2020.03.084] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
The duality of liquid-liquid phase separation (LLPS) of cellular components into membraneless organelles defines the nucleation of both normal and disease processes including stress granule (SG) assembly. From mounting evidence of LLPS utility by viruses, we discover that HIV-1 nucleocapsid (NC) protein condenses into zinc-finger (ZnF)-dependent LLPSs that are dynamically influenced by cytosolic factors. ZnF-dependent and Zinc (Zn2+)-chelation-sensitive NC-LLPS are formed in live cells. NC-Zn2+ ejection reverses the HIV-1 blockade on SG assembly, inhibits NC-SG assembly, disrupts NC/Gag-genomic RNA (vRNA) ribonucleoprotein complexes, and causes nuclear sequestration of NC and the vRNA, inhibiting Gag expression and virus release. NC ZnF mutagenesis eliminates the HIV-1 blockade of SG assembly and repositions vRNA to SGs. We find that NC-mediated, Zn2+-coordinated phase separation is conserved among diverse retrovirus subfamilies, illustrating that this exquisitely evolved Zn2+-dependent feature of virus replication represents a critical target for pan-antiretroviral therapies.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Lois Chen
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Biochemistry, Erasmus University Medical Center, Ee634, PO Box 2040, 3000CA Rotterdam, the Netherlands
| | - Robert James Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Andrew John Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada; Department of Medicine, McGill University, Montréal, QC H3G 2M1, Canada.
| |
Collapse
|
12
|
Awasthi S, Verma M, Mahesh A, K Khan MI, Govindaraju G, Rajavelu A, Chavali PL, Chavali S, Dhayalan A. DDX49 is an RNA helicase that affects translation by regulating mRNA export and the levels of pre-ribosomal RNA. Nucleic Acids Res 2019; 46:6304-6317. [PMID: 29618122 PMCID: PMC6158705 DOI: 10.1093/nar/gky231] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
Among the proteins predicted to be a part of the DExD box RNA helicase family, the functions of DDX49 are unknown. Here, we characterize the enzymatic activities and functions of DDX49 by comparing its properties with the well-studied RNA helicase, DDX39B. We find that DDX49 exhibits a robust ATPase and RNA helicase activity, significantly higher than that of DDX39B. DDX49 is required for the efficient export of poly (A)+ RNA from nucleus in a splicing-independent manner. Furthermore, DDX49 is a resident protein of nucleolus and regulates the steady state levels of pre-ribosomal RNA by regulating its transcription and stability. These dual functions of regulating mRNA export and pre-ribosomal RNA levels enable DDX49 to modulate global translation. Phenotypically, DDX49 promotes proliferation and colony forming potential of cells. Strikingly, DDX49 is significantly elevated in diverse cancer types suggesting that the increased abundance of DDX49 has a role in oncogenic transformation of cells. Taken together, this study shows the physiological role of DDX49 in regulating distinct steps of mRNA and pre-ribosomal RNA metabolism and hence translation and potential pathological role of its dysregulation, especially in cancers.
Collapse
Affiliation(s)
- Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Mamta Verma
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Arun Mahesh
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Gayathri Govindaraju
- Bacterial and Parasite Disease Biology, Rajiv Gandhi Center for Biotechnology, Trivandrum 695 014, India
| | - Arumugam Rajavelu
- Bacterial and Parasite Disease Biology, Rajiv Gandhi Center for Biotechnology, Trivandrum 695 014, India
| | - Pavithra L Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| |
Collapse
|
13
|
Rao S, Cinti A, Temzi A, Amorim R, You JC, Mouland AJ. HIV-1 NC-induced stress granule assembly and translation arrest are inhibited by the dsRNA binding protein Staufen1. RNA (NEW YORK, N.Y.) 2018; 24:219-236. [PMID: 29127210 PMCID: PMC5769749 DOI: 10.1261/rna.064618.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
The nucleocapsid (NC) is an N-terminal protein derived from the HIV-1 Gag precursor polyprotein, pr55Gag NC possesses key functions at several pivotal stages of viral replication. For example, an interaction between NC and the host double-stranded RNA-binding protein Staufen1 was shown to regulate several steps in the viral replication cycle, such as Gag multimerization and genomic RNA encapsidation. In this work, we observed that the overexpression of NC leads to the induction of stress granule (SG) assembly. NC-mediated SG assembly was unique as it was resistant to the SG blockade imposed by the HIV-1 capsid (CA), as shown in earlier work. NC also reduced host cell mRNA translation, as judged by a puromycylation assay of de novo synthesized proteins, and this was recapitulated in polysome profile analyses. Virus production was also found to be significantly reduced. Finally, Staufen1 expression completely rescued the blockade to NC-mediated SG assembly, global mRNA translation as well as virus production. NC expression also resulted in the phosphorylation of protein kinase R (PKR) and eIF2α, and this was inhibited with Staufen1 coexpression. This work sheds light on an unexpected function of NC in host cell translation. A comprehensive understanding of the molecular mechanisms by which a fine balance of the HIV-1 structural proteins NC and CA act in concert with host proteins such as Staufen1 to modulate the host stress response will aid in the development of new antiviral therapeutics.
Collapse
Affiliation(s)
- Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Alessandro Cinti
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Abdelkrim Temzi
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Raquel Amorim
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seocho-gu Banpo-dong 505, Seoul 137-701, Republic of Korea
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| |
Collapse
|
14
|
Sancineto L, Iraci N, Tabarrini O, Santi C. NCp7: targeting a multitasking protein for next-generation anti-HIV drug development part 1: covalent inhibitors. Drug Discov Today 2017; 23:260-271. [PMID: 29107765 DOI: 10.1016/j.drudis.2017.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Abstract
The major internal component of the HIV virion core is the nucleocapsid protein 7 (NCp7), a small, highly basic protein that is essential for multiple stages of the viral replicative cycle, and whose structure is preserved in all viral strains, including clinical isolates from therapy-experienced patients. This key protein is recognised as a potential target for an effective next-generation antiretroviral therapy, because it could offer the possibility to develop broad-spectrum agents that are less prone to select for resistant strains. Here, we provide a comprehensive overview of the covalent NCp7 inhibitors that have emerged over the past 25 years of drug discovery campaigns, emphasising, where possible, their structure-activity relationships (SARs) and pharmacophoric features.
Collapse
Affiliation(s)
- Luca Sancineto
- Department of Heterorganic Chemistry, Centre of Molecular and Macromolecular Studies, Lodz, Poland.
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
15
|
Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors. Viruses 2016; 8:v8090257. [PMID: 27657110 PMCID: PMC5035971 DOI: 10.3390/v8090257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag-Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison.
Collapse
|
16
|
The Life-Cycle of the HIV-1 Gag-RNA Complex. Viruses 2016; 8:v8090248. [PMID: 27626439 PMCID: PMC5035962 DOI: 10.3390/v8090248] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is a highly regulated process requiring the recruitment of viral and cellular components to the plasma membrane for assembly into infectious particles. This review highlights the recent process of understanding the selection of the genomic RNA (gRNA) by the viral Pr55Gag precursor polyprotein, and the processes leading to its incorporation into viral particles.
Collapse
|