1
|
Kandathil AJ, Thomas DL. The Blood Virome: A new frontier in biomedical science. Biomed Pharmacother 2024; 175:116608. [PMID: 38703502 PMCID: PMC11184943 DOI: 10.1016/j.biopha.2024.116608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Recent advances in metagenomic testing opened a new window into the mammalian blood virome. Comprised of well-known viruses like human immunodeficiency virus, hepatitis C virus, and hepatitis B virus, the virome also includes many other eukaryotic viruses and phages whose medical significance, lifecycle, epidemiology, and impact on human health are less well known and thus regarded as commensals. This review synthesizes available information for the so-called commensal virome members that circulate in the blood of humans considering their restriction to and interaction with the human host, their natural history, and their impact on human health and physiology.
Collapse
Affiliation(s)
- Abraham J Kandathil
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David L Thomas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
3
|
Abstract
The virus-encoded RNA-dependent RNA polymerase (RdRp) is responsible for viral replication, and its fidelity is closely related to viral diversity, pathogenesis, virulence, and fitness. Hepatitis C virus (HCV) and the second human pegivirus (HPgV-2) belong to the family Flaviviridae and share some features, including similar viral genome structure. Unlike HCV, HPgV-2 preserves a highly conserved genome sequence and low intrahost variation. However, the underlying mechanism remains to be elucidated. In this study, we evaluated the fidelity of HPgV-2 and HCV RdRp in an in vitro RNA polymerase reaction system. The results showed higher fidelity of HPgV-2 RdRp than HCV NS5B with respect to the misincorporation rate due to their difference in recognizing nucleoside triphosphate (NTP) substrates. Furthermore, HPgV-2 RdRp showed lower sensitivity than HCV to sofosbuvir, a nucleotide inhibitor against HCV RdRp, which explained the insusceptibility of HPgV-2 to direct-acting antiviral (DAA) therapy against HCV infection. Our results indicate that HPgV-2 could be an excellent model for studying the mechanisms involved in viral polymerase fidelity as well as RNA virus diversity and evolution. IMPORTANCE RNA viruses represent the most important pathogens for humans and animals and exhibit rapid evolution and high adaptive capacity, which is due to the high mutation rates for using the error-prone RNA-dependent RNA polymerase (RdRp) during replication. The fidelity of RdRp is closely associated with viral diversity, fitness, and pathogenesis. Previous studies have shown that the second human pegivirus (HPgV-2) exhibits a highly conserved genome sequence and low intrahost variation, which might be due to the fidelity of HPgV-2 RdRp. In this work, we used a series of in vitro RNA polymerase assays to evaluate the in vitro fidelity of HPgV-2 RdRp and compared it with that of HCV RdRp. The results indicated that HPgV-2 RdRp preserves significantly higher fidelity than HCV RdRp, which might contribute to the conservation of the HPgV-2 genome. The unique feature of HPgV-2 RdRp fidelity provides a new model for investigation of viral RdRp fidelity.
Collapse
|
4
|
The Second Human Pegivirus, a Non-Pathogenic RNA Virus with Low Prevalence and Minimal Genetic Diversity. Viruses 2022; 14:v14091844. [PMID: 36146649 PMCID: PMC9503178 DOI: 10.3390/v14091844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 02/02/2023] Open
Abstract
The second human pegivirus (HPgV-2) is a virus discovered in the plasma of a hepatitis C virus (HCV)-infected patient in 2015 belonging to the pegiviruses of the family Flaviviridae. HPgV-2 has been proved to be epidemiologically associated with and structurally similar to HCV but unrelated to HCV disease and non-pathogenic, but its natural history and tissue tropism remain unclear. HPgV-2 is a unique RNA virus sharing the features of HCV and the first human pegivirus (HPgV-1 or GBV-C). Moreover, distinct from most RNA viruses such as HCV, HPgV-1 and human immunodeficiency virus (HIV), HPgV-2 exhibits much lower genomic diversity, with a high global sequence identity ranging from 93.5 to 97.5% and significantly lower intra-host variation than HCV. The mechanisms underlying the conservation of the HPgV-2 genome are not clear but may include efficient innate immune responses, low immune selection pressure and, possibly, the unique features of the viral RNA-dependent RNA polymerase (RdRP). In this review, we summarize the prevalence, pathogenicity and genetic diversity of HPgV-2 and discuss the possible reasons for the uniformity of its genome sequence, which should elucidate the implications of RNA virus fidelity for attenuated viral vaccines.
Collapse
|
5
|
Castro M, Matas IM, Silva E, Barradas PF, Amorim I, Gomes H, Monteiro Á, Nascimento MSJ, Mesquita JR. Occurrence and molecular characterization of human pegivirus-1 (HPgV-1) viremia in healthy volunteer blood donors from Northern Portugal. J Med Virol 2022; 94:3442-3447. [PMID: 35229315 DOI: 10.1002/jmv.27687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Human pegivirus-1 (HPgV-1) is a member of the Flaviviridae family and the Pegivirus genus. Despite having been discovered 25 years ago, there is still much to know regarding HPgV-1 clinical impact, as this virus is currently not associated with any pathology. Yet, HPgV-1 prevalence and molecular characterization are still unknown in many countries, including Portugal. To fill in this knowledge gap, this study aimed to determine the occurrence and molecular characterization of HPgV-1 in a group of healthy blood donors from the north of Portugal. Blood samples from 465 Portuguese blood donors were collected from a major Hospital Center in the north of Portugal. RNA was extracted and an initial nested RT-PCR was performed targeting the conserved 5'-untranslated region region of the HPgV-1 genome. A second nested RT-PCR targeting the E2 region was performed for genotyping. Only one sample tested positive for HPgV-1 RNA, resulting in a prevalence of approximately 0.22%. Phylogenetic analyses confirmed the characterization as genotype 2, the most prevalent in Europe.
Collapse
Affiliation(s)
- Mafalda Castro
- Faculty of Sciences (FCUP), University of Porto, Porto, Portugal
| | - Isabel M Matas
- Institute of Sciences, Technology and Agro-environment (ICETA), University of Porto, Porto, Portugal
| | - Eliane Silva
- Institute of Sciences, Technology and Agro-environment (ICETA), University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Patrícia Ferreira Barradas
- Epidemiology Research Unit (EPIUnit) - Public Health Institute (ISPUP), University of Porto, Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Helena Gomes
- Hospital Center of Vila Nova de Gaia/Espinho, E.P.E., Vila Nova de Gaia, Portugal
| | - Álvaro Monteiro
- Hospital Center of Vila Nova de Gaia/Espinho, E.P.E., Vila Nova de Gaia, Portugal
| | | | - João R Mesquita
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Epidemiology Research Unit (EPIUnit) - Public Health Institute (ISPUP), University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Samadi M, Salimi V, Haghshenas MR, Miri SM, Mohebbi SR, Ghaemi A. Clinical and molecular aspects of human pegiviruses in the interaction host and infectious agent. Virol J 2022; 19:41. [PMID: 35264187 PMCID: PMC8905790 DOI: 10.1186/s12985-022-01769-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
Abstract
Background Human pegivirus 1 (HPgV-1) is a Positive-sense single-stranded RNA (+ ssRNA) virus, discovered in 1995 as a Flaviviridae member, and the closest human virus linked to HCV. In comparison to HCV, HPgV-1 seems to be lymphotropic and connected to the viral group that infects T and B lymphocytes. HPgV-1 infection is not persuasively correlated to any known human disease; nevertheless, multiple studies have reported a connection between chronic HPgV-1 infection and improved survival in HPgV-1/HIV co-infected patients with a delayed and favorable impact on HIV infection development. While the process has not been thoroughly clarified, different mechanisms for these observations have been proposed. HPgV-1 is categorized into seven genotypes and various subtypes. Infection with HPgV-1 is relatively common globally. It can be transferred parenterally, sexually, and through vertical ways, and thereby its co-infection with HIV and HCV is common. In most cases, the clearance of HPgV-1 from the body can be achieved by developing E2 antibodies after infection. Main body In this review, we thoroughly discuss the current knowledge and recent advances in understanding distinct epidemiological, molecular, and clinical aspects of HPgV-1. Conclusion Due to the unique characteristics of the HPgV-1, so advanced research on HPgV-1, particularly in light of HIV co-infection and other diseases, should be conducted to explore the essential mechanisms of HIV clearance and other viruses and thereby suggest novel strategies for viral therapy in the future.
Collapse
Affiliation(s)
- Mehdi Samadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, Molecular and Cell-Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Haghshenas
- Department of Microbiology, Molecular and Cell-Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Miri
- Department of Virology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran.
| |
Collapse
|
7
|
Orf GS, Forberg K, Meyer TV, Mowerman I, Mohaimani A, Faron ML, Jennings C, Landay AL, Goldstein DY, Fox AS, Berg MG, Cloherty GA. SNP and Phylogenetic Characterization of Low Viral Load SARS-CoV-2 Specimens by Target Enrichment. FRONTIERS IN VIROLOGY 2021. [DOI: 10.3389/fviro.2021.765974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Surveillance of SARS-CoV-2 across the globe has enabled detection of new variants and informed the public health response. With highly sensitive methods like qPCR widely adopted for diagnosis, the ability to sequence and characterize specimens with low titers needs to keep pace.Methods: Nucleic acids extracted from nasopharyngeal swabs collected from four sites in the United States in early 2020 were converted to NGS libraries to sequence SARS-CoV-2 genomes using metagenomic and xGen target enrichment approaches. Single nucleotide polymorphism (SNP) analysis and phylogeny were used to determine clade assignments and geographic origins of strains.Results: SARS-CoV-2-specific xGen enrichment enabled full genome coverage for 87 specimens with Ct values <29, corresponding to viral loads of >10,000 cp/ml. For samples with viral loads between 103 and 106 cp/ml, the median genome coverage for xGen was 99.1%, sequence depth was 605X, and the “on-target” rate was 57 ± 21%, compared to 13%, 2X and 0.001 ± 0.016%, respectively, for metagenomic sequencing alone. Phylogenetic analysis revealed the presence of most clades that existed at the time of the study, though clade GH dominated in the Midwest.Conclusions: Even as vaccines are being widely distributed, a high case load of SARS-CoV-2 infection persists around the world. Viral genetic surveillance has succeeded in warning the public of new variants in circulation and ensured that diagnostic tools remain resilient to a steadily increasing number of mutations. Target capture offers a means of characterizing low viral load samples which would normally pose a challenge for metagenomic sequencing.
Collapse
|
8
|
Liang Y, Hu F, Fan H, Li L, Wan Z, Wang H, Shui J, Zhou Y, Tong Y, Cai W, Tang S. Difference of Intrahost Dynamics of the Second Human Pegivirus and Hepatitis C Virus in HPgV-2/HCV-Coinfected Patients. Front Cell Infect Microbiol 2021; 11:728415. [PMID: 34466405 PMCID: PMC8403064 DOI: 10.3389/fcimb.2021.728415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/26/2021] [Indexed: 01/02/2023] Open
Abstract
Background The second human pegivirus (HPgV-2) and hepatitis C virus (HCV) belong to the Flaviviridae family and share some common genome features. However, the two viruses exhibit significantly different genetic diversity. The comparison of intrahost dynamics of HPgV-2 and HCV that mainly reflect virus-host interactions is needed to elucidate their intrahost difference of genetic diversity and the possible mechanisms. Methods Intrahost single nucleotide variations (iSNVs) were identified by means of next-generation sequencing from both cross-sectional and longitudinal samples from HPgV-2- and HCV-coinfected patients. The levels of human cytokines were quantified in the patient before and after HCV elimination by the treatment of direct-acting antivirals (DAA). Results Unlike HCV, the viral sequences of HPgV-2 are highly conserved among HPgV-2-infected patients. However, iSNV analysis confirmed the intrahost variation or quasispecies of HPgV-2. Almost all iSNVs of HPgV-2 did not accumulate or transmit within host over time, which may explain the highly conserved HPgV-2 consensus sequence. Intrahost variation of HPgV-2 mainly causes nucleotide transition in particular at the 3rd codon position and synonymous substitutions, indicating purifying or negative selection posed by host immune system. Cytokine data further indicate that HPgV-2 infection alone may not efficiently stimulate innate immune responses since proinflammatory cytokine expression dramatically decreased with elimination of HCV. Conclusion This study provided new insights into the intrahost genomic variations and evolutionary dynamics of HPgV-2 as well as the impact of host immune selection and virus polymerase on virus evolution. The different genetic diversity of HPgV-2 and HCV makes HPgV-2 a potential new model to investigate RNA virus diversity and the mechanism of viral polymerase in modulating virus replication.
Collapse
Affiliation(s)
- Yuanhao Liang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhengwei Wan
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haiying Wang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingwei Shui
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yigang Tong
- School of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shixing Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
9
|
Beyond Cytomegalovirus and Epstein-Barr Virus: a Review of Viruses Composing the Blood Virome of Solid Organ Transplant and Hematopoietic Stem Cell Transplant Recipients. Clin Microbiol Rev 2020; 33:33/4/e00027-20. [PMID: 32847820 DOI: 10.1128/cmr.00027-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians' radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.
Collapse
|
10
|
Berg MG, Olivo A, Forberg K, Harris BJ, Yamaguchi J, Shirazi R, Gozlan Y, Sauleda S, Kaptue L, Rodgers MA, Mor O, Cloherty GA. Advanced molecular surveillance approaches for characterization of blood borne hepatitis viruses. PLoS One 2020; 15:e0236046. [PMID: 32678844 PMCID: PMC7367454 DOI: 10.1371/journal.pone.0236046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Defining genetic diversity of viral infections directly from patient specimens is the ultimate goal of surveillance. Simple tools that can provide full-length sequence information on blood borne viral hepatitis viruses: hepatitis C, hepatitis B and hepatitis D viruses (HCV, HBV and HDV) remain elusive. Here, an unbiased metagenomic next generation sequencing approach (mNGS) was used for molecular characterization of HCV infections (n = 99) from Israel which yielded full-length HCV sequences in 89% of samples, with 7 partial sequences sufficient for classification. HCV genotypes were primarily 1b (68%) and 1a (19%), with minor representation of genotypes 2c (1%) and 3a (8%). HBV/HDV coinfections were characterized by suppressed HBV viral loads, resulting in sparse mNGS coverage. A probe-based enrichment approach (xGen) aiming to increase HBV and HDV coverage was validated on a panel of diverse genotypes, geography and titers. The method extended HBV genome coverage a median 61% (range 8–84%) and provided orders of magnitude boosts in reads and sequence depth for both viruses. When HBV-xGen was applied to Israeli samples, coverage was improved by 28–73% in 4 samples and identified HBV genotype A1, A2, D1 specimens and a dual B/D infection. Abundant HDV reads in mNGS libraries yielded 18/26 (69%) full genomes and 8 partial sequences, with HDV-xGen only providing minimal extension (3–11%) of what were all genotype 1 genomes. Advanced molecular approaches coupled to virus-specific capture probes promise to enhance surveillance of viral infections and aid in monitoring the spread of local subtypes.
Collapse
Affiliation(s)
- Michael G. Berg
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
- * E-mail:
| | - Ana Olivo
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Kenn Forberg
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Barbara J. Harris
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Julie Yamaguchi
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Rachel Shirazi
- Central Virology Laboratory, National HIV and Viral Hepatitis Reference Center, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Yael Gozlan
- Central Virology Laboratory, National HIV and Viral Hepatitis Reference Center, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Silvia Sauleda
- Transfusion Safety Laboratory, Banc de Sang i Teixits, Servei Català de la Salut, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Mary A. Rodgers
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Orna Mor
- Central Virology Laboratory, National HIV and Viral Hepatitis Reference Center, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Israel
| | - Gavin A. Cloherty
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| |
Collapse
|
11
|
Wan Z, Liu J, Hu F, Shui J, Li L, Wang H, Tang X, Hu C, Liang Y, Zhou Y, Cai W, Tang S. Evidence that the second human pegivirus (HPgV-2) is primarily a lymphotropic virus and can replicate independent of HCV replication. Emerg Microbes Infect 2020; 9:485-495. [PMID: 32100631 PMCID: PMC7054972 DOI: 10.1080/22221751.2020.1730247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The second human pegivirus HPgV-2 is a novel blood-borne virus that is strongly associated with the hepatitis C virus (HCV) infection. However, the molecular evidence for their association as well as the natural history and tissue tropism of HPgV-2 remain to be elucidated. In this longitudinal study, a total of 753 patients including 512 HIV-1 and HCV co-infected patients were enrolled to characterize the natural history of HPgV-2 infection. Peripheral blood mononuclear cells (PBMCs) and liver biopsies were collected to determine the tissue tropism of HPgV-2 using immunohistochemical staining of the HPgV-2 antigen and in situ hybridization of HPgV-2 RNA. We documented both persistent HPgV-2 infection with the presence of HPgV-2 viral RNA and antibodies up to 4.6 years and resolved HPgV-2 infection, accompanied by a simultaneous decline of anti-HPgV-2 antibodies and clearance of HPgV-2 viremia. Furthermore, we observed the clearance of HCV, but not HPgV-2, by treatment with direct-acting antivirals (DAAs). Biochemical tests and pathological analyses did not reveal any indication of hepatic impairment caused by HPgV-2. HPgV-2 RNA and nonstructural antigen were detected in the lymphocytes, but not in the hepatocytes present in the liver biopsy samples. In addition, both positive- and negative-strand HPgV-2 RNAs were detected in PBMCs, especially in B cells. The present study is the first to provide evidence that HPgV-2 is a lymphotropic, but not a hepatotropic virus and that HPgV-2 replication is independent of HCV viremia. These new findings let us gain insights into the evolution and persistent infection of RNA viruses in humans.
Collapse
Affiliation(s)
- Zhengwei Wan
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Junwei Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Fengyu Hu
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jingwei Shui
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Haiying Wang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoping Tang
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chengguang Hu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuanhao Liang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Weiping Cai
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shixing Tang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China.,Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|