1
|
Li K, Jadhav P, Wen Y, Tan H, Wang J. Development of a Fluorescence Polarization Assay for the SARS-CoV-2 Papain-like Protease. ACS Pharmacol Transl Sci 2025; 8:774-784. [PMID: 40109744 PMCID: PMC11915184 DOI: 10.1021/acsptsci.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
The COVID-19 pandemic has caused significant losses to the global community. Although effective vaccination and antiviral therapeutics provide primary defense, SARS-CoV-2 remains a public health threat, given the emerging resistant variants. The SARS-CoV-2 papain-like protease (PLpro) is essential for viral replication and is a promising drug target. We recently designed a series of biarylphenyl PLpro inhibitors with a representative lead Jun12682 showing potent antiviral efficacy in a SARS-CoV-2 infection mouse model. In this study, we designed a fluorescein-labeled biarylphenyl probe Jun12781 and used it to optimize a fluorescence polarization (FP) assay. The FP assay is suitable for high-throughput screening with a Z' factor of 0.69. In addition, we found a positive correlation between the FP binding affinity and the enzymatic inhibitory potency of PLpro inhibitors, suggesting that the FP assay is valid in characterizing the binding affinity of PLpro inhibitors.
Collapse
Affiliation(s)
- Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Yu Wen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Lu Y, Yang Q, Ran T, Zhang G, Li W, Zhou P, Tang J, Dai M, Zhong J, Chen H, He P, Zhou A, Xue B, Chen J, Zhang J, Yang S, Wu K, Wu X, Tang M, Zhang WK, Guo D, Chen X, Chen H, Shang J. Discovery of orally bioavailable SARS-CoV-2 papain-like protease inhibitor as a potential treatment for COVID-19. Nat Commun 2024; 15:10169. [PMID: 39580525 PMCID: PMC11585628 DOI: 10.1038/s41467-024-54462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
The RNA-dependent RNA polymerase (RdRp), 3C-like protease (3CLpro), and papain-like protease (PLpro) are pivotal components in the viral life cycle of SARS-CoV-2, presenting as promising therapeutic targets. Currently, all FDA-approved antiviral drugs against SARS-CoV-2 are RdRp or 3CLpro inhibitors. However, the mutations causing drug resistance have been observed in RdRp and 3CLpro from SARS-CoV-2, which makes it necessary to develop antivirals with novel mechanisms. Through the application of a structure-based drug design (SBDD) approach, we discover a series of novel potent non-covalent PLpro inhibitors with remarkable in vitro potency and in vivo PK properties. The co-crystal structures of PLpro with lead compounds reveal that the residues D164 and Q269 around the S2 site are critical for improving the inhibitor's potency. The lead compound GZNL-P36 not only inhibits SARS-CoV-2 and its variants at the cellular level with EC50 ranging from 58.2 nM to 306.2 nM, but also inhibits HCoV-NL63 and HCoV-229E with EC50 of 81.6 nM and 2.66 μM, respectively. Oral administration of the GZNL-P36 results in significantly improved survival and notable reductions in lung viral loads and lesions in SARS-CoV-2 infection mouse model, consistent with RNA-seq data analysis. Our results indicate that PLpro inhibitors represent a promising SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Yongzhi Lu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ting Ran
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Guihua Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Wenqi Li
- Guangzhou National Laboratory, Guangzhou, 510005, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peiqi Zhou
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Jielin Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Minxian Dai
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Jinpeng Zhong
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Hua Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Pan He
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Anqi Zhou
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Jiayi Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiyun Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Sidi Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Kunzhong Wu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xinyu Wu
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Miru Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Wei K Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Hongming Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Jinsai Shang
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Pinto MF, Sirina J, Holliday ND, McWhirter CL. High-throughput kinetics in drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100170. [PMID: 38964171 DOI: 10.1016/j.slasd.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The importance of a drug's kinetic profile and interplay of structure-kinetic activity with PK/PD has long been appreciated in drug discovery. However, technical challenges have often limited detailed kinetic characterization of compounds to the latter stages of projects. This review highlights the advances that have been made in recent years in techniques, instrumentation, and data analysis to increase the throughput of detailed kinetic and mechanistic characterization, enabling its application earlier in the drug discovery process.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom
| | - Julija Sirina
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom; School of Life Sciences, The Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Claire L McWhirter
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom.
| |
Collapse
|
4
|
Zhang R, Yan H, Zhou J, Yan G, Liu X, Shang C, Chen Y. Improved fluorescence-based assay for rapid screening and evaluation of SARS-CoV-2 main protease inhibitors. J Med Virol 2024; 96:e29498. [PMID: 38436148 DOI: 10.1002/jmv.29498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health. In parallel with vaccines, efficacious antivirals are urgently needed. SARS-CoV-2 main protease (Mpro) is an attractive drug target for antiviral development owing to its key roles in virus replication and host immune evasion. Due to the limitations of currently available methods, the development of novel high-throughput screening assays is of the highest importance for the discovery of Mpro inhibitors. In this study, we first developed an improved fluorescence-based assay for rapid screening of Mpro inhibitors from an anti-infection compound library using a versatile dimerization-dependent red fluorescent protein (ddRFP) biosensor. Utilizing this assay, we identified MG-101 as a competitive Mpro inhibitor in vitro. Moreover, our results revealed that ensitrelvir is a potent Mpro inhibitor, but baicalein, chloroquine, ebselen, echinatin, and silibinin are not. Therefore, this robust ddRFP assay provides a faithful avenue for rapid screening and evaluation of Mpro inhibitors to fight against COVID-19.
Collapse
Affiliation(s)
- Rui Zhang
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Haohao Yan
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Jiahao Zhou
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Gangan Yan
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Xiaoping Liu
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yunyu Chen
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Deng M, Zhang C, Yan W, Chen L, He B, Li Y. Development of Fluorescence-Based Assays for Key Viral Proteins in the SARS-CoV-2 Infection Process and Lifecycle. Int J Mol Sci 2024; 25:2850. [PMID: 38474097 DOI: 10.3390/ijms25052850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Since the appearance of SARS-CoV-2 in 2019, the ensuing COVID-19 (Corona Virus Disease 2019) pandemic has posed a significant threat to the global public health system, human health, life, and economic well-being. Researchers worldwide have devoted considerable efforts to curb its spread and development. The latest studies have identified five viral proteins, spike protein (Spike), viral main protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), and viral helicase (Helicase), which play crucial roles in the invasion of SARS-CoV-2 into the human body and its lifecycle. The development of novel anti-SARS-CoV-2 drugs targeting these five viral proteins holds immense promise. Therefore, the development of efficient, high-throughput screening methodologies specifically designed for these viral proteins is of utmost importance. Currently, a plethora of screening techniques exists, with fluorescence-based assays emerging as predominant contenders. In this review, we elucidate the foundational principles and methodologies underpinning fluorescence-based screening approaches directed at these pivotal viral targets, hoping to guide researchers in the judicious selection and refinement of screening strategies, thereby facilitating the discovery and development of lead compounds for anti-SARS-CoV-2 pharmaceuticals.
Collapse
Affiliation(s)
- Mingzhenlong Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Chuang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Wanli Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
6
|
Puhl AC, Godoy AS, Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Oliva G, Ekins S. Discovery of PL pro and M pro Inhibitors for SARS-CoV-2. ACS OMEGA 2023; 8:22603-22612. [PMID: 37387790 PMCID: PMC10275482 DOI: 10.1021/acsomega.3c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
There are very few small-molecule antivirals for SARS-CoV-2 that are either currently approved (or emergency authorized) in the US or globally, including remdesivir, molnupiravir, and paxlovid. The increasing number of SARS-CoV-2 variants that have appeared since the outbreak began over three years ago raises the need for continual development of updated vaccines and orally available antivirals in order to fully protect or treat the population. The viral main protease (Mpro) and the papain-like protease (PLpro) are key for viral replication; therefore, they represent valuable targets for antiviral therapy. We herein describe an in vitro screen performed using the 2560 compounds from the Microsource Spectrum library against Mpro and PLpro in an attempt to identify additional small-molecule hits that could be repurposed for SARS-CoV-2. We subsequently identified 2 hits for Mpro and 8 hits for PLpro. One of these hits was the quaternary ammonium compound cetylpyridinium chloride with dual activity (IC50 = 2.72 ± 0.09 μM for PLpro and IC50 = 7.25 ± 0.15 μM for Mpro). A second inhibitor of PLpro was the selective estrogen receptor modulator raloxifene (IC50 = 3.28 ± 0.29 μM for PLpro and IC50 = 42.8 ± 6.7 μM for Mpro). We additionally tested several kinase inhibitors and identified olmutinib (IC50 = 0.54 ± 0.04 μM), bosutinib (IC50 = 4.23 ± 0.28 μM), crizotinib (IC50 = 3.81 ± 0.04 μM), and dacominitinib (IC50 = IC50 3.33 ± 0.06 μM) as PLpro inhibitors for the first time. In some cases, these molecules have also been tested by others for antiviral activity for this virus, or we have used Calu-3 cells infected with SARS-CoV-2. The results suggest that approved drugs can be identified with promising activity against these proteases, and in several cases we or others have validated their antiviral activity. The additional identification of known kinase inhibitors as molecules targeting PLpro may provide new repurposing opportunities or starting points for chemical optimization.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Andre S. Godoy
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Gabriela D. Noske
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Aline M. Nakamura
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Victor O. Gawriljuk
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Rafaela S. Fernandes
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Glaucius Oliva
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
7
|
Yang Z, Cai X, Ye Q, Zhao Y, Li X, Zhang S, Zhang L. High-Throughput Screening for the Potential Inhibitors of SARS-CoV-2 with Essential Dynamic Behavior. Curr Drug Targets 2023; 24:532-545. [PMID: 36876836 DOI: 10.2174/1389450124666230306141725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 03/07/2023]
Abstract
Global health security has been challenged by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. Due to the lengthy process of generating vaccinations, it is vital to reposition currently available drugs in order to relieve anti-epidemic tensions and accelerate the development of therapies for Coronavirus Disease 2019 (COVID-19), the public threat caused by SARS-CoV-2. High throughput screening techniques have established their roles in the evaluation of already available medications and the search for novel potential agents with desirable chemical space and more cost-effectiveness. Here, we present the architectural aspects of highthroughput screening for SARS-CoV-2 inhibitors, especially three generations of virtual screening methodologies with structural dynamics: ligand-based screening, receptor-based screening, and machine learning (ML)-based scoring functions (SFs). By outlining the benefits and drawbacks, we hope that researchers will be motivated to adopt these methods in the development of novel anti- SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xinhui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Qiushi Ye
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
8
|
Zhang J, Yan H, Yan G, Liu X, Wang Y, Chen Y. Protocol for high-throughput screening of SARS-CoV-2 main protease inhibitors using a robust fluorescence polarization assay. STAR Protoc 2022; 3:101794. [PMID: 36317181 PMCID: PMC9527224 DOI: 10.1016/j.xpro.2022.101794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Discovery of efficacious antiviral agents targeting SARS-CoV-2 main protease (Mpro) is of the highest importance to fight against COVID-19. Here, we describe a simple protocol for high-throughput screening of Mpro inhibitors using a robust fluorescence polarization (FP) assay. Candidate Mpro inhibitors from large compound libraries could be rapidly identified by monitoring the change of millipolarization unit value. This affordable FP assay can be modified to screen antiviral agents targeting virus protease. For complete details on the use and execution of this protocol, please refer to Li et al. (2022), Yan et al. (2021), and Yan et al. (2022c). Production of SARS-CoV-2 main protease (Mpro) in E. coli cells Measurement of Mpro activity using the fluorescence resonance energy transfer assay A robust fluorescence polarization (FP) assay for rapid screening of Mpro inhibitors Discovery of anacardic acid as an inhibitor targeting Mpro using this FP assay
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haohao Yan
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu 241002, China
| | - Gangan Yan
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu 241002, China
| | - Xiaoping Liu
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu 241002, China
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA,Corresponding author
| | - Yunyu Chen
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu 241002, China,Corresponding author
| |
Collapse
|