1
|
See SA, Bhassu S, Tang SS, Yusoff K. Newly developed mRNA vaccines induce immune responses in Litopenaeus vannamei shrimps during primary vaccination. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105264. [PMID: 39299363 DOI: 10.1016/j.dci.2024.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
White spot syndrome virus (WSSV) causes highly destructive infection in crustacean aquaculture, often resulting in 100% mortality within a week. However, there is lack of studies addressing the safety issues of WSSV vaccines in shrimps. In this study, WSSV VP28 mRNA vaccines were developed using codon deoptimization approach. These vaccines were administered to Litopenaeus vannamei shrimps at various dosages to access their safety and the shrimps' immune responses using quantification PCR (qPCR). The findings of this study indicate that the expression level of codon deoptimized VP28 mRNA vaccines are lower compared to the wild type VP28 vaccines, as observed through a comparison of bioinformatic predictions and experimental results. Additionally, the total haemocyte count (THC) in shrimps injected with codon deoptimized VP28 vaccine was higher than those injected with wild type VP28 vaccines. Furthermore, the expression of immune-related genes differed between codon deoptimized and wild type VP28 vaccines. In summary, the results suggest that 0.01 μg codon deoptimized VP28-D1 mRNA vaccine is the most promising WSSV mRNA vaccine, displaying low pathogenicity and expression in shrimps. To the best of our knowledge, this research represents the first attempt to attenuate WSSV using codon deoptimization method and development of a potential mRNA vaccine for shrimp purpose. The study addresses an important gap in shrimp vaccine research, offering potential solutions for WSSV control in shrimps.
Collapse
Affiliation(s)
- SiouNing Aileen See
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| | - Swee Seong Tang
- Microbial Biochemistry Laboratory, Division of Microbiology and Molecular Genetic, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khatijah Yusoff
- Malaysia Genome Vaccine Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
2
|
Bravo IG, Belkhir S, Paget-Bailly P. Why HPV16? Why, now, HPV42? How the discovery of HPV42 in rare cancers provides an opportunity to challenge our understanding about the transition between health and disease for common members of the healthy microbiota. FEMS Microbiol Rev 2024; 48:fuae029. [PMID: 39562287 PMCID: PMC11644485 DOI: 10.1093/femsre/fuae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
In 2022, a bioinformatic, agnostic approach identified HPV42 as causative agent of a rare cancer, later confirmed experimentally. This unexpected association offers an opportunity to reconsider our understanding about papillomavirus infections and cancers. We have expanded our knowledge about the diversity of papillomaviruses and the diseases they cause. Yet, we still lack answers to fundamental questions, such as what makes HPV16 different from the closely related HPV31 or HPV33; or why the very divergent HPV13 and HPV32 cause focal epithelial hyperplasia, while HPV6 or HPV42 do not, despite their evolutionary relatedness. Certain members of the healthy skin microbiota are associated to rare clinical conditions. We propose that a focus on cellular phenotypes, most often transient and influenced by intrinsic and extrinsic factors, may help understand the continuum between health and disease. A conceptual switch is required towards an interpretation of biology as a diversity of states connected by transition probabilities, rather than quasi-deterministic programs. Under this perspective, papillomaviruses may only trigger malignant transformation when specific viral genotypes interact with precise cellular states. Drawing on Canguilhem's concepts of normal and pathological, we suggest that understanding the transition between fluid cellular states can illuminate how commensal-like infections transition from benign to malignant.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Sophia Belkhir
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Philippe Paget-Bailly
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| |
Collapse
|
3
|
Castellano LA, McNamara RJ, Pallarés HM, Gamarnik AV, Alvarez DE, Bazzini AA. Dengue virus preferentially uses human and mosquito non-optimal codons. Mol Syst Biol 2024; 20:1085-1108. [PMID: 39039212 PMCID: PMC11450187 DOI: 10.1038/s44320-024-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Codon optimality refers to the effect that codon composition has on messenger RNA (mRNA) stability and translation level and implies that synonymous codons are not silent from a regulatory point of view. Here, we investigated the adaptation of virus genomes to the host optimality code using mosquito-borne dengue virus (DENV) as a model. We demonstrated that codon optimality exists in mosquito cells and showed that DENV preferentially uses nonoptimal (destabilizing) codons and avoids codons that are defined as optimal (stabilizing) in either human or mosquito cells. Human genes enriched in the codons preferentially and frequently used by DENV are upregulated during infection, and so is the tRNA decoding the nonoptimal and DENV preferentially used codon for arginine. We found that adaptation during single-host passaging in human or mosquito cells results in the selection of synonymous mutations towards DENV's preferred nonoptimal codons that increase virus fitness. Finally, our analyses revealed that hundreds of viruses preferentially use nonoptimal codons, with those infecting a single host displaying an even stronger bias, suggesting that host-pathogen interaction shapes virus-synonymous codon choice.
Collapse
Affiliation(s)
- Luciana A Castellano
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Ryan J McNamara
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Horacio M Pallarés
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea V Gamarnik
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, San Martín B1650, Argentina
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
4
|
Kirk A, Graham SV. The human papillomavirus late life cycle and links to keratinocyte differentiation. J Med Virol 2024; 96:e29461. [PMID: 38345171 DOI: 10.1002/jmv.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Regulation of human papillomavirus (HPV) gene expression is tightly linked to differentiation of the keratinocytes the virus infects. HPV late gene expression is confined to the cells in the upper layers of the epithelium where the virus capsid proteins are synthesized. As these proteins are highly immunogenic, and the upper epithelium is an immune-privileged site, this spatial restriction aids immune evasion. Many decades of work have contributed to the current understanding of how this restriction occurs at a molecular level. This review will examine what is known about late gene expression in HPV-infected lesions and will dissect the intricacies of late gene regulation. Future directions for novel antiviral approaches will be highlighted.
Collapse
Affiliation(s)
- Anna Kirk
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sheila V Graham
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Pu F, Wang R, Yang X, Hu X, Wang J, Zhang L, Zhao Y, Zhang D, Liu Z, Liu J. Nucleotide and codon usage biases involved in the evolution of African swine fever virus: A comparative genomics analysis. J Basic Microbiol 2023; 63:499-518. [PMID: 36782108 DOI: 10.1002/jobm.202200624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/21/2023] [Indexed: 02/15/2023]
Abstract
Since African swine fever virus (ASFV) replication is closely related to its host's machinery, codon usage of viral genome can be subject to selection pressures. A better understanding of codon usage can give new insights into viral evolution. We implemented information entropy and revealed that the nucleotide usage pattern of ASFV is significantly associated with viral isolation factors (region and time), especially the usages of thymine and cytosine. Despite the domination of adenine and thymine in the viral genome, we found that mutation pressure alters the overall codon usage pattern of ASFV, followed by selective forces from natural selection. Moreover, the nucleotide skew index at the gene level indicates that nucleotide usages influencing synonymous codon bias of ASFV are significantly correlated with viral protein hydropathy. Finally, evolutionary plasticity is proved to contribute to the weakness in synonymous codons with A- or T-end serving as optimal codons of ASFV, suggesting that fine-tuning translation selection plays a role in synonymous codon usages of ASFV for adapting host. Taken together, ASFV is subject to evolutionary dynamics on nucleotide selections and synonymous codon usage, and our detailed analysis offers deeper insights into the genetic characteristics of this newly emerging virus around the world.
Collapse
Affiliation(s)
- Feiyang Pu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Rui Wang
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Xuanye Yang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xinyan Hu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Jinqian Wang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Lijuan Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yongqing Zhao
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Derong Zhang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Zewen Liu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Junlin Liu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Modeling HPV-Associated Disease and Cancer Using the Cottontail Rabbit Papillomavirus. Viruses 2022; 14:v14091964. [PMID: 36146770 PMCID: PMC9503101 DOI: 10.3390/v14091964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023] Open
Abstract
Approximately 5% of all human cancers are attributable to human papillomavirus (HPV) infections. HPV-associated diseases and cancers remain a substantial public health and economic burden worldwide despite the availability of prophylactic HPV vaccines. Current diagnosis and treatments for HPV-associated diseases and cancers are predominantly based on cell/tissue morphological examination and/or testing for the presence of high-risk HPV types. There is a lack of robust targets/markers to improve the accuracy of diagnosis and treatments. Several naturally occurring animal papillomavirus models have been established as surrogates to study HPV pathogenesis. Among them, the Cottontail rabbit papillomavirus (CRPV) model has become known as the gold standard. This model has played a pivotal role in the successful development of vaccines now available to prevent HPV infections. Over the past eighty years, the CRPV model has been widely applied to study HPV carcinogenesis. Taking advantage of a large panel of functional mutant CRPV genomes with distinct, reproducible, and predictable phenotypes, we have gained a deeper understanding of viral–host interaction during tumor progression. In recent years, the application of genome-wide RNA-seq analysis to the CRPV model has allowed us to learn and validate changes that parallel those reported in HPV-associated cancers. In addition, we have established a selection of gene-modified rabbit lines to facilitate mechanistic studies and the development of novel therapeutic strategies. In the current review, we summarize some significant findings that have advanced our understanding of HPV pathogenesis and highlight the implication of the development of novel gene-modified rabbits to future mechanistic studies.
Collapse
|
7
|
Gaunt ER, Digard P. Compositional biases in RNA viruses: Causes, consequences and applications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1679. [PMID: 34155814 PMCID: PMC8420353 DOI: 10.1002/wrna.1679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023]
Abstract
If each of the four nucleotides were represented equally in the genomes of viruses and the hosts they infect, each base would occur at a frequency of 25%. However, this is not observed in nature. Similarly, the order of nucleotides is not random (e.g., in the human genome, guanine follows cytosine at a frequency of ~0.0125, or a quarter the number of times predicted by random representation). Codon usage and codon order are also nonrandom. Furthermore, nucleotide and codon biases vary between species. Such biases have various drivers, including cellular proteins that recognize specific patterns in nucleic acids, that once triggered, induce mutations or invoke intrinsic or innate immune responses. In this review we examine the types of compositional biases identified in viral genomes and current understanding of the evolutionary mechanisms underpinning these trends. Finally, we consider the potential for large scale synonymous recoding strategies to engineer RNA virus vaccines, including those with pandemic potential, such as influenza A virus and Severe Acute Respiratory Syndrome Coronavirus Virus 2. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Eleanor R. Gaunt
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| | - Paul Digard
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| |
Collapse
|
8
|
Ata G, Wang H, Bai H, Yao X, Tao S. Edging on Mutational Bias, Induced Natural Selection From Host and Natural Reservoirs Predominates Codon Usage Evolution in Hantaan Virus. Front Microbiol 2021; 12:699788. [PMID: 34276633 PMCID: PMC8283416 DOI: 10.3389/fmicb.2021.699788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The molecular evolutionary dynamics that shape hantaviruses’ evolution are poorly understood even now, besides the contribution of virus-host interaction to their evolution remains an open question. Our study aimed to investigate these two aspects in Hantaan virus (HTNV)—the prototype of hantaviruses and an emerging zoonotic pathogen that infects humans, causing hemorrhagic fever with renal syndrome (HFRS): endemic in Far East Russia, China, and South Korea—via a comprehensive, phylogenetic-dependent codon usage analysis. We found that host- and natural reservoir-induced natural selection is the primary determinant of its biased codon choices, exceeding the mutational bias effect. The phylogenetic analysis of HTNV strains resulted in three distinct clades: South Korean, Russian, and Chinese. An effective number of codon (ENC) analysis showed a slightly biased codon usage in HTNV genomes. Nucleotide composition and RSCU analyses revealed a significant bias toward A/U nucleotides and A/U-ended codons, indicating the potential influence of mutational bias on the codon usage patterns of HTNV. Via ENC-plot, Parity Rule 2 (PR2), and neutrality plot analyses, we would conclude the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of HTNV; however, natural selection is the dominant factor influencing its codon usage bias. Codon adaptation index (CAI), Relative codon deoptimization index (RCDI), and Similarity Index (SiD) analyses uncovered the intense selection pressure from the host (Human) and natural reservoirs (Striped field mouse and Chinese white-bellied rat) in shaping HTNV biased codon choices. Our study clearly revealed the evolutionary processes in HTNV and the role of virus-host interaction in its evolution. Moreover, it opens the door for a more comprehensive codon usage analysis for all hantaviruses species to determine their molecular evolutionary dynamics and adaptability to several hosts and environments. We believe that our research will help in a better and deep understanding of HTNV evolution that will serve its future basic research and aid live attenuated vaccines design.
Collapse
Affiliation(s)
- Galal Ata
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Haoxiang Bai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
9
|
Liu W, Li J, Du H, Ou Z. Mutation Profiles, Glycosylation Site Distribution and Codon Usage Bias of Human Papillomavirus Type 16. Viruses 2021; 13:v13071281. [PMID: 34209097 PMCID: PMC8310365 DOI: 10.3390/v13071281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) is the most prevalent HPV type causing cervical cancers. Herein, using 1597 full genomes, we systemically investigated the mutation profiles, surface protein glycosylation sites and the codon usage bias (CUB) of HPV16 from different lineages and sublineages. Multiple lineage- or sublineage-conserved mutation sites were identified. Glycosylation analysis showed that HPV16 lineage D contained the highest number of different glycosylation sites from lineage A in both L1 and L2 capsid proteins, which might lead to their antigenic distances between the two lineages. CUB analysis showed that the HPV16 open reading frames (ORFs) preferred codons ending with A/T. The CUB of HPV16 ORFs was mainly affected by natural selection except for E1, E5 and L2. HPV16 only shared some of the preferred codons with humans, which might help reduce competition in translational resources. These findings increase our understanding of the heterogeneity between HPV16 lineages and sublineages, and the adaptation mechanism of HPV in human cells. In summary, this study might facilitate HPV classification and improve vaccine development and application.
Collapse
Affiliation(s)
- Wei Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510000, China; (W.L.); (J.L.); (H.D.)
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Junhua Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510000, China; (W.L.); (J.L.); (H.D.)
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510000, China; (W.L.); (J.L.); (H.D.)
| | - Zhihua Ou
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
- Correspondence: ; Tel.: +86-134-3428-7879
| |
Collapse
|
10
|
Cho M, Kim H, Je M, Son HS. Analysis of Codon Usage Patterns in the Human Papillomavirus Oncogenes. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200614173136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Background:
Persistent high-risk genital human papillomavirus (HPV) infection is a major cause of cervical
cancer in women. The products of the viral transforming genes E6 and E7 in the high-risk HPVs are known to be similar
in their amino acid composition and structure. We performed a comparative analysis of codon usage patterns in the E6
and E7 genes of HPVs.
Methods:
The E6 and E7 gene sequences of eight HPV subtypes were analyzed to determine their nucleotide
composition, relative synonymous codon usage (RSCU), effective number of codons (ENC), neutrality, genetic
variability, selection pressure, and codon adaptation index (CAI). Additionally, a correspondence analysis (CoA) was
performed.
Results:
The analysis to determine the effects of differences in composition on the codon usage patterns revealed that
there may be usage bias for ‘A’ nucleotides. This was consistent with the results of the RSCU analysis, which
demonstrated that the selection of A/T-rich patterns and the preference for A/T-ended codons in HPVs are influenced by
compositional constraints. Moreover, the results reveal that selection pressure plays an important role in the CoA results
for the RSCU values, Tajima’s D tests, and neutrality tests.
Conclusion:
The results of this study are consistent with previous findings that most papillomavirus genes are under
purifying selection pressure, which limits changes to the encoded proteins. Natural selection and mutation pressures
resulting in changes in the nucleotide composition and codon usage bias in the two tumor genes of HPV act differently
during the evolution of the HPV subtype; thus, throughout the viral life cycle, HPV can constantly evolve to adapt to a
new environment.
Collapse
Affiliation(s)
- Myeongji Cho
- Laboratory of Computational Biology & Bioinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826,Korea
| | - Hayeon Kim
- Department of Biomedical Laboratory Science, Kyungdong University, 815 Gyeonhwon-ro, Munmak, Wonju, Gangwondo, 24695,Korea
| | - Mikyeong Je
- Laboratory of Computational Biology & Bioinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826,Korea
| | - Hyeon S. Son
- Laboratory of Computational Biology & Bioinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826,Korea
| |
Collapse
|
11
|
Gong Y, Wen G, Jiang J, Xie F. Codon bias analysis may be insufficient for identifying host(s) of a novel virus. J Med Virol 2020; 92:1434-1436. [PMID: 32379350 PMCID: PMC7267327 DOI: 10.1002/jmv.25977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Yuzhou Gong
- University of Chinese Academy of Sciences, Beijing, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guannan Wen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Feng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
12
|
HPV16 E7-impaired keratinocyte differentiation leads to tumorigenesis via cell cycle/pRb/involucrin/spectrin/adducin cascade. Appl Microbiol Biotechnol 2020; 104:4417-4433. [PMID: 32215704 DOI: 10.1007/s00253-020-10492-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022]
Abstract
Here, we used codon usage technology to generate two codon-modified human papillomavirus (HPV)16 E7 genes and, together with wild-type E7, to construct three HPV16 E7 gene plasmids: Wt-E7, HB1-E7, and HB2-E7. The three HPV 16 E7 plasmids were used to investigate how HPV16 E7 protein was expressed in different cells and how this oncoprotein deregulated cellular and molecular events in human keratinocytes to induce carcinogenesis. We discovered that codon usage of HPV16 E7 gene played a key role in determining expression of E7 oncoprotein in all tested cells. HPV16 E7 inhibited significantly expression of pRb to impair keratinocyte differentiation and disrupted development of skin epidermis in mice. HPV16 E7 increased substantially the number of G0/G1 cells associated with upregulation of cyclin D2 and downregulation of cyclin B1 in keratinocytes. HPV16 E7 not only inhibited expression of involucrin and α-spectrin but also disrupted the organization of involucrin filaments and spectrin cytoskeleton. Furthermore, HPV16 E7 inhibited expression of β-adducin, destroyed its cytoskeletal structure and induced phosphorylation of β-adducin(Ser662) in keratinocytes. Importantly, HPV16 E7 induced carcinogenesis in mice associated with expression of phosphorylated β-adducin(Ser662) and its nucleus-translocation. In conclusion, we provided evidence that HPV16 E7 oncoprotein inhibited keratinocyte differentiation in vitro and in vivo leading to carcinogenesis through cell cycle arrest and disruption of pRb/involucrin/spectrin/adducin cascade.
Collapse
|
13
|
Cladel NM, Peng X, Christensen N, Hu J. The rabbit papillomavirus model: a valuable tool to study viral-host interactions. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180294. [PMID: 30955485 DOI: 10.1098/rstb.2018.0294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cottontail rabbit papillomavirus (CRPV) was the first DNA virus shown to be tumorigenic. The virus has since been renamed and is officially known as Sylvilagus floridanus papillomavirus 1 (SfPV1). Since its inception as a surrogate preclinical model for high-risk human papillomavirus (HPV) infections, the SfPV1/rabbit model has been widely used to study viral-host interactions and has played a pivotal role in the successful development of three prophylactic virus-like particle vaccines. In this review, we will focus on the use of the model to gain a better understanding of viral pathogenesis, gene function and host immune responses to viral infections. We will discuss the application of the model in HPV-associated vaccine testing, in therapeutic vaccine development (using our novel HLA-A2.1 transgenic rabbits) and in the development and validation of novel anti-viral and anti-tumour compounds. Our goal is to demonstrate the role the SfPV1/rabbit model has played, and continues to play, in helping to unravel the intricacies of papillomavirus infections and to develop tools to thwart the disease. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Nancy M Cladel
- 1 The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA.,2 Department of Pathology, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA
| | - Xuwen Peng
- 3 Department of Comparative Medicine, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA
| | - Neil Christensen
- 1 The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA.,2 Department of Pathology, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA.,4 Department of Microbiology and Immunology, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA
| | - Jiafen Hu
- 1 The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA.,2 Department of Pathology, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA
| |
Collapse
|
14
|
Puustusmaa M, Abroi A. cRegions-a tool for detecting conserved cis-elements in multiple sequence alignment of diverged coding sequences. PeerJ 2019; 6:e6176. [PMID: 30647994 PMCID: PMC6330207 DOI: 10.7717/peerj.6176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Identifying cis-acting elements and understanding regulatory mechanisms of a gene is crucial to fully understand the molecular biology of an organism. In general, it is difficult to identify previously uncharacterised cis-acting elements with an unknown consensus sequence. The task is especially problematic with viruses containing regions of limited or no similarity to other previously characterised sequences. Fortunately, the fast increase in the number of sequenced genomes allows us to detect some of these elusive cis-elements. In this work, we introduce a web-based tool called cRegions. It was developed to identify regions within a protein-coding sequence where the conservation in the amino acid sequence is caused by the conservation in the nucleotide sequence. The cRegion can be the first step in discovering novel cis-acting sequences from diverged protein-coding genes. The results can be used as a basis for future experimental analysis. We applied cRegions on the non-structural and structural polyproteins of alphaviruses as an example and successfully detected all known cis-acting elements. In this publication and in previous work, we have shown that cRegions is able to detect a wide variety of functional elements in DNA and RNA viruses. These functional elements include splice sites, stem-loops, overlapping reading frames, internal promoters, ribosome frameshifting signals and other embedded elements with yet unknown function. The cRegions web tool is available at http://bioinfo.ut.ee/cRegions/.
Collapse
Affiliation(s)
- Mikk Puustusmaa
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Aare Abroi
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
15
|
Karumathil S, Raveendran NT, Ganesh D, Kumar Ns S, Nair RR, Dirisala VR. Evolution of Synonymous Codon Usage Bias in West African and Central African Strains of Monkeypox Virus. Evol Bioinform Online 2018; 14:1176934318761368. [PMID: 29551886 PMCID: PMC5846927 DOI: 10.1177/1176934318761368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
The evolution of bias in synonymous codon usage in chosen monkeypox viral genomes and the factors influencing its diversification have not been reported so far. In this study, various trends associated with synonymous codon usage in chosen monkeypox viral genomes were investigated, and the results are reported. Identification of factors that influence codon usage in chosen monkeypox viral genomes was done using various codon usage indices, such as the relative synonymous codon usage, the effective number of codons, and the codon adaptation index. The Spearman rank correlation analysis and a correspondence analysis were used for correlating various factors with codon usage. The results revealed that mutational pressure due to compositional constraints, gene expression level, and selection at the codon level for utilization of putative optimal codons are major factors influencing synonymous codon usage bias in monkeypox viral genomes. A cluster analysis of relative synonymous codon usage values revealed a grouping of more virulent strains as one major cluster (Central African strains) and a grouping of less virulent strains (West African strains) as another major cluster, indicating a relationship between virulence and synonymous codon usage bias. This study concluded that a balance between the mutational pressure acting at the base composition level and the selection pressure acting at the amino acid level frames synonymous codon usage bias in the chosen monkeypox viruses. The natural selection from the host does not seem to have influenced the synonymous codon usage bias in the analyzed monkeypox viral genomes.
Collapse
Affiliation(s)
- Sudeesh Karumathil
- Centre for Evolutionary Ecology, Aushmath Biosciences, Coimbatore, India
| | - Nimal T Raveendran
- Amrita Centre for Nanosciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Doss Ganesh
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | - Rahul R Nair
- Centre for Evolutionary Ecology, Aushmath Biosciences, Coimbatore, India
| | | |
Collapse
|
16
|
Takaaki K, Tatsuo S. Analysis of factors affecting codon usage bias in human papillomavirus. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/jbsa2017.0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Xue XY, Majerciak V, Uberoi A, Kim BH, Gotte D, Chen X, Cam M, Lambert PF, Zheng ZM. The full transcription map of mouse papillomavirus type 1 (MmuPV1) in mouse wart tissues. PLoS Pathog 2017; 13:e1006715. [PMID: 29176795 PMCID: PMC5720830 DOI: 10.1371/journal.ppat.1006715] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/07/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Mouse papillomavirus type 1 (MmuPV1) provides, for the first time, the opportunity to study infection and pathogenesis of papillomaviruses in the context of laboratory mice. In this report, we define the transcriptome of MmuPV1 genome present in papillomas arising in experimentally infected mice using a combination of RNA-seq, PacBio Iso-seq, 5’ RACE, 3’ RACE, primer-walking RT-PCR, RNase protection, Northern blot and in situ hybridization analyses. We demonstrate that the MmuPV1 genome is transcribed unidirectionally from five major promoters (P) or transcription start sites (TSS) and polyadenylates its transcripts at two major polyadenylation (pA) sites. We designate the P7503, P360 and P859 as “early” promoters because they give rise to transcripts mostly utilizing the polyadenylation signal at nt 3844 and therefore can only encode early genes, and P7107 and P533 as “late” promoters because they give rise to transcripts utilizing polyadenylation signals at either nt 3844 or nt 7047, the latter being able to encode late, capsid proteins. MmuPV1 genome contains five splice donor sites and three acceptor sites that produce thirty-six RNA isoforms deduced to express seven predicted early gene products (E6, E7, E1, E1^M1, E1^M2, E2 and E8^E2) and three predicted late gene products (E1^E4, L2 and L1). The majority of the viral early transcripts are spliced once from nt 757 to 3139, while viral late transcripts, which are predicted to encode L1, are spliced twice, first from nt 7243 to either nt 3139 (P7107) or nt 757 to 3139 (P533) and second from nt 3431 to nt 5372. Thirteen of these viral transcripts were detectable by Northern blot analysis, with the P533-derived late E1^E4 transcripts being the most abundant. The late transcripts could be detected in highly differentiated keratinocytes of MmuPV1-infected tissues as early as ten days after MmuPV1 inoculation and correlated with detection of L1 protein and viral DNA amplification. In mature warts, detection of L1 was also found in more poorly differentiated cells, as previously reported. Subclinical infections were also observed. The comprehensive transcription map of MmuPV1 generated in this study provides further evidence that MmuPV1 is similar to high-risk cutaneous beta human papillomaviruses. The knowledge revealed will facilitate the use of MmuPV1 as an animal virus model for understanding of human papillomavirus gene expression, pathogenesis and immunology. Papillomavirus (PV) infections lead to development of both benign warts and cancers. Because PVs are epitheliotropic and species specific, it has been extremely challenging to study PV infection in the context of a naturally occurring infection in a tractable laboratory animal. The recent discovery of the papillomavirus, MmuPV1, that infects laboratory mice, provides an important new animal model system for understanding the pathogenesis of papillomavirus-associated diseases. By using state of the art RNA-seq to provide deep sequencing analysis of what regions of the viral genome are transcribed and PacBio Iso-seq that produces longer reads to define the complete sequences of individual transcripts in combination with several conventional technologies to confirm transcription starts sites, splice sites, and polyadenylation sites, we provide the first detailed description of the MmuPV1 transcript map using RNA from MmuPV1-induced mouse warts. This study reveals the presence of mRNA transcripts capable of coding for ten protein products in the MmuPV1 genome and leads to correctly re-assigning the E1^E4, L2 and L1 coding regions. We were able to detect individual transcripts from the infected wart tissues by RT-PCR, Northern blot and RNA ISH, to define the temporal onset of productive viral infection and to ectopically express a predicted viral protein for functional studies. The constructed MmuPV1 transcript map provides a foundation to advance our understanding of papillomavirus biology and pathogenesis.
Collapse
Affiliation(s)
- Xiang-Yang Xue
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, NCI/NIH, Frederick, Maryland, United States of America
- Department of Microbiology and Immunology, Wenzhou Medical University, Zhejiang, China
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, NCI/NIH, Frederick, Maryland, United States of America
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Bong-Hyun Kim
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, United States of America
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, United States of America
| | - Deanna Gotte
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, NCI/NIH, Frederick, Maryland, United States of America
| | - Xiongfong Chen
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, United States of America
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, United States of America
| | - Maggie Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, NCI/NIH, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Graham SV. Keratinocyte Differentiation-Dependent Human Papillomavirus Gene Regulation. Viruses 2017; 9:E245. [PMID: 28867768 PMCID: PMC5618011 DOI: 10.3390/v9090245] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/29/2022] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive cancers. HPVs infect epithelial cells and their replication cycle is tightly linked with the differentiation process of the infected keratinocyte. The normal replication cycle involves an early and a late phase. The early phase encompasses viral entry and initial genome replication, stimulation of cell division and inhibition of apoptosis in the infected cell. Late events in the HPV life cycle include viral genome amplification, virion formation, and release into the environment from the surface of the epithelium. The main proteins required at the late stage of infection for viral genome amplification include E1, E2, E4 and E5. The late proteins L1 and L2 are structural proteins that form the viral capsid. Regulation of these late events involves both cellular and viral proteins. The late viral mRNAs are expressed from a specific late promoter but final late mRNA levels in the infected cell are controlled by splicing, polyadenylation, nuclear export and RNA stability. Viral late protein expression is also controlled at the level of translation. This review will discuss current knowledge of how HPV late gene expression is regulated.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK.
| |
Collapse
|
19
|
Mendes de Oliveira C, Levi JE. The Biological Impact of Genomic Diversity in Cervical Cancer Development. Acta Cytol 2016; 60:513-517. [PMID: 27771695 DOI: 10.1159/000449401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022]
Abstract
Human papillomaviruses (HPVs) are the etiologic agents of cervical cancer, the unique human neoplasia that has one single necessary cause. The diversity of HPVs is well described, with 200 HPV types existing as distinct taxonomic units and each receiving an Arabic number. On a clinical basis, they are usually grouped by their site of occurrence and disease associations. Those types inhabiting the anogenital mucosa are more intensively studied and further divided into cancer-associated HPVs, which are termed 'high risk', while those linked to benign proliferative lesions are assigned as 'low risk'. HPV16 is responsible for approximately 50% of all ICC cases, and paradoxically is one of the most prevalent types among healthy women. Longitudinal studies have shown that when an incidental HPV16 infection becomes persistent it will result in an enhanced risk for the development of high-grade lesions. However, it is unknown why some persistent, HPV16 infections (or infections by other HR-HPV types) progress to CIN3+ while most clear spontaneously. Several epidemiological investigations have focused on cofactors, from the most obvious such as cigarette and other carcinogenic exposures, to coinfections by other STDs such as chlamydia, with no significant findings. Thus, the current focus is on genomic variation from both virus and host. Such studies have been potentialized by the enormous technical advances in nucleic acid sequencing, allowing this relationship to be broadly interrogated. Corroborating subgenomic data from decades ago, an association between HPV16 lineages and carcinogenesis is being revealed. However, this effect does not seem to apply across female populations from different continents/ethnicities, again highlighting a role played by HPV16 adaptation and evasion from the host over time.
Collapse
|
20
|
Proteomic analysis of the gamma human papillomavirus type 197 E6 and E7 associated cellular proteins. Virology 2016; 500:71-81. [PMID: 27771561 DOI: 10.1016/j.virol.2016.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/26/2022]
Abstract
Gamma HPV197 was the most frequently identified HPV when human skin cancer specimens were analyzed by deep sequencing (Arroyo Muhr et al., Int. J. Cancer 136: 2546-55, 2015). To gain insight into the biological activities of HPV197, we investigated the cellular interactomes of HPV197 E6 and E7. HPV197 E6 protein interacts with a broad spectrum of cellular LXXLL domain proteins, including UBE3A and MAML1. HPV197 E6 also binds and inhibits the TP53 tumor suppressor and interacts with the CCR4-NOT ubiquitin ligase and deadenylation complex. Despite lacking a canonical retinoblastoma (RB1) tumor suppressor binding site, HPV197 E7 binds RB1 and activates E2F transcription. Hence, HPV197 E6 and E7 proteins interact with a similar set of cellular proteins as E6 and E7 proteins encoded by HPVs that have been linked to human carcinogenesis and/or have transforming activities in vitro.
Collapse
|
21
|
Hajmohammadi S, Rassi H. Cloning and Expression of L1 Protein Human Papillomavirus Type 31 Isolated from Iranian Patients in Escherichia coli. Monoclon Antib Immunodiagn Immunother 2016; 35:181-5. [PMID: 27244269 DOI: 10.1089/mab.2015.0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human papillomavirus (HPV), a major pathogen of human cervical cancer, contains a full-length L1 gene encoding its surface capsid protein. One group of potential vaccine candidates against this virus in Iranian patients is based on surface protein components such as HPV31 L1 protein that can make virus-like particles (VLPs). The high immunity response stimulation of this effecter VLP was observed in host, suggesting that the individual characteristics of a particular effecter may require empirical testing for vaccination. In the present study, we decided to clone and express HPV31 L1 protein to investigate its use as a subunit vaccine and furthermore to insert the gene into an Escherichia coli background so as to analyze production of this recombinant protein. We report the presentation of HPV31 in 100 cervical lesion tissue samples based on polymerase chain reaction (PCR). Type of lesion, age, and other characteristics were reviewed and confirmed by a pathologist. The sequence from L1 genes of HPV was selected using special primers. The gene encoding the major capsid protein L1 was used for subcloning in pTG19-T and pET-32a plasmid. The recombinant protein expression was confirmed by RT-PCR using L1 primers and detected by absorption sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot testing. The results presented here offer new insights into the in vivo response of HPV31 in Iranian patients and European models. On the other hand, the use of recombinant L1 protein for Iranian patient protection as well as vaccination studies will permit testing of this antigen protection rate and open the way to the discovery of protein biomarkers for monitoring clinical and subclinical cervical cancers.
Collapse
Affiliation(s)
- Sameh Hajmohammadi
- 1 Department of Biology, College of Basic Science, Damgan Branch, Islamic Azad University , Semnan, Iran
| | - Hossein Rassi
- 2 Department of Biology, College of Basic Science, Karaj Branch, Islamic Azad University , Alborz, Iran
| |
Collapse
|
22
|
Kumar N, Bera BC, Greenbaum BD, Bhatia S, Sood R, Selvaraj P, Anand T, Tripathi BN, Virmani N. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses. PLoS One 2016; 11:e0154376. [PMID: 27119730 PMCID: PMC4847779 DOI: 10.1371/journal.pone.0154376] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/12/2016] [Indexed: 11/18/2022] Open
Abstract
Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Animals
- Biological Evolution
- Codon
- Gene Expression Regulation, Viral
- Genetic Code
- Genome, Viral
- Horse Diseases/virology
- Horses
- Host-Pathogen Interactions
- Influenza A Virus, H3N8 Subtype/genetics
- Influenza A Virus, H3N8 Subtype/metabolism
- Influenza A Virus, H7N7 Subtype/genetics
- Influenza A Virus, H7N7 Subtype/metabolism
- Models, Statistical
- Mutation Rate
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/virology
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Species Specificity
- Virus Replication
Collapse
Affiliation(s)
- Naveen Kumar
- Immunology Lab, National Institute of High Security Animal Diseases (NIHSAD), Bhopal, Madhya Pradesh, India
| | - Bidhan Chandra Bera
- Biotechnology Lab, Veterinary Type Culture Collection, National Research Center on Equines (NRCE), Hisar, Haryana, India
| | - Benjamin D. Greenbaum
- Tisch Cancer Institute, Departments of Medicine, Hematology and Medical Pathology, and Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sandeep Bhatia
- Immunology Lab, National Institute of High Security Animal Diseases (NIHSAD), Bhopal, Madhya Pradesh, India
| | - Richa Sood
- Immunology Lab, National Institute of High Security Animal Diseases (NIHSAD), Bhopal, Madhya Pradesh, India
| | - Pavulraj Selvaraj
- Equine Pathology Lab, National Research Center on Equines (NRCE), Hisar, Haryana, India
| | - Taruna Anand
- Biotechnology Lab, Veterinary Type Culture Collection, National Research Center on Equines (NRCE), Hisar, Haryana, India
| | | | - Nitin Virmani
- Equine Pathology Lab, National Research Center on Equines (NRCE), Hisar, Haryana, India
- * E-mail:
| |
Collapse
|
23
|
Upadhyay M, Vivekanandan P. Depletion of CpG Dinucleotides in Papillomaviruses and Polyomaviruses: A Role for Divergent Evolutionary Pressures. PLoS One 2015; 10:e0142368. [PMID: 26544572 PMCID: PMC4636234 DOI: 10.1371/journal.pone.0142368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022] Open
Abstract
Background Papillomaviruses and polyomaviruses are small ds-DNA viruses infecting a wide-range of vertebrate hosts. Evidence supporting co-evolution of the virus with the host does not fully explain the evolutionary path of papillomaviruses and polyomaviruses. Studies analyzing CpG dinucleotide frequencies in virus genomes have provided interesting insights on virus evolution. CpG dinucleotide depletion has not been extensively studied among papillomaviruses and polyomaviruses. We sought to analyze the relative abundance of dinucleotides and the relative roles of evolutionary pressures in papillomaviruses and polyomaviruses. Methods We studied 127 full-length sequences from papillomaviruses and 56 full-length sequences from polyomaviruses. We analyzed the relative abundance of dinucleotides, effective codon number (ENC), differences in synonymous codon usage. We examined the association, if any, between the extent of CpG dinucleotide depletion and the evolutionary lineage of the infected host. We also investigated the contribution of mutational pressure and translational selection to the evolution of papillomaviruses and polyomaviruses. Results All papillomaviruses and polyomaviruses are CpG depleted. Interestingly, the evolutionary lineage of the infected host determines the extent of CpG depletion among papillomaviruses and polyomaviruses. CpG dinucleotide depletion was more pronounced among papillomaviruses and polyomaviruses infecting human and other mammals as compared to those infecting birds. Our findings demonstrate that CpG depletion among papillomaviruses is linked to mutational pressure; while CpG depletion among polyomaviruses is linked to translational selection. We also present evidence that suggests methylation of CpG dinucleotides may explain, at least in part, the depletion of CpG dinucleotides among papillomaviruses but not polyomaviruses. Conclusions The extent of CpG depletion among papillomaviruses and polyomaviruses is linked to the evolutionary lineage of the infected host. Our results highlight the existence of divergent evolutionary pressures leading to CpG dinucleotide depletion among small ds-DNA viruses infecting vertebrate hosts.
Collapse
Affiliation(s)
- Mohita Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 006, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 006, India
- * E-mail:
| |
Collapse
|
24
|
Federica S, Laura G, Alice P, Mara B, Giuliano B, Alessandra S. E5 nucleotide polymorphisms suggest quasispecies occurrence in BPV-1 sub-clinically infected horses. Res Vet Sci 2015; 102:80-2. [DOI: 10.1016/j.rvsc.2015.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/14/2015] [Accepted: 07/26/2015] [Indexed: 02/08/2023]
|
25
|
Félez-Sánchez M, Trösemeier JH, Bedhomme S, González-Bravo MI, Kamp C, Bravo IG. Cancer, Warts, or Asymptomatic Infections: Clinical Presentation Matches Codon Usage Preferences in Human Papillomaviruses. Genome Biol Evol 2015; 7:2117-35. [PMID: 26139833 PMCID: PMC4558848 DOI: 10.1093/gbe/evv129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Viruses rely completely on the hosts’ machinery for translation of viral transcripts. However, for most viruses infecting humans, codon usage preferences (CUPrefs) do not match those of the host. Human papillomaviruses (HPVs) are a showcase to tackle this paradox: they present a large genotypic diversity and a broad range of phenotypic presentations, from asymptomatic infections to productive lesions and cancer. By applying phylogenetic inference and dimensionality reduction methods, we demonstrate first that genes in HPVs are poorly adapted to the average human CUPrefs, the only exception being capsid genes in viruses causing productive lesions. Phylogenetic relationships between HPVs explained only a small proportion of CUPrefs variation. Instead, the most important explanatory factor for viral CUPrefs was infection phenotype, as orthologous genes in viruses with similar clinical presentation displayed similar CUPrefs. Moreover, viral genes with similar spatiotemporal expression patterns also showed similar CUPrefs. Our results suggest that CUPrefs in HPVs reflect either variations in the mutation bias or differential selection pressures depending on the clinical presentation and expression timing. We propose that poor viral CUPrefs may be central to a trade-off between strong viral gene expression and the potential for eliciting protective immune response.
Collapse
Affiliation(s)
- Marta Félez-Sánchez
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jan-Hendrik Trösemeier
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe University, Frankfurt am Main, Germany Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Stéphanie Bedhomme
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain Département d'Ecologie Evolutive Centre d'Ecologie Fonctionnelle et Evolutive, CNRS - UMR 5175, Montpellier, France
| | | | - Christel Kamp
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Ignacio G Bravo
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
26
|
Bravo IG, Félez-Sánchez M. Papillomaviruses: Viral evolution, cancer and evolutionary medicine. EVOLUTION MEDICINE AND PUBLIC HEALTH 2015; 2015:32-51. [PMID: 25634317 PMCID: PMC4356112 DOI: 10.1093/emph/eov003] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Papillomaviruses (PVs) are a numerous family of small dsDNA viruses infecting virtually all mammals. PVs cause infections without triggering a strong immune response, and natural infection provides only limited protection against reinfection. Most PVs are part and parcel of the skin microbiota. In some cases, infections by certain PVs take diverse clinical presentations from highly productive self-limited warts to invasive cancers. We propose PVs as an excellent model system to study the evolutionary interactions between the immune system and pathogens causing chronic infections: genotypically, PVs are very diverse, with hundreds of different genotypes infecting skin and mucosa; phenotypically, they display extremely broad gradients and trade-offs between key phenotypic traits, namely productivity, immunogenicity, prevalence, oncogenicity and clinical presentation. Public health interventions have been launched to decrease the burden of PV-associated cancers, including massive vaccination against the most oncogenic human PVs, as well as systematic screening for PV chronic anogenital infections. Anti-PVs vaccines elicit protection against infection, induce cross-protection against closely related viruses and result in herd immunity. However, our knowledge on the ecological and intrapatient dynamics of PV infections remains fragmentary. We still need to understand how the novel anthropogenic selection pressures posed by vaccination and screening will affect viral circulation and epidemiology. We present here an overview of PV evolution and the connection between PV genotypes and the phenotypic, clinical manifestations of the diseases they cause. This differential link between viral evolution and the gradient cancer-warts-asymptomatic infections makes PVs a privileged playground for evolutionary medicine research.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain; Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain; Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain; Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
| | - Marta Félez-Sánchez
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain; Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain; Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
| |
Collapse
|
27
|
Hu C, Chen J, Ye L, Chen R, Zhang L, Xue X. Codon usage bias in human cytomegalovirus and its biological implication. Gene 2014; 545:5-14. [PMID: 24814188 DOI: 10.1016/j.gene.2014.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Human cytomegalovirus (HCMV) infection, a worldwide contagion, causes a serious disorder in infected individuals. Analysis of codon usage can reveal much molecular information about this virus. The effective number of codon (ENC) values, relative synonymous codon usage (RSCU) values, codon adaptation index (CAI), and nucleotide contents was investigated in approximately 160 coding sequences (CDS) among 17 human cytomegalovirus genomes using the software CodonW. Linear regression analysis and logistic regression were performed to explore the preliminary data. The results showed that, overall, HCMV genomes had low codon usage bias (mean ENC=47.619). However, the ENC of individual CDS varied widely and was distributed unevenly between host-related genes and viral-self-function genes (P=0.002, odds ratio (OR)=3.194), as did the GC content (P=0.016, OR=2.178). The ENC values correlated with CAI, GC content, and the nucleotide composing at the 3rd codon position (GC3s) (P<0.001). There was a significant variation in the codon preference that depended on the RSCU data. The predicted ENC curve suggested that mutational pressure, rather than natural selection, was one of the main factors that determined the codon usage bias in HCMV. Among 123 genes with known function, the genes related to viral self-replication and viral-host interaction showed different ENC and CAI values, and GC and GC3s contents. In conclusion, the detailed codon usage bias theoretically revealed information concerning HCMV evolution and could be a valuable additional parameter for HCMV gene function research.
Collapse
Affiliation(s)
- Changyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Jing Chen
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Lulu Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Renpin Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
28
|
Li S, Yang J. System analysis of synonymous codon usage biases in archaeal virus genomes. J Theor Biol 2014; 355:128-39. [PMID: 24685889 PMCID: PMC7094158 DOI: 10.1016/j.jtbi.2014.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/30/2022]
Abstract
Recent studies of geothermally heated aquatic ecosystems have found widely divergent viruses with unusual morphotypes. Archaeal viruses isolated from these hot habitats usually have double-stranded DNA genomes, linear or circular, and can infect members of the Archaea domain. In this study, the synonymous codon usage bias (SCUB) and dinucleotide composition in the available complete archaeal virus genome sequences have been investigated. It was found that there is a significant variation in SCUB among different Archaeal virus species, which is mainly determined by the base composition. The outcome of correspondence analysis (COA) and Spearman׳s rank correlation analysis shows that codon usage of selected archaeal virus genes depends mainly on GC richness of genome, and the gene׳s function, albeit with smaller effects, also contributes to codon usage in this virus. Furthermore, this investigation reveals that aromaticity of each protein is also critical in affecting SCUB of these viral genes although it was less important than that of the mutational bias. Especially, mutational pressure may influence SCUB in SIRV1, SIRV2, ARV1, AFV1, and PhiCh1 viruses, whereas translational selection could play a leading role in HRPV1׳s SCUB. These conclusions not only can offer an insight into the codon usage biases of archaeal virus and subsequently the possible relationship between archaeal viruses and their host, but also may help in understanding the evolution of archaeal viruses and their gene classification, and more helpful to explore the origin of life and the evolution of biology. The SCUB of archaeal virus genes depends mainly on GC richness of genome. The mutational pressure is the main factor that influences SCUB. The aromaticity of each protein is also critical in affecting SCUB. The translational selection could play a leading role in HRPV1׳s SCUB. The mode is helpful to explore the origin of life and the evolution of biology.
Collapse
Affiliation(s)
- Sen Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
29
|
Zhao KN. In vitro translation of papillomavirus authentic and codon-modified L1 capsid gene mRNAs in mouse keratinocyte cell-free lysate. Methods Mol Biol 2014; 1118:205-18. [PMID: 24395418 DOI: 10.1007/978-1-62703-782-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Keratinocytes are the major cell type in the epidermis responsible for constructing the protective barrier of mammalian skin. Primary keratinocytes cultured in vitro can mimic the in vivo differentiation process, providing an abundant source of pure keratinocytes used for investigating the regulatory mechanisms of gene expression associated with cell proliferation and differentiation. We developed a primary mouse keratinocyte cell-free lysate system for translation of papillomavirus authentic and codon-modified L1 capsid gene mRNAs in vitro. We demonstrated that the viral gene codon usage matched available aminoacyl-tRNAs to determine their translational efficiencies, which were associated with differentiation status of the keratinocytes used for preparing cell-free lysate. We revealed that a novel regulatory mechanism of gene expression is utilized by papillomavirus to direct viral capsid protein expression to the site of virion assembly in mature keratinocytes. Here, I describe the methods in details of how to establish primary mouse keratinocyte culture, to prepare cell-free lysate, to carry out in vitro translation of the viral gene mRNAs, and to detect the translated products using Western blotting analysis.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Wang X, Zhao L, Zhao KN. An optimized yeast cell-free lysate system for in vitro translation of human virus mRNA. Methods Mol Biol 2014; 1118:219-230. [PMID: 24395419 DOI: 10.1007/978-1-62703-782-2_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Yeast (Saccharomyces cerevisiae) as a model organism has long been established to study various aspects of eukaryotic cellular and molecular biology. Cell-free lysates prepared from different yeast strains have been used as a powerful tool to study eukaryotic protein expression in vitro. Recently, we established a yeast cell-free lysate system for in vitro translation long and short L1 capsid gene mRNAs of human papillomavirus type 58. We were able to significantly improve the translation efficiencies of the viral mRNAs in the established system by optimizing the concentrations of potassium and magnesium and controlling the physiological status of the yeast cells used for lysate preparation. We proved that a single specific amino acid can be rate limiting for translation of a target mRNA. Here, we describe the materials, method, and technique used for the development of an efficient yeast cell-free translation system.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Pathology, Shandong University School of Medicine, Jinan, People's Republic of China
| | | | | |
Collapse
|
31
|
Bhattacharjee S. Role of genomic and proteomic tools in the study of host-virus interactions and virus evolution. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:306-11. [PMID: 24426292 PMCID: PMC3832694 DOI: 10.1007/s13337-013-0150-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023]
Abstract
Viruses have short replication cycles and produce genomic variants within a host, a process that seems to adapt to their specific host and also enable them to infect new hosts. The recent emergence of viral genomic variants from the circulating pool within the host population and re-emergence of the old ones are posing serious threat to agriculture, animal husbandry and humanity as a whole. This review assesses the potential role of genomic and proteomic tools that can monitor not only the course of infection and pathogenesis, but also predict the pandemic or zoonotic epidemic potential of a virus in a previously exposed or immunologically naive biological population.
Collapse
Affiliation(s)
- Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, 734 013 District Darjeeling, West Bengal India
| |
Collapse
|
32
|
Bravo IG, Müller M. Codon usage in papillomavirus genes: practical and functional aspects. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/095741905x24996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
de Matos RPA, Sichero L, Mansur IM, do Bonfim CM, Bittar C, Nogueira RL, Küpper DS, Valera FCP, Nogueira ML, Villa LL, Calmon MF, Rahal P. Nucleotide and phylogenetic analysis of human papillomavirus types 6 and 11 isolated from recurrent respiratory papillomatosis in Brazil. INFECTION GENETICS AND EVOLUTION 2013; 16:282-9. [PMID: 23466889 DOI: 10.1016/j.meegid.2012.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 01/21/2023]
Abstract
There are few studies about the distribution of natural molecular variants of low-risk HPVs. Our aim was to evaluate the E6 early gene variability among HPV-6 and HPV-11 isolates detected in recurrent respiratory papillomatosis (RRP) samples obtained in a cohort of Brazilian patients. We also performed a phylogenetic analysis in order to compare nucleotide sequences identified in our study with previously reported isolates from different anatomic sites (laryngeal papillomas, genital warts, cervical cancer and anal swabs) obtained from other parts of the world to determine the phylogenetic relationships of variants detected in Brazil. The complete coding region of the E6 gene of 25 samples was cloned and sequenced: 18 isolates of HPV-6 (72%) and 7 isolates of HPV-11 (28%). A total of four different HPV-6 genomic variants and two HPV-11 genomic variants was identified. It was not possible to correlate specific variants with disease severity. Phylogenetic trees for both HPV types were constructed enclosing both E6 sequences detected in our study and formerly published sequences. In both phylogenetic trees, the sequences from Brazil did not group together. We could not establish a geographical association between HPV-6 or HPV-11 variants, unlike HPV-16 and HPV-18.
Collapse
Affiliation(s)
- Renata Prandini Adum de Matos
- UNESP - São Paulo State University, IBILCE, Institute of Bioscience, Language & Literature and Exact Science, Department of Biology, Rua Cristóvão Colombo 2265, Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The analysis of codon bias of foot-and-mouth disease virus and the adaptation of this virus to the hosts. INFECTION GENETICS AND EVOLUTION 2013; 14:105-10. [DOI: 10.1016/j.meegid.2012.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/23/2012] [Accepted: 09/25/2012] [Indexed: 11/24/2022]
|
35
|
Synonymous codon changes in the oncogenes of the cottontail rabbit papillomavirus lead to increased oncogenicity and immunogenicity of the virus. Virology 2013; 438:70-83. [PMID: 23433866 DOI: 10.1016/j.virol.2013.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/21/2012] [Accepted: 01/09/2013] [Indexed: 12/30/2022]
Abstract
Papillomaviruses use rare codons with respect to the host. The reasons for this are incompletely understood but among the hypotheses is the concept that rare codons result in low protein production and this allows the virus to escape immune surveillance. We changed rare codons in the oncogenes E6 and E7 of the cottontail rabbit papillomavirus to make them more mammalian-like and tested the mutant genomes in our in vivo animal model. While the amino acid sequences of the proteins remained unchanged, the oncogenic potential of some of the altered genomes increased dramatically. In addition, increased immunogenicity, as measured by spontaneous regression, was observed as the numbers of codon changes increased. This work suggests that codon usage may modify protein production in ways that influence disease outcome and that evaluation of synonymous codons should be included in the analysis of genetic variants of infectious agents and their association with disease.
Collapse
|
36
|
Zhang Z, Dai W, Wang Y, Lu C, Fan H. Analysis of synonymous codon usage patterns in torque teno sus virus 1 (TTSuV1). Arch Virol 2012; 158:145-54. [PMID: 23011310 PMCID: PMC7086873 DOI: 10.1007/s00705-012-1480-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/07/2012] [Indexed: 11/14/2022]
Abstract
Torque teno sus virus 1 (TTSuV1) is a novel virus that has been found widely distributed in the swine population in recent years. Analysis of codon usage can reveal much about the molecular evolution of TTSuV1. In this study, synonymous codon usage patterns and the key determinants in the coding region of 29 available complete TTSuV1 genome sequences were examined. By calculating the nucleotide content and relative synonymous codon usage (RSCU) of TTSuV1 coding sequences, we found that the preferentially used codons were mostly those ending with A or C nucleotides; less-used codons were mostly codons ending with U or G nucleotides, and these were mainly affected by composition constraints. Although there was a variation in codon usage bias among different TTSuV1 genomes, the codon usage bias and GC content in the TTSuV1 coding region was lower, which was mainly determined by the base composition in the third codon position and the effective number of codons (ENC) value. Moreover, the results of correspondence analysis (COA) indicated that the codon usage patterns of TTSuV1 isolated from different countries varied greatly and had significant differences. In addition, Spearman’s rank correlation analysis and an ENC plot revealed that apart from mutation pressure, which was critical in determining the codon usage pattern, other factors were involved in shaping the evolution of codon usage bias in TTSuV1, such as natural selection. Those results suggested that synonymous codon usage patterns of TTSuV1 genomes were the result of interaction between mutation pressure and natural selection. The information from this study not only provides important insights into the synonymous codon usage pattern of TTSuV1, but also helps to identify the main factors affecting codon usage by this virus.
Collapse
|
37
|
Sabol I, Matovina M, Si-Mohamed A, Grce M. Characterization and whole genome analysis of human papillomavirus type 16 e1-1374^63nt variants. PLoS One 2012; 7:e41045. [PMID: 22911739 PMCID: PMC3404080 DOI: 10.1371/journal.pone.0041045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 06/20/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The variation of the most common Human papillomavirus (HPV) type found in cervical cancer, the HPV16, has been extensively investigated in almost all viral genes. The E1 gene variation, however, has been rarely studied. The main objective of the present investigation was to analyze the variability of the E6 and E1 genes, focusing on the recently identified E1-1374^63nt variant. METHODOLOGY/PRINCIPAL FINDINGS Variation within the E6 of 786 HPV16 positive cervical samples was analyzed using high-resolution melting, while the E1-1374^63nt duplication was assayed by PCR. Both techniques were supplemented with sequencing. The E1-1374^63nt duplication was linked with the E-G350 and the E-C109/G350 variants. In comparison to the referent HPV16, the E1-1374^63nt E-G350 variant was significantly associated with lower grade cervical lesions (p = 0.029), while the E1-1374^63nt E-C109/G350 variant was equally distributed between high and low grade lesions. The E1-1374^63nt variants were phylogenetically closest to E-G350 variant lineage (A2 sub-lineage based on full genome classification). The major differences between E1-1374^63nt variants were within the LCR and the E6 region. On the other hand, changes within the E1 region were the major differences from the A2 sub-lineage, which has been historically but inconclusively associated with high grade cervical disease. Thus, the shared variations cannot explain the particular association of the E1-1374^63nt variant with lower grade cervical lesions. CONCLUSIONS/SIGNIFICANCE The E1 region has been thus far considered to be well conserved among all HPVs and therefore uninteresting for variability studies. However, this study shows that the variations within the E1 region could possibly affect cervical disease, since the E1-1374^63nt E-G350 variant is significantly associated with lower grade cervical lesions, in comparison to the A1 and A2 sub-lineage variants. Furthermore, it appears that the silent variation 109T>C of the E-C109/G350 variant might have a significant role in the viral life cycle and warrants further study.
Collapse
Affiliation(s)
- Ivan Sabol
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Mihaela Matovina
- Department of Microbiology and Parasitology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ali Si-Mohamed
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Magdalena Grce
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
38
|
Analysis of base and codon usage by rubella virus. Arch Virol 2012; 157:889-99. [DOI: 10.1007/s00705-012-1243-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/24/2011] [Indexed: 11/25/2022]
|
39
|
Galván SC, Martínez-Salazar M, Galván VM, Méndez R, Díaz-Contreras GT, Alvarado-Hermida M, Alcántara-Silva R, García-Carrancá A. Analysis of CpG methylation sites and CGI among human papillomavirus DNA genomes. BMC Genomics 2011; 12:580. [PMID: 22118413 PMCID: PMC3293833 DOI: 10.1186/1471-2164-12-580] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 11/25/2011] [Indexed: 11/20/2022] Open
Abstract
Background The Human Papillomavirus (HPV) genome is divided into early and late coding sequences, including 8 open reading frames (ORFs) and a regulatory region (LCR). Viral gene expression may be regulated through epigenetic mechanisms, including cytosine methylation at CpG dinucleotides. We have analyzed the distribution of CpG sites and CpG islands/clusters (CGI) among 92 different HPV genomes grouped in function of their preferential tropism: cutaneous or mucosal. We calculated the proportion of CpG sites (PCS) for each ORF and calculated the expected CpG values for each viral type. Results CpGs are underrepresented in viral genomes. We found a positive correlation between CpG observed and expected values, with mucosal high-risk (HR) virus types showing the smallest O/E ratios. The ranges of the PCS were similar for most genomic regions except E4, where the majority of CpGs are found within islands/clusters. At least one CGI belongs to each E2/E4 region. We found positive correlations between PCS for each viral ORF when compared with the others, except for the LCR against four ORFs and E6 against three other ORFs. The distribution of CpG islands/clusters among HPV groups is heterogeneous and mucosal HR-HPV types exhibit both lower number and shorter island sizes compared to cutaneous and mucosal Low-risk (LR) HPVs (all of them significantly different). Conclusions There is a difference between viral and cellular CpG underrepresentation. There are significant correlations between complete genome PCS and a lack of correlations between several genomic region pairs, especially those involving LCR and E6. L2 and L1 ORF behavior is opposite to that of oncogenes E6 and E7. The first pair possesses relatively low numbers of CpG sites clustered in CGIs while the oncogenes possess a relatively high number of CpG sites not associated to CGIs. In all HPVs, E2/E4 is the only region with at least one CGI and shows a higher content of CpG sites in every HPV type with an identified E4. The mucosal HR-HPVs show either the shortest CGI size, followed by the mucosal LR-HPVs and lastly by the cutaneous viral subgroup, and a trend to the lowest CGI number, followed by the cutaneous viral subgroup and lastly by the mucosal LR-HPVs.
Collapse
Affiliation(s)
- Silvia C Galván
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tian XT, Li BY, Zhang L, Jiao WQ, Liu JX. Bioinformatics analysis of rabbit haemorrhagic disease virus genome. Virol J 2011; 8:494. [PMID: 22044910 PMCID: PMC3377956 DOI: 10.1186/1743-422x-8-494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/01/2011] [Indexed: 11/10/2022] Open
Abstract
Background Rabbit haemorrhagic disease virus (RHDV), as the pathogeny of Rabbit haemorrhagic disease, can cause a highly infectious and often fatal disease only affecting wild and domestic rabbits. Recent researches revealed that it, as one number of the Caliciviridae, has some specialties in its genome, its reproduction and so on. Results In this report, we firstly analyzed its genome and two open reading frameworks (ORFs) from this aspect of codon usage bias. Our researches indicated that mutation pressure rather than natural is the most important determinant in RHDV with high codon bias, and the codon usage bias is nearly contrary between ORF1 and ORF2, which is maybe one of factors regulating the expression of VP60 (encoding by ORF1) and VP10 (encoding by ORF2). Furthermore, negative selective constraints on the RHDV whole genome implied that VP10 played an important role in RHDV lifecycle. Conclusions We conjectured that VP10 might be beneficial for the replication, release or both of virus by inducing infected cell apoptosis initiate by RHDV. According to the results of the principal component analysis for ORF2 of RSCU, we firstly separated 30 RHDV into two genotypes, and the ENC values indicated ORF1 and ORF2 were independent among the evolution of RHDV.
Collapse
Affiliation(s)
- Xiao-ting Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujia ping 1, Yanchang bu, Lanzhou, Gansu, China
| | | | | | | | | |
Collapse
|
41
|
Zhao KN, Chen J. Codon usage roles in human papillomavirus. Rev Med Virol 2011; 21:397-411. [PMID: 22025363 DOI: 10.1002/rmv.707] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 12/14/2022]
Abstract
Human papillomavirus (HPV) genomes, similar to other virus genomes, frequently have a G + C content significantly different from their host species. The HPV genomes show a strong codon usage bias to 18 codons, with 14 showing T at the third position amongst degenerately encoded amino acids. The codon usage pattern in HPV genome plays an important role, which regulates low or non-translational expression of the viral capsid genes and results in very weak protein expression of oncogenes in a wide range of mammalian cells. Codon modification has been proved to be a powerful technology to overcome the translational blockage and weak expression of both HPV capsid genes and oncogenes in different expression systems. Furthermore, keratinocytes are the host cells of HPV infection; the codon usage in HPV capsid genes matches available aminoacyl-tRNAs in differentiated keratinocytes to modulate their protein expression. HPV DNA vaccines with codon optimization have been shown to have higher immunogenicity and induce both strong cellular and humoral responses in animal models, which may be a promising form of therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
42
|
Graham SV. Human papillomavirus: gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol 2011; 5:1493-506. [PMID: 21073310 DOI: 10.2217/fmb.10.107] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive tumors. A subset of these viruses termed 'high risk' infect the cervix where persistent infection can lead to cervical cancer. Although many HPV genomes have been sequenced, knowledge of virus gene expression and its regulation is still incomplete. This is due in part to the lack, until recently, of suitable systems for virus propagation in the laboratory. HPV gene expression is polycistronic initiating from multiple promoters. Gene regulation occurs at transcriptional, but particularly post-transcriptional levels, including RNA processing, nuclear export, mRNA stability and translation. A close association between the virus replication cycle and epithelial differentiation adds a further layer of complexity. Understanding HPV mRNA expression and its regulation in the different diseases associated with infection may lead to development of novel diagnostic approaches and will reveal key viral and cellular targets for development of novel antiviral therapies.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection Immunity & Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow G12 8TT, Scotland, UK.
| |
Collapse
|
43
|
Cladel NM, Bertotto A, Christensen ND. Human alpha and beta papillomaviruses use different synonymous codon profiles. Virus Genes 2010; 40:329-40. [PMID: 20157772 PMCID: PMC3752370 DOI: 10.1007/s11262-010-0451-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 01/22/2010] [Indexed: 01/11/2023]
Abstract
Human papillomaviruses use rare codons relative to their hosts. It has been theorized that this is a mechanism to allow the virus to escape immune surveillance. In the present study, we examined the codings of four major genes of 21 human alpha (mucosatropic) viruses and 16 human beta (cutaneous-tropic) viruses. We compared the codon usage of different genes from a given papillomavirus and also the same genes from different papillomaviruses. Our data showed that codon usage was not always uniform between two genes of a given papillomavirus or between the same genes of papillomaviruses from different genera. We speculate as to why this might be and conclude that codon usage in the papillomaviruses may not only play a role in facilitating escape from immune surveillance but may also underlie some of the unanswered questions in the papillomavirus field.
Collapse
Affiliation(s)
- Nancy M Cladel
- Jake Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
44
|
Evolution of the sequence composition of Flaviviruses. INFECTION GENETICS AND EVOLUTION 2010; 10:129-36. [DOI: 10.1016/j.meegid.2009.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/26/2009] [Accepted: 11/03/2009] [Indexed: 11/20/2022]
|
45
|
Viral adaptation to host: a proteome-based analysis of codon usage and amino acid preferences. Mol Syst Biol 2009; 5:311. [PMID: 19888206 PMCID: PMC2779085 DOI: 10.1038/msb.2009.71] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 08/05/2009] [Indexed: 01/30/2023] Open
Abstract
Viruses differ markedly in their specificity toward host organisms. Here, we test the level of general sequence adaptation that viruses display toward their hosts. We compiled a representative data set of viruses that infect hosts ranging from bacteria to humans. We consider their respective amino acid and codon usages and compare them among the viruses and their hosts. We show that bacteria-infecting viruses are strongly adapted to their specific hosts, but that they differ from other unrelated bacterial hosts. Viruses that infect humans, but not those that infect other mammals or aves, show a strong resemblance to most mammalian and avian hosts, in terms of both amino acid and codon preferences. In groups of viruses that infect humans or other mammals, the highest observed level of adaptation of viral proteins to host codon usages is for those proteins that appear abundantly in the virion. In contrast, proteins that are known to participate in host-specific recognition do not necessarily adapt to their respective hosts. The implication for the potential of viral infectivity is discussed.
Collapse
|
46
|
Schulz E, Gottschling M, Bravo IG, Wittstatt U, Stockfleth E, Nindl I. Genomic characterization of the first insectivoran papillomavirus reveals an unusually long, second non-coding region and indicates a close relationship to Betapapillomavirus. J Gen Virol 2009; 90:626-633. [DOI: 10.1099/vir.0.008011-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Knowledge about biological diversity is the prerequisite to reliably reconstruct the evolution of pathogens such as papillomaviruses (PV). However, complete genomes of non-human PV have only been cloned and sequenced from 8 out of 18 orders within the Placentalia, although the host-specific variety of PV is considered much larger. We isolated and sequenced the complete genome of the first insectivoran PV type from hair follicle cells of the European hedgehog (Erinaceus europaeus), designated EHPV. We conducted phylogenetic analyses (maximum-likelihood criterion and Bayesian inference) with the genomic information of a systematically representative set of 67 PV types including EHPV. As inferred from amino acid sequence data of the separate genes E1, E2 and L1 as well as of the gene combination E6–E7–E1–E2–L1, EHPV clustered within the β-γ-π-Ξ-PV supertaxon and constituted the closest relative of genus Betapapillomavirus infecting primates. Beside the typical organization of the PV genome, EHPV exhibited a 1172 bp, non-coding region between the E2 and the L2 open reading frames. This trait has been previously described for the only distantly related Lambdapapillomavirus, but a common evolutionary origin of both non-coding regions is unlikely. Our results underscore the modular organization of the PV genome and the complex natural history of PV.
Collapse
Affiliation(s)
- Eric Schulz
- Clinic for Dermatology, Venereology and Allergology, Skin Cancer Center Charité (HTCC), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marc Gottschling
- Department of Biology, Systematic Botany, Ludwig-Maximilians-Universität München, Munich, Germany
- Clinic for Dermatology, Venereology and Allergology, Skin Cancer Center Charité (HTCC), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ignacio G. Bravo
- Experimental Molecular Evolution, Institute for Evolution and Biodiversity, Westfälische Wilhems Universität Münster, Munster, Germany
| | - Ullrich Wittstatt
- Institute für Lebensmittel, Arzneimittel und Tierseuchen, Zentrum für Infektionsdiagnostik (ZID), Berlin, Germany
| | - Eggert Stockfleth
- Clinic for Dermatology, Venereology and Allergology, Skin Cancer Center Charité (HTCC), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ingo Nindl
- DKFZ – Charité, Viral Skin Carcinogenesis, Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinic for Dermatology, Venereology and Allergology, Skin Cancer Center Charité (HTCC), Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Li B, Wang X, Zhou F, Saunders NA, Frazer IH, Zhao KN. Up-regulated expression of Sp1 protein coincident with a viral protein in human and mouse differentiating keratinocytes may act as a cell differentiation marker. Differentiation 2008; 76:1068-80. [DOI: 10.1111/j.1432-0436.2008.00300.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Analysis of synonymous codon usage in classical swine fever virus. Virus Genes 2008; 38:104-12. [PMID: 18958611 PMCID: PMC7089228 DOI: 10.1007/s11262-008-0296-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/09/2008] [Indexed: 01/27/2023]
Abstract
Using the complete genome sequences of 35 classical swine fever viruses (CSFV) representing all three genotypes and all three kinds of virulence, we analyzed synonymous codon usage and the relative dinucleotide abundance in CSFV. The general correlation between base composition and codon usage bias suggests that mutational pressure rather than natural selection is the main factor that determines the codon usage bias in CSFV. Furthermore, we observed that the relative abundance of dinucleotides in CSFV is independent of the overall base composition but is still the result of differential mutational pressure, which also shapes codon usage. In addition, other factors, such as the subgenotypes and aromaticity, also influence the codon usage variation among the genomes of CSFV. This study represents the most comprehensive analysis to date of CSFV codon usage patterns and provides a basic understanding of the mechanisms for codon usage bias.
Collapse
|
49
|
Puigbò P, Bravo IG, Garcia-Vallve S. CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct 2008; 3:38. [PMID: 18796141 PMCID: PMC2553769 DOI: 10.1186/1745-6150-3-38] [Citation(s) in RCA: 365] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/16/2008] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Codon Adaptation Index (CAI) was first developed to measure the synonymous codon usage bias for a DNA or RNA sequence. The CAI quantifies the similarity between the synonymous codon usage of a gene and the synonymous codon frequency of a reference set. RESULTS We describe here CAIcal, a web-server available at http://genomes.urv.es/CAIcal that includes a complete set of utilities related with the CAI. The server provides useful important features, such as the calculation and graphical representation of the CAI along either an individual sequence or a protein multiple sequence alignment translated to DNA. The automated calculation of CAI and its expected value is also included as one of the CAIcal tools. The software is also free to be downloaded as a stand alone application for local use. CONCLUSION The CAIcal server provides a complete set of tools to assess codon usage adaptation and to help in genome annotation.
Collapse
Affiliation(s)
- Pere Puigbò
- Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), Campus Sescelades, c/Marcelli Domingo s/n, 43007 Tarragona, Spain.
| | | | | |
Collapse
|
50
|
Cladel NM, Hu J, Balogh KK, Christensen ND. CRPV genomes with synonymous codon optimizations in the CRPV E7 gene show phenotypic differences in growth and altered immunity upon E7 vaccination. PLoS One 2008; 3:e2947. [PMID: 18698362 PMCID: PMC2491898 DOI: 10.1371/journal.pone.0002947] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 07/08/2008] [Indexed: 01/24/2023] Open
Abstract
Papillomaviruses use rare codons relative to their hosts. Recent studies have demonstrated that synonymous codon changes in viral genes can lead to increased protein production when the codons are matched to those of cells in which the protein is being expressed. We theorized that the immunogenicity of the virus would be enhanced by matching codons of selected viral genes to those of the host. We report here that synonymous codon changes in the E7 oncogene are tolerated in the context of the cottontail rabbit papillomavirus (CRPV) genome. Papilloma growth rates differ depending upon the changes made indicating that synonymous codons are not necessarily neutral. Immunization with wild type E7 DNA yielded significant protection from subsequent challenge by both wild type and codon-modified genomes. The reduction in growth was most dramatic with the genome containing the greatest number of synonymous codon changes.
Collapse
Affiliation(s)
- Nancy M Cladel
- Jake Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America.
| | | | | | | |
Collapse
|