1
|
Liao X, Yang L, Jiang M, Xin Y, Yan H, Qin Q, Chen M, Lu J. The Emerging Roles of Alternative Splicing in Human Oncovirus Infection. J Med Virol 2025; 97:e70346. [PMID: 40223738 DOI: 10.1002/jmv.70346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Alternative splicing (AS) is one of the most potent mechanisms for expanding the diversity of proteomes. During infection, human oncogenic viruses may exploit the AS to facilitate their replication cycle. Moreover, persistently infecting viruses can target key genes involved in classical signaling pathways to promote viral persistence and tumor progression. Here, we highlight how oncogenic viruses hijack AS system to manipulate host biological processes, and the host's AS system in turn modulates viral infection and replication. In addition, we have summarized the relatively underexplored involvement of noncoding RNAs in AS following tumor virus infection. This bidirectional interaction provides novel insights into interaction of virus-host and opens new avenues for therapeutic strategies targeting oncogenic viral infections.
Collapse
Affiliation(s)
- Xuefei Liao
- Department of Microbiology, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Li Yang
- Department of Microbiology, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Mingjuan Jiang
- Department of Microbiology, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yujie Xin
- Department of Microbiology, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Huirong Yan
- Department of Microbiology, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qingshuang Qin
- Department of Microbiology, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Mengdi Chen
- Department of Microbiology, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jianhong Lu
- Department of Microbiology, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Iamborwornkun N, Kitkumthorn N, Stevenson A, Kirk A, Graham SV, Chuen-im T. Identifying regulatory elements and their RNA-binding proteins in the 3' untranslated regions of papillomavirus late mRNAs. Biomed Rep 2024; 21:125. [PMID: 39006509 PMCID: PMC11240274 DOI: 10.3892/br.2024.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
Human papillomaviruses (HPVs) infect cutaneous and mucosal epithelia to cause benign (warts) and malignant lesions (e.g. cervical cancer). Bovine papillomaviruses (BPVs) infect fibroblasts to cause fibropapillomas but can also infect cutaneous epithelial cells. For HPV-1, -16, -31 and BPV-1, cis-acting RNA elements in the late 3' untranslated region (3'UTR) control expression of virus proteins by binding host cell proteins. The present study compared the effects on gene expression of the cis-acting elements of seven PV late 3'UTRs (HPV-6b, -11, -16, -31 and BPV-1, -3 and -4) representing a range of different genera and species and pathological properties. pSV-beta-galactosidase reporter plasmids containing the late 3'UTRs from seven PVs were transiently transfected into cervical adenocarcinoma HeLa cells, and reporter gene expression quantified by reverse transcription-quantitative PCR and a beta-galactosidase assay. All elements inhibited gene expression in keratinocytes. Cancer-related types HPV-16 and -31, had the greatest inhibitory activity whereas the lowest inhibition was found in the non-cancer related types, BPV-3 and HPV-11. Using RBPmap version 1.1, bioinformatics predictions of factors binding the elements identified proteins which function mainly in mRNA splicing. Markedly, in terms of protein binding motifs, BPV late 3'UTR elements were similar to those of HPV-1a but not to other HPVs. Using HPV-1a as a model and siRNA depletion, the bioinformatics predictions were tested and it was found that PABPC4 was responsible for some of the 3'UTR repressive activity. The data revealed candidate proteins that could control PV late gene expression.
Collapse
Affiliation(s)
- Nuttawan Iamborwornkun
- Department of Microbiology, Faculty of Science, Silpakorn University, Sanam Chandra Palace Campus, Nakhon Pathom 73000, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Andrew Stevenson
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences University of Glasgow, Glasgow, G61 1QH, UK
| | - Anna Kirk
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences University of Glasgow, Glasgow, G61 1QH, UK
| | - Sheila V. Graham
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences University of Glasgow, Glasgow, G61 1QH, UK
| | - Thanaporn Chuen-im
- Department of Microbiology, Faculty of Science, Silpakorn University, Sanam Chandra Palace Campus, Nakhon Pathom 73000, Thailand
| |
Collapse
|
3
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Graham SV. HPV and RNA Binding Proteins: What We Know and What Remains to Be Discovered. Viruses 2024; 16:783. [PMID: 38793664 PMCID: PMC11126060 DOI: 10.3390/v16050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Papillomavirus gene regulation is largely post-transcriptional due to overlapping open reading frames and the use of alternative polyadenylation and alternative splicing to produce the full suite of viral mRNAs. These processes are controlled by a wide range of cellular RNA binding proteins (RPBs), including constitutive splicing factors and cleavage and polyadenylation machinery, but also factors that regulate these processes, for example, SR and hnRNP proteins. Like cellular RNAs, papillomavirus RNAs have been shown to bind many such proteins. The life cycle of papillomaviruses is intimately linked to differentiation of the epithelial tissues the virus infects. For example, viral late mRNAs and proteins are expressed only in the most differentiated epithelial layers to avoid recognition by the host immune response. Papillomavirus genome replication is linked to the DNA damage response and viral chromatin conformation, processes which also link to RNA processing. Challenges with respect to elucidating how RBPs regulate the viral life cycle include consideration of the orchestrated spatial aspect of viral gene expression in an infected epithelium and the epigenetic nature of the viral episomal genome. This review discusses RBPs that control viral gene expression, and how the connectivity of various nuclear processes might contribute to viral mRNA production.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
5
|
Takashima S, Sun W, Otten ABC, Cai P, Peng SI, Tong E, Bui J, Mai M, Amarbayar O, Cheng B, Odango RJ, Li Z, Qu K, Sun BK. Alternative mRNA splicing events and regulators in epidermal differentiation. Cell Rep 2024; 43:113814. [PMID: 38402585 PMCID: PMC11293371 DOI: 10.1016/j.celrep.2024.113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/22/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
Alternative splicing (AS) of messenger RNAs occurs in ∼95% of multi-exon human genes and generates diverse RNA and protein isoforms. We investigated AS events associated with human epidermal differentiation, a process crucial for skin function. We identified 6,413 AS events, primarily involving cassette exons. We also predicted 34 RNA-binding proteins (RBPs) regulating epidermal AS, including 19 previously undescribed candidate regulators. From these results, we identified FUS as an RBP that regulates the balance between keratinocyte proliferation and differentiation. Additionally, we characterized the function of a cassette exon AS event in MAP3K7, which encodes a kinase involved in cell signaling. We found that a switch from the short to long isoform of MAP3K7, triggered during differentiation, enforces the demarcation between proliferating basal progenitors and overlying differentiated strata. Our findings indicate that AS occurs extensively in the human epidermis and has critical roles in skin homeostasis.
Collapse
Affiliation(s)
- Shota Takashima
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Wujianan Sun
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Auke B C Otten
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Pengfei Cai
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shaohong Isaac Peng
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Elton Tong
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Jolina Bui
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - McKenzie Mai
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Oyumergen Amarbayar
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Binbin Cheng
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Rowen Jane Odango
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Zongkai Li
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA.
| |
Collapse
|
6
|
Lyu M, Lai H, Wang Y, Zhou Y, Chen Y, Wu D, Chen J, Ying B. Roles of alternative splicing in infectious diseases: from hosts, pathogens to their interactions. Chin Med J (Engl) 2023; 136:767-779. [PMID: 36893312 PMCID: PMC10150853 DOI: 10.1097/cm9.0000000000002621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT Alternative splicing (AS) is an evolutionarily conserved mechanism that removes introns and ligates exons to generate mature messenger RNAs (mRNAs), extremely improving the richness of transcriptome and proteome. Both mammal hosts and pathogens require AS to maintain their life activities, and inherent physiological heterogeneity between mammals and pathogens makes them adopt different ways to perform AS. Mammals and fungi conduct a two-step transesterification reaction by spliceosomes to splice each individual mRNA (named cis -splicing). Parasites also use spliceosomes to splice, but this splicing can occur among different mRNAs (named trans -splicing). Bacteria and viruses directly hijack the host's splicing machinery to accomplish this process. Infection-related changes are reflected in the spliceosome behaviors and the characteristics of various splicing regulators (abundance, modification, distribution, movement speed, and conformation), which further radiate to alterations in the global splicing profiles. Genes with splicing changes are enriched in immune-, growth-, or metabolism-related pathways, highlighting approaches through which hosts crosstalk with pathogens. Based on these infection-specific regulators or AS events, several targeted agents have been developed to fight against pathogens. Here, we summarized recent findings in the field of infection-related splicing, including splicing mechanisms of pathogens and hosts, splicing regulation and aberrant AS events, as well as emerging targeted drugs. We aimed to systemically decode host-pathogen interactions from a perspective of splicing. We further discussed the current strategies of drug development, detection methods, analysis algorithms, and database construction, facilitating the annotation of infection-related splicing and the integration of AS with disease phenotype.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongli Lai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yili Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dongsheng Wu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Lyu Y, Song L, Mao R, Liu C, Feng M, Wu C, Pei R, Ding L, Wang J. hnRNP K induces HPV16 oncogene expression and promotes cervical cancerization. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04585-6. [PMID: 36700980 DOI: 10.1007/s00432-023-04585-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE This study aims to explore the expression of hnRNP K in cervical carcinogenesis and to investigate the regulatory role of hnRNP K on HPV16 oncogene expression as well as biological changes in cervical cancer cells. METHODS In total 1042 subjects, including 573 with the normal cervix and 469 with different grades of cervical lesions were enrolled in this study to explore the association between hnRNP K and HPV16 oncogene expression in cervical carcinogenesis. Additionally, the Gene Omnibus (GEO) database was used to analyze hnRNP K mRNA expression in cervical cancerization. Meanwhile, the effects of hnRNP K on cell biological functions and HPV16 oncogene expression were investigated in Siha cells. Moreover, Function analyses were conducted using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases after ChIP-seq. RESULTS hnRNP K was highly expressed in cervical cancer and precancerous lesions, and positively correlated with HPV16 E6, but negatively correlated with HPV16 E2 and HPV16 E2/E6 ratio. hnRNP K induced cell proliferation, inhibited apoptosis and caused cell cycle arrest in the S phase, and particularly increased HPV16 E6 protein expression. CONCLUSION This study revealed that hnRNP K overexpression has important warning significance for the malignant transformation of cervical lesions, and could be used as a potential therapeutic target for inhibiting the carcinogenicity of HPV16 and prevention of cervical carcinogenesis.
Collapse
Affiliation(s)
- Yuanjing Lyu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Li Song
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Rui Mao
- Questrom School of Business, Boston University, Boston, MA, USA
| | - Chunliang Liu
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Meijuan Feng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Caihong Wu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ruixin Pei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ling Ding
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jintao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
8
|
Bhattarai K, Holcik M. Diverse roles of heterogeneous nuclear ribonucleoproteins in viral life cycle. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1044652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the host-virus interactions helps to decipher the viral replication strategies and pathogenesis. Viruses have limited genetic content and rely significantly on their host cell to establish a successful infection. Viruses depend on the host for a broad spectrum of cellular RNA-binding proteins (RBPs) throughout their life cycle. One of the major RBP families is the heterogeneous nuclear ribonucleoproteins (hnRNPs) family. hnRNPs are typically localized in the nucleus, where they are forming complexes with pre-mRNAs and contribute to many aspects of nucleic acid metabolism. hnRNPs contain RNA binding motifs and frequently function as RNA chaperones involved in pre-mRNA processing, RNA splicing, and export. Many hnRNPs shuttle between the nucleus and the cytoplasm and influence cytoplasmic processes such as mRNA stability, localization, and translation. The interactions between the hnRNPs and viral components are well-known. They are critical for processing viral nucleic acids and proteins and, therefore, impact the success of the viral infection. This review discusses the molecular mechanisms by which hnRNPs interact with and regulate each stage of the viral life cycle, such as replication, splicing, translation, and assembly of virus progeny. In addition, we expand on the role of hnRNPs in the antiviral response and as potential targets for antiviral drug research and development.
Collapse
|
9
|
Heterogeneous nuclear ribonucleoprotein A/B: an emerging group of cancer biomarkers and therapeutic targets. Cell Death Dis 2022; 8:337. [PMID: 35879279 PMCID: PMC9314375 DOI: 10.1038/s41420-022-01129-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A/B (hnRNPA/B) is one of the core members of the RNA binding protein (RBP) hnRNPs family, including four main subtypes, A0, A1, A2/B1 and A3, which share the similar structure and functions. With the advance in understanding the molecular biology of hnRNPA/B, it has been gradually revealed that hnRNPA/B plays a critical role in almost the entire steps of RNA life cycle and its aberrant expression and mutation have important effects on the occurrence and progression of various cancers. This review focuses on the clinical significance of hnRNPA/B in various cancers and systematically summarizes its biological function and molecular mechanisms.
Collapse
|
10
|
Yu L, Majerciak V, Zheng ZM. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23094943. [PMID: 35563334 PMCID: PMC9105396 DOI: 10.3390/ijms23094943] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Human papillomaviruses (HPV) are a group of small non-enveloped DNA viruses whose infection causes benign tumors or cancers. HPV16 and HPV18, the two most common high-risk HPVs, are responsible for ~70% of all HPV-related cervical cancers and head and neck cancers. The expression of the HPV genome is highly dependent on cell differentiation and is strictly regulated at the transcriptional and post-transcriptional levels. Both HPV early and late transcripts differentially expressed in the infected cells are intron-containing bicistronic or polycistronic RNAs bearing more than one open reading frame (ORF), because of usage of alternative viral promoters and two alternative viral RNA polyadenylation signals. Papillomaviruses proficiently engage alternative RNA splicing to express individual ORFs from the bicistronic or polycistronic RNA transcripts. In this review, we discuss the genome structures and the updated transcription maps of HPV16 and HPV18, and the latest research advances in understanding RNA cis-elements, intron branch point sequences, and RNA-binding proteins in the regulation of viral RNA processing. Moreover, we briefly discuss the epigenetic modifications, including DNA methylation and possible APOBEC-mediated genome editing in HPV infections and carcinogenesis.
Collapse
|
11
|
Hao C, Zheng Y, Jönsson J, Cui X, Yu H, Wu C, Kajitani N, Schwartz S. hnRNP G/RBMX enhances HPV16 E2 mRNA splicing through a novel splicing enhancer and inhibits production of spliced E7 oncogene mRNAs. Nucleic Acids Res 2022; 50:3867-3891. [PMID: 35357488 PMCID: PMC9023273 DOI: 10.1093/nar/gkac213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 12/27/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) E2 is an essential HPV16 protein. We have investigated how HPV16 E2 expression is regulated and have identifed a splicing enhancer that is required for production of HPV16 E2 mRNAs. This uridine-less splicing enhancer sequence (ACGAGGACGAGGACAAGGA) contains 84% adenosine and guanosine and 16% cytosine and consists of three ‘AC(A/G)AGG’-repeats. Mutational inactivation of the splicing enhancer reduced splicing to E2-mRNA specific splice site SA2709 and resulted in increased levels of unspliced E1-encoding mRNAs. The splicing enhancer sequence interacted with cellular RNA binding protein hnRNP G that promoted splicing to SA2709 and enhanced E2 mRNA production. The splicing-enhancing function of hnRNP G mapped to amino acids 236–286 of hnRNP G that were also shown to interact with splicing factor U2AF65. The interactions between hnRNP G and HPV16 E2 mRNAs and U2AF65 increased in response to keratinocyte differentiation as well as by the induction of the DNA damage response (DDR). The DDR reduced sumoylation of hnRNP G and pharmacological inhibition of sumoylation enhanced HPV16 E2 mRNA splicing and interactions between hnRNP G and E2 mRNAs and U2AF65. Intriguingly, hnRNP G also promoted intron retention of the HPV16 E6 coding region thereby inhibiting production of spliced E7 oncogene mRNAs.
Collapse
Affiliation(s)
- Chengyu Hao
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Yunji Zheng
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden.,School of Pharmacy, Binzhou Medical University, 264003 Yantai, China
| | - Johanna Jönsson
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23 Uppsala, Sweden.,Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Xiaoxu Cui
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Haoran Yu
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
| | - Naoko Kajitani
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23 Uppsala, Sweden.,Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Stefan Schwartz
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23 Uppsala, Sweden.,Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| |
Collapse
|
12
|
Expression of the E5 Oncoprotein of HPV16 Impacts on the Molecular Profiles of EMT-Related and Differentiation Genes in Ectocervical Low-Grade Lesions. Int J Mol Sci 2021; 22:ijms22126534. [PMID: 34207106 PMCID: PMC8235634 DOI: 10.3390/ijms22126534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Infection with human papillomavirus type 16 (HPV16) is one of the major risk factors for the development of cervical cancer. Our previous studies have demonstrated the involvement of the early oncoprotein E5 of HPV16 (16E5) in the altered isoform switch of fibroblast growth factor receptor 2 (FGFR2) and the consequent expression in human keratinocytes of the mesenchymal FGFR2c isoform, whose aberrant signaling leads to EMT, invasiveness, and dysregulated differentiation. Here, we aimed to establish the possible direct link between these pathological features or the appearance of FGFR2c and the expression of 16E5 in low-grade squamous intraepithelial lesions (LSILs). Molecular analysis showed that the FGFR2c expression displayed a statistically significant positive correlation with that of the viral oncoprotein, whereas the expression values of the epithelial FGR2b variant, as well as those of the differentiation markers keratin 10 (K10), loricrin (LOR) and involucrin (INV), were inversely linked to the 16E5 expression. In contrast, the expression of EMT-related transcription factors Snail1 and ZEB1 overlapped with that of 16E5, becoming a statistically significant positive correlation in the case of Snail2. Parallel analysis performed in human cervical LSIL-derived W12 cells, containing episomal HPV16, revealed that the depletion of 16E5 by siRNA was able to counteract these molecular events, proving to represent an effective strategy to identify the specific role of this viral oncoprotein in determining LSIL oncogenic and more aggressive profiles. Overall, coupling in vitro approaches to the molecular transcript analysis in ectocervical early lesions could significantly contribute to the characterization of specific gene expression profiles prognostic for those LSILs with a greater probability of direct neoplastic progression.
Collapse
|
13
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
14
|
Cerasuolo A, Buonaguro L, Buonaguro FM, Tornesello ML. The Role of RNA Splicing Factors in Cancer: Regulation of Viral and Human Gene Expression in Human Papillomavirus-Related Cervical Cancer. Front Cell Dev Biol 2020; 8:474. [PMID: 32596243 PMCID: PMC7303290 DOI: 10.3389/fcell.2020.00474] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The spliceosomal complex components, together with the heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins, regulate the process of constitutive and alternative splicing, the latter leading to the production of mRNA isoforms coding multiple proteins from a single pre-mRNA molecule. The expression of splicing factors is frequently deregulated in different cancer types causing the generation of oncogenic proteins involved in cancer hallmarks. Cervical cancer is caused by persistent infection with oncogenic human papillomaviruses (HPVs) and constitutive expression of viral oncogenes. The aberrant activity of hnRNPs and SR proteins in cervical neoplasia has been shown to trigger the production of oncoproteins through the processing of pre-mRNA transcripts either derived from human genes or HPV genomes. Indeed, hnRNP and SR splicing factors have been shown to regulate the production of viral oncoprotein isoforms necessary for the completion of viral life cycle and for cell transformation. Target-therapy strategies against hnRNPs and SR proteins, causing simultaneous reduction of oncogenic factors and inhibition of HPV replication, are under development. In this review, we describe the current knowledge of the functional link between RNA splicing factors and deregulated cellular as well as viral RNA maturation in cervical cancer and the opportunity of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumouri IRCCS–Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
15
|
Graham SV. Keratinocyte Differentiation-Dependent Human Papillomavirus Gene Regulation. Viruses 2017; 9:E245. [PMID: 28867768 PMCID: PMC5618011 DOI: 10.3390/v9090245] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/29/2022] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive cancers. HPVs infect epithelial cells and their replication cycle is tightly linked with the differentiation process of the infected keratinocyte. The normal replication cycle involves an early and a late phase. The early phase encompasses viral entry and initial genome replication, stimulation of cell division and inhibition of apoptosis in the infected cell. Late events in the HPV life cycle include viral genome amplification, virion formation, and release into the environment from the surface of the epithelium. The main proteins required at the late stage of infection for viral genome amplification include E1, E2, E4 and E5. The late proteins L1 and L2 are structural proteins that form the viral capsid. Regulation of these late events involves both cellular and viral proteins. The late viral mRNAs are expressed from a specific late promoter but final late mRNA levels in the infected cell are controlled by splicing, polyadenylation, nuclear export and RNA stability. Viral late protein expression is also controlled at the level of translation. This review will discuss current knowledge of how HPV late gene expression is regulated.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK.
| |
Collapse
|
16
|
The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin Sci (Lond) 2017; 131:2201-2221. [DOI: 10.1042/cs20160786] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
HPVs (human papillomaviruses) infect epithelial cells and their replication cycle is intimately linked to epithelial differentiation. There are over 200 different HPV genotypes identified to date and each displays a strict tissue specificity for infection. HPV infection can result in a range of benign lesions, for example verrucas on the feet, common warts on the hands, or genital warts. HPV infects dividing basal epithelial cells where its dsDNA episomal genome enters the nuclei. Upon basal cell division, an infected daughter cell begins the process of keratinocyte differentiation that triggers a tightly orchestrated pattern of viral gene expression to accomplish a productive infection. A subset of mucosal-infective HPVs, the so-called ‘high risk’ (HR) HPVs, cause cervical disease, categorized as low or high grade. Most individuals will experience transient HR-HPV infection during their lifetime but these infections will not progress to clinically significant cervical disease or cancer because the immune system eventually recognizes and clears the virus. Cancer progression is due to persistent infection with an HR-HPV. HR-HPV infection is the cause of >99.7% cervical cancers in women, and a subset of oropharyngeal cancers, predominantly in men. HPV16 (HR-HPV genotype 16) is the most prevalent worldwide and the major cause of HPV-associated cancers. At the molecular level, cancer progression is due to increased expression of the viral oncoproteins E6 and E7, which activate the cell cycle, inhibit apoptosis, and allow accumulation of DNA damage. This review aims to describe the productive life cycle of HPV and discuss the roles of the viral proteins in HPV replication. Routes to viral persistence and cancer progression are also discussed.
Collapse
|
17
|
Katzenellenbogen RA. Activation of telomerase by HPVs. Virus Res 2017; 231:50-55. [DOI: 10.1016/j.virusres.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
|
18
|
Splicing and Polyadenylation of Human Papillomavirus Type 16 mRNAs. Int J Mol Sci 2017; 18:ijms18020366. [PMID: 28208770 PMCID: PMC5343901 DOI: 10.3390/ijms18020366] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/29/2017] [Accepted: 02/03/2017] [Indexed: 12/24/2022] Open
Abstract
The human papillomavirus type 16 (HPV16) life cycle can be divided into an early stage in which the HPV16 genomic DNA is replicated, and a late stage in which the HPV16 structural proteins are synthesized and virions are produced. A strong coupling between the viral life cycle and the differentiation state of the infected cell is highly characteristic of all HPVs. The switch from the HPV16 early gene expression program to the late requires a promoter switch, a polyadenylation signal switch and a shift in alternative splicing. A number of cis-acting RNA elements on the HPV16 mRNAs and cellular and viral factors interacting with these elements are involved in the control of HPV16 gene expression. This review summarizes our knowledge of HPV16 cis-acting RNA elements and cellular and viral trans-acting factors that regulate HPV16 gene expression at the level of splicing and polyadenylation.
Collapse
|
19
|
Graham SV, Faizo AAA. Control of human papillomavirus gene expression by alternative splicing. Virus Res 2016; 231:83-95. [PMID: 27867028 PMCID: PMC5335905 DOI: 10.1016/j.virusres.2016.11.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 11/21/2022]
Abstract
Alternative splicing is a key cellular mechanism controlling HPV gene expression. Many cellular SR proteins and hnRNPs have been identified that bind and control production of viral mRNAs. HPV16 E2 protein controls expression of SR proteins and has splicing-related functions. HPV16 infection through its regulatory effects on splicing factors may significantly alter cellular gene expression and cellular metabolism.
Human papillomaviruses possess circular double stranded DNA genomes of around 8 kb in size from which multiple mRNAs are synthesized during an infectious life cycle. Although at least three viral promoters are used to initiate transcription, viral mRNAs are largely the product of processing of pre-mRNAs by alternative splicing and polyadenylation. The HPV life cycle and viral gene expression are tightly linked to differentiation of the epithelium the virus infects: there is an orchestrated production of viral mRNAs and proteins. In this review we describe viral mRNA expression and the roles of the SR and hnRNP proteins that respectively positively and negatively regulate splicing. We discuss HPV regulation of splicing factors and detail the evidence that the papillomavirus E2 protein has splicing-related activities. We highlight the possibility that HPV-mediated control of splicing in differentiating epithelial cells may be necessary to accomplish the viral replication cycle.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research; Institute of Infection, Immunity and Inflammation; College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, Scotland, UK.
| | - Arwa Ali A Faizo
- MRC-University of Glasgow Centre for Virus Research; Institute of Infection, Immunity and Inflammation; College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, Scotland, UK
| |
Collapse
|
20
|
Human Papillomavirus E2 Regulates SRSF3 (SRp20) To Promote Capsid Protein Expression in Infected Differentiated Keratinocytes. J Virol 2016; 90:5047-58. [PMID: 26962216 DOI: 10.1128/jvi.03073-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED The human papillomavirus (HPV) life cycle is tightly linked to differentiation of the infected epithelial cell, suggesting a sophisticated interplay between host cell metabolism and virus replication. Previously, we demonstrated in differentiated keratinocytes in vitro and in vivo that HPV type 16 (HPV16) infection caused increased levels of the cellular SR splicing factors (SRSFs) SRSF1 (ASF/SF2), SRSF2 (SC35), and SRSF3 (SRp20). Moreover, the viral E2 transcription and replication factor that is expressed at high levels in differentiating keratinocytes could bind and control activity of the SRSF1 gene promoter. Here, we show that the E2 proteins of HPV16 and HPV31 control the expression of SRSFs 1, 2, and 3 in a differentiation-dependent manner. E2 has the greatest transactivation effect on expression of SRSF3. Small interfering RNA depletion experiments in two different models of the HPV16 life cycle (W12E and NIKS16) and one model of the HPV31 life cycle (CIN612-9E) revealed that only SRSF3 contributed significantly to regulation of late events in the virus life cycle. Increased levels of SRSF3 are required for L1 mRNA and capsid protein expression. Capsid protein expression was regulated specifically by SRSF3 and appeared independent of other SRSFs. Taken together, these data suggest a significant role of the HPV E2 protein in regulating late events in the HPV life cycle through transcriptional regulation of SRSF3 expression. IMPORTANCE Human papillomavirus replication is accomplished in concert with differentiation of the infected epithelium. Virus capsid protein expression is confined to the upper epithelial layers so as to avoid immune detection. In this study, we demonstrate that the viral E2 transcription factor activates the promoter of the cellular SRSF3 RNA processing factor. SRSF3 is required for expression of the E4(^)L1 mRNA and so controls expression of the HPV L1 capsid protein. Thus, we reveal a new dimension of virus-host interaction crucial for production of infectious virus. SRSF proteins are known drug targets. Therefore, this study provides an excellent basis for developing strategies to regulate capsid protein production in the infected epithelium and the production of new virions.
Collapse
|
21
|
RNA Binding Proteins that Control Human Papillomavirus Gene Expression. Biomolecules 2015; 5:758-74. [PMID: 25950509 PMCID: PMC4496695 DOI: 10.3390/biom5020758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 12/23/2022] Open
Abstract
The human papillomavirus (HPV) life cycle is strictly linked to the differentiation program of the infected mucosal epithelial cell. In the basal and lower levels of the epithelium, early genes coding for pro-mitotic proteins and viral replication factors are expressed, while terminal cell differentiation is required for activation of late gene expression and production of viral particles at the very top of the epithelium. Such productive infections are normally cleared within 18–24 months. In rare cases, the HPV infection is stuck in the early stage of the infection. Such infections may give rise to cervical lesions that can progress to cancer, primarily cancer of the uterine cervix. Since cancer progression is strictly linked to HPV gene expression, it is of interest to understand how HPV gene expression is regulated. Cis-acting HPV RNA elements and cellular RNA-binding proteins control HPV mRNA splicing and polyadenylation. These interactions are believed to play a particularly important role in the switch from early to late gene expression, thereby contributing to the pathogenesis of HPV. Indeed, it has been shown that the levels of various RNA binding proteins change in response to differentiation and in response to HPV induced cervical lesions and cancer. Here we have compiled published data on RNA binding proteins involved in the regulation of HPV gene expression.
Collapse
|
22
|
Dhanjal S, Kajitani N, Glahder J, Mossberg AK, Johansson C, Schwartz S. Heterogeneous Nuclear Ribonucleoprotein C Proteins Interact with the Human Papillomavirus Type 16 (HPV16) Early 3'-Untranslated Region and Alleviate Suppression of HPV16 Late L1 mRNA Splicing. J Biol Chem 2015; 290:13354-71. [PMID: 25878250 DOI: 10.1074/jbc.m115.638098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 01/09/2023] Open
Abstract
In order to identify cellular factors that regulate human papillomavirus type 16 (HPV16) gene expression, cervical cancer cells permissive for HPV16 late gene expression were identified and characterized. These cells either contained a novel spliced variant of the L1 mRNAs that bypassed the suppressed HPV16 late, 5'-splice site SD3632; produced elevated levels of RNA-binding proteins SRSF1 (ASF/SF2), SRSF9 (SRp30c), and HuR that are known to regulate HPV16 late gene expression; or were shown by a gene expression array analysis to overexpress the RALYL RNA-binding protein of the heterogeneous nuclear ribonucleoprotein C (hnRNP C) family. Overexpression of RALYL or hnRNP C1 induced HPV16 late gene expression from HPV16 subgenomic plasmids and from episomal forms of the full-length HPV16 genome. This induction was dependent on the HPV16 early untranslated region. Binding of hnRNP C1 to the HPV16 early, untranslated region activated HPV16 late 5'-splice site SD3632 and resulted in production of HPV16 L1 mRNAs. Our results suggested that hnRNP C1 controls HPV16 late gene expression.
Collapse
Affiliation(s)
- Soniya Dhanjal
- From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Naoko Kajitani
- From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Jacob Glahder
- From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Ann-Kristin Mossberg
- From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Cecilia Johansson
- From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Stefan Schwartz
- From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
23
|
Nikoshkov A, Broliden K, Attarha S, Sviatoha V, Hellström AC, Mints M, Andersson S. Expression pattern of the PRDX2, RAB1A, RAB1B, RAB5A and RAB25 genes in normal and cancer cervical tissues. Int J Oncol 2014; 46:107-12. [PMID: 25339198 DOI: 10.3892/ijo.2014.2724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/28/2014] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is the second most prevalent malignancy among women worldwide, and additional objective diagnostic markers for this disease are needed. Given the link between cancer development and alternative splicing, we aimed to analyze the splicing patterns of the PRDX2, RAB1A, RAB1B, RAB5A and RAB25 genes, which are associated with different cancers, in normal cervical tissue, preinvasive cervical lesions and invasive cervical tumors, to identify new objective diagnostic markers. Biopsies of normal cervical tissue, preinvasive cervical lesions and invasive cervical tumors, were subjected to rapid amplification of cDNA 3' ends (3' RACE) RT‑PCR. Resulting PCR products were analyzed on agarose gels, gel‑purified and sequenced. Normal cervical tissue, preinvasive cervical lesions and invasive cervical tumors contained one PCR product corresponding to full‑length PRDX2, RAB5A and RAB25 transcripts. All tissues contained two RAB1A‑specific PCR products corresponding to the full‑length transcript and one new alternatively spliced RAB1A transcript. Invasive cervical tumors contained one PCR product corresponding to the full‑length RAB1B transcript, while all normal cervical tissue and preinvasive cervical lesions contained both the full‑length RAB1B transcript and three new alternatively spliced RAB1B transcripts. Alternative splicing of the RAB1A transcript occurs in all cervical tissues, while alternative splicing of the RAB1B transcript occurs in normal cervical tissue and in preinvasive cervical lesions; not in invasive cervical tumors.
Collapse
Affiliation(s)
- Andrej Nikoshkov
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institute, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Sanaz Attarha
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institute, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Vitali Sviatoha
- Department of Oncology‑Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Ann-Cathrin Hellström
- Department of Gynecological Oncology, Radiumhemmet, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Miriam Mints
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institute, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Sonia Andersson
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institute, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| |
Collapse
|
24
|
Schwartz S. Papillomavirus transcripts and posttranscriptional regulation. Virology 2013; 445:187-96. [PMID: 23706315 DOI: 10.1016/j.virol.2013.04.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022]
Abstract
Papillomavirus gene expression is strictly linked to the differentiation state of the infected cell and is highly regulated at the level of transcription and RNA processing. All papillomaviruses make extensive use of alternative mRNA polyadenylation and splicing to control gene expression. This chapter contains a compilation of all known alternatively spliced papillomavirus mRNAs and it summarizes our current knowledge of viral RNA elements, and viral and cellular factors that control papillomavirus mRNA processing.
Collapse
Affiliation(s)
- Stefan Schwartz
- Department of Laboratory Medicine, Section of Medical Microbiology, Lund University, BMC-B13, Sölvegatan 19, 223 62 Lund, Sweden.
| |
Collapse
|
25
|
Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat Rev Microbiol 2013; 11:239-51. [DOI: 10.1038/nrmicro2984] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Valiente-Echeverría F, Vallejos M, Monette A, Pino K, Letelier A, Huidobro-Toro JP, Mouland AJ, López-Lastra M. A cis-acting element present within the Gag open reading frame negatively impacts on the activity of the HIV-1 IRES. PLoS One 2013; 8:e56962. [PMID: 23451120 PMCID: PMC3581557 DOI: 10.1371/journal.pone.0056962] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/16/2013] [Indexed: 12/29/2022] Open
Abstract
Translation initiation from the human immunodeficiency virus type-1 (HIV-1) mRNA can occur through a cap or an IRES dependent mechanism. Cap-dependent translation initiation of the HIV-1 mRNA can be inhibited by the instability element (INS)-1, a cis-acting regulatory element present within the gag open reading frame (ORF). In this study we evaluated the impact of the INS-1 on HIV-1 IRES-mediated translation initiation. Using heterologous bicistronic mRNAs, we show that the INS-1 negatively impact on HIV-1 IRES-driven translation in in vitro and in cell-based experiments. Additionally, our results show that the inhibitory effect of the INS-1 is not general to all IRESes since it does not hinder translation driven by the HCV IRES. The inhibition by the INS-1 was partially rescued in cells by the overexpression of the viral Rev protein or hnRNPA1.
Collapse
Affiliation(s)
- Fernando Valiente-Echeverría
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Castilla V, Scolaro LA. Involvement of heterogeneous nuclear ribonucleoproteins in viral multiplication. Future Virol 2012. [DOI: 10.2217/fvl.12.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The study of virus–host interactions is a major goal in molecular virology and provides new effective targets for antiviral therapies. Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a group of cellular RNA-binding proteins localized predominantly within the nucleus, which participate in gene transcription and subsequent RNA post-transcriptional modifications. The interaction between hnRNPs and viral components was extensively demonstrated, as well as the ability of virus infections to alter the intracellular localization or the level of expression of different hnRNPs. The involvement of these proteins in the replication of numerous viruses including members from the Retroviridae, Flaviviridae, Coronaviridae, Arenaviridae, Rhabdoviridae, Papillomaviridae, Orthomyxoviridae, Picornaviridae, Togaviridae and Herpesviridae families, has been reported. In order to gain an increased understanding of the interactions between virus and cell that result in the productive infection of the latter, in this review we discuss the main findings about the role of hnRNPs in different steps of viral replication, such as RNA synthesis, translation, RNA processing and egress of newly assembled progeny virus.
Collapse
Affiliation(s)
- Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis A Scolaro
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Kajitani N, Satsuka A, Kawate A, Sakai H. Productive Lifecycle of Human Papillomaviruses that Depends Upon Squamous Epithelial Differentiation. Front Microbiol 2012; 3:152. [PMID: 22536200 PMCID: PMC3334820 DOI: 10.3389/fmicb.2012.00152] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/02/2012] [Indexed: 12/26/2022] Open
Abstract
Human papillomaviruses (HPVs) target the stratified epidermis, and can causes diseases ranging from benign condylomas to malignant tumors. Infections of HPVs in the genital tract are among the most common sexually transmitted diseases, and a major risk factor for cervical cancer. The virus targets epithelial cells in the basal layer of the epithelium, while progeny virions egress from terminally differentiated cells in the cornified layer, the surface layer of the epithelium. In infected basal cells, the virus maintains its genomic DNA at low-copy numbers, at which the viral productive lifecycle cannot proceed. Progression of the productive lifecycle requires differentiation of the host cell, indicating that there is tight crosstalk between viral replication and host differentiation programs. In this review, we discuss the regulation of the HPV lifecycle controlled by the differentiation program of the host cells.
Collapse
Affiliation(s)
- Naoko Kajitani
- Laboratory of Mammalian Molecular Biology, Graduate School of Biostudies, Kyoto University Kyoto, Japan
| | | | | | | |
Collapse
|
29
|
Maeto CA, Knott ME, Linero FN, Ellenberg PC, Scolaro LA, Castilla V. Differential effect of acute and persistent Junín virus infections on the nucleo-cytoplasmic trafficking and expression of heterogeneous nuclear ribonucleoproteins type A and B. J Gen Virol 2011; 92:2181-2190. [DOI: 10.1099/vir.0.030163-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins A and B (hnRNPs A/B), cellular RNA-binding proteins that participate in splicing, trafficking, translation and turnover of mRNAs, have been implicated in the life cycles of several cytoplasmic RNA viruses. Here, we demonstrate that silencing of hnRNPs A1 and A2 significantly reduces the replication of the arenavirus Junín virus (JUNV), the aetiological agent of Argentine haemorrhagic fever. While acute JUNV infection did not modify total levels of expression of hnRNPs A/B in comparison with uninfected cells, non-cytopathic persistent infection exhibited low levels of these cell proteins. Furthermore, acutely infected cells showed a cytoplasmic relocalization of overexpressed hnRNP A1, probably related to the involvement of this protein in virus replicative cycle. This cytoplasmic accumulation was also observed in cells expressing viral nucleoprotein (N), and co-immunoprecipitation studies revealed the interaction between hnRNP A1 and N protein. By contrast, a predominantly nuclear distribution of overexpressed hnRNP A1 was found during persistent infection, even in the presence of endogenous or overexpressed N protein, indicating a differential modulation of nucleo–cytoplasmic trafficking in acute and persistent JUNV infections.
Collapse
Affiliation(s)
- Cynthia A. Maeto
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María E. Knott
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia N. Linero
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula C. Ellenberg
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis A. Scolaro
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
30
|
Abstract
Enterovirus 71 (EV71) infections continue to remain an important public health problem around the world, especially in the Asia-Pacific region. There is a significant mortality rate following such infections, and there is neither any proven therapy nor a vaccine for EV71. This has spurred much fundamental research into the replication of the virus. In this review, we discuss recent work identifying host cell factors which regulate the synthesis of EV71 RNA and proteins. Three of these proteins, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), far-upstream element-binding protein 2 (FBP2), and FBP1 are nuclear proteins which in EV71-infected cells are relocalized to the cytoplasm, and they influence EV71 internal ribosome entry site (IRES) activity. hnRNP A1 stimulates IRES activity but can be replaced by hnRNP A2. FBP2 is a negative regulatory factor with respect to EV71 IRES activity, whereas FBP1 has the opposite effect. Two other proteins, hnRNP K and reticulon 3, are required for the efficient synthesis of viral RNA. The cleavage stimulation factor 64K subunit (CstF-64) is a host protein that is involved in the 3' polyadenylation of cellular pre-mRNAs, and recent work suggests that in EV71-infected cells, it may be cleaved by the EV71 3C protease. Such a cleavage would impair the processing of pre-mRNA to mature mRNAs. Host cell proteins play an important role in the replication of EV71, but much work remains to be done in order to understand how they act.
Collapse
|
31
|
Li Y, Hu X, Song Y, Lu Z, Ning T, Cai H, Ke Y. Identification of novel alternative splicing variants of interferon regulatory factor 3. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:166-75. [PMID: 21281747 DOI: 10.1016/j.bbagrm.2011.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 01/05/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
Interferon regulatory factor 3 (IRF-3) plays a crucial role in host defense against viral and microbial infection as well as in cell growth regulation. IRF-3a is the only structurally and functionally characterized IRF-3 splicing variant and has been established to antagonize IRF-3 activity. Here, five novel splicing variants of IRF-3, referred to as IRF-3b, -3c, -3d, -3e, and -3f, were identified and shown to be generated by deletion of exons 2, 3, or 6 or some combination thereof. RT-PCR examination revealed that these novel splicing variants were more frequently expressed in human liver, esophagus, and cervical tumor tissues than in their normal counterparts. Additionally, electrophoretic mobility shift assay and subcellular localization showed only IRF-3 and IRF-3e were capable of binding the PRDI/III element of interferon-beta (IFNβ) promoter in vitro and underwent cytoplasm-to-nucleus translocation following Poly(I:C) stimulation. Coimmunoprecipitation assay revealed that only IRF-3c (3f) of novel splicing variants associated with IRF-3 in vivo. Further luciferase assay showed IRF-3c (3f) and IRF-3e failed to transactivate PRDI/III-containing promoter but appeared to inhibit transactivation potential of IRF-3 to varying degrees. Taken together, our findings suggest novel splicing variants may function as negative modulators of IRF-3 and may be correlated with pathogenesis of human tumors.
Collapse
Affiliation(s)
- Yong Li
- Key laboratory of Carcinogenesis and Translational Research, Department of Genesis, Peking University School of Oncology , Beijing Cancer Hospital & Institute, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
Koczorowska MM, Kwasniewska A, Gozdzicka-Jozefiak A. IGF1 mRNA isoform expression in the cervix of HPV-positive women with pre-cancerous and cancer lesions. Exp Ther Med 2010; 2:149-156. [PMID: 22977483 DOI: 10.3892/etm.2010.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/22/2010] [Indexed: 01/02/2023] Open
Abstract
Human papillomavirus (HPV) plays a crucial role in cervical cancer etiology. However, not all HPV-infected women develop cancer, indicating that additional cellular factors facilitate carcinogenesis. The aim of this study was to analyze the expression profile of insulin-like growth factor 1 (IGF1) isoforms in the context of FOX2, SP1 and IGF1 receptor (IGF1R) expression during HPV-dependent cervical carcinogenesis. One hundred and nine epithelial tissue samples from women with pre-cancerous and cancer lesions of the cervix were analyzed. HPV DNA was identified by PCR, and real-time PCR was used to quantify the expression levels of the analyzed genes. All IGF1 mRNA splicing isoforms were up-regulated in pre-cancerous cells, and a shift in the balance towards mitogenic IGF1Eb was observed in the cancer samples. IGF1 expression was controlled mainly by the P1 promoter, and an increase in P2 usage was observed in the cancer. Correlations between IGF1 mRNA splicing isoforms and the FOX2 splicing factor, as well as P1/P2 activity and SP1 transcription factor expression levels were detected. No correlation was observed between the expression of IGF1 and its receptor IGF1R. Our results suggest that IGF1, in particular its splicing profile, may be an additional prognostic factor in cervical carcinogenesis.
Collapse
|
33
|
Graham SV. Human papillomavirus: gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol 2010; 5:1493-506. [PMID: 21073310 PMCID: PMC3527891 DOI: 10.2217/fmb.10.107] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive tumors. A subset of these viruses termed 'high risk' infect the cervix where persistent infection can lead to cervical cancer. Although many HPV genomes have been sequenced, knowledge of virus gene expression and its regulation is still incomplete. This is due in part to the lack, until recently, of suitable systems for virus propagation in the laboratory. HPV gene expression is polycistronic initiating from multiple promoters. Gene regulation occurs at transcriptional, but particularly post-transcriptional levels, including RNA processing, nuclear export, mRNA stability and translation. A close association between the virus replication cycle and epithelial differentiation adds a further layer of complexity. Understanding HPV mRNA expression and its regulation in the different diseases associated with infection may lead to development of novel diagnostic approaches and will reveal key viral and cellular targets for development of novel antiviral therapies.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection Immunity & Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow G12 8TT, Scotland, UK.
| |
Collapse
|
34
|
Gui H, Lu CW, Adams S, Stollar V, Li ML. hnRNP A1 interacts with the genomic and subgenomic RNA promoters of Sindbis virus and is required for the synthesis of G and SG RNA. J Biomed Sci 2010; 17:59. [PMID: 20663119 PMCID: PMC2916895 DOI: 10.1186/1423-0127-17-59] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/21/2010] [Indexed: 12/04/2022] Open
Abstract
Background Sindbis virus (SV) is the prototype of alphaviruses which are a group of widely distributed human and animal pathogens. Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is an RNA-binding protein that shuttles between the nucleus and the cytoplasm. Our recent studies found that hnRNP A1 relocates from nucleus to cytoplasm in Sindbis virus (SV)-infected cells. hnRNP A1 binds to the 5' UTR of SV RNA and facilitates the viral RNA replication and translation. Methods Making use of standard molecular techniques, virology methods and an in vitro system developed by our lab to assess the role of hnRNP A1 in SV positive strand RNA synthesis. Results hnRNP A1 interacted with the genomic (G) and subgenomic (SG) RNA promoters. Knockdown of hnRNP A1 resulted in markedly decrease in the synthesis of G and SG RNA both in infected cells and in vitro. Conclusions Our study provides the first direct evidence that hnRNP A1 actively participates in viral RNA replication and is required for the synthesis of G and SG RNA.
Collapse
Affiliation(s)
- Hongxing Gui
- Department of Molecular Genetics, Microbiology & Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
35
|
Alternative splicing of human papillomavirus type-16 E6/E6* early mRNA is coupled to EGF signaling via Erk1/2 activation. Proc Natl Acad Sci U S A 2010; 107:7006-11. [PMID: 20351270 DOI: 10.1073/pnas.1002620107] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Certain types of human papillomaviruses (HPVs) are etiologically linked to cervical cancer. Their transforming capacity is encoded by a polycistronic premRNA, where alternative splicing leads to the translation of functional distinct proteins such as E6, E6*, and E7. Here we show that splicing of HPV16 E6/E7 ORF cassette is regulated by the epidermal growth factor (EGF) pathway. The presence of EGF was coupled to preferential E6 expression, whereas depletion of EGF, or treatment with EGF receptor (EGFR) neutralizing antibodies or the EGFR inhibitor tyrphostin AG1478, resulted in E6 exon exclusion in favor of E6*. As a consequence, increased p53 levels and enhanced translation of E7 with a subsequent reduction of the retinoblastoma protein pRb could be discerned. E6 exon exclusion upon EGF depletion was independent from promoter usage, mRNA stability, or selective mRNA transport. Time-course experiments and incubation with cycloheximide demonstrated that E6 alternative splicing is a direct and reversible effect of EGF signal transduction, not depending on de novo protein synthesis. Within this process, Erk1/2-kinase activation was the critical event for E6 exon inclusion, mediated by the upstream MAP kinase MEK1/2. Moreover, siRNA knockdown experiments revealed an involvement of splicing factors hnRNPA1 and hnRNPA2 in E6 exon exclusion, whereas the splicing factors Brm and Sam68 were found to promote E6 exon inclusion. Because there is a natural gradient of EGF and EGF receptor expression in the stratified epithelium, it is reasonable to assume that EGF modulates E6/E7 splicing during the viral life cycle and transformation.
Collapse
|
36
|
Mole S, McFarlane M, Chuen-Im T, Milligan SG, Millan D, Graham SV. RNA splicing factors regulated by HPV16 during cervical tumour progression. J Pathol 2010; 219:383-91. [PMID: 19718710 DOI: 10.1002/path.2608] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The most prevalent human papillomaviruses (HPVs) causing cervical disease are the 'high-risk' HPV types 16 and 18. All papillomaviruses express a transcription factor, E2, that can regulate viral and cellular gene expression. Recently, we demonstrated high-risk HPV E2-mediated transcriptional transactivation of SF2/ASF. This essential oncoprotein is a key member of a family of proteins, the SR proteins, that regulate constitutive and alternative splicing. Tight control of RNA splicing is necessary for the production of wild-type proteins. So, aberrant expression of SR proteins is involved in the aetiology of a range of human diseases, including cancer. Here we demonstrate epithelial differentiation-specific control of SF2/ASF in HPV16-infected keratinocytes in organotypic raft culture and in low-grade cervical lesions (CIN1). Further, we demonstrate HPV16 infection/differentiation-induced up-regulation of a specific subset of SR proteins and present evidence that HPV16 E2 controls expression of SRp20, SC35 and SRp75. Using a series of cell lines that model cervical tumour progression, we show that SF2/ASF, SRp20 and SC35 are specifically up-regulated in a model of cervical tumour progression. These SR proteins are also over-expressed in high-grade cervical lesions, indicating that they may all have oncogenic functions. SR proteins could be useful biomarkers for HPV-associated disease.
Collapse
Affiliation(s)
- Sarah Mole
- Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of Glasgow, UK
| | | | | | | | | | | |
Collapse
|
37
|
Monette A, Ajamian L, López-Lastra M, Mouland AJ. Human immunodeficiency virus type 1 (HIV-1) induces the cytoplasmic retention of heterogeneous nuclear ribonucleoprotein A1 by disrupting nuclear import: implications for HIV-1 gene expression. J Biol Chem 2009; 284:31350-62. [PMID: 19737937 DOI: 10.1074/jbc.m109.048736] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) co-opts host proteins and cellular machineries to its advantage at every step of the replication cycle. Here we show that HIV-1 enhances heterogeneous nuclear ribonucleoprotein (hnRNP) A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm. The latter was dependent on the nuclear export of the unspliced viral genomic RNA (vRNA) and to alterations in the abundance and localization of the FG-repeat nuclear pore glycoprotein p62. hnRNP A1 and vRNA remain colocalized in the cytoplasm supporting a post-nuclear function during the late stages of HIV-1 replication. Consistently, we show that hnRNP A1 acts as an internal ribosomal entry site trans-acting factor up-regulating internal ribosome entry site-mediated translation initiation of the HIV-1 vRNA. The up-regulation and cytoplasmic retention of hnRNP A1 by HIV-1 would ensure abundant expression of viral structural proteins in cells infected with HIV-1.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | | | | | | |
Collapse
|
38
|
Fay J, Kelehan P, Lambkin H, Schwartz S. Increased expression of cellular RNA-binding proteins in HPV-induced neoplasia and cervical cancer. J Med Virol 2009; 81:897-907. [PMID: 19319956 DOI: 10.1002/jmv.21406] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression profile of a panel of RNA-binding proteins (heterogeneous ribonucleoprotein (hnRNP) A1, hnRNP C1/C2, hnRNP H, hnRNP I, ASF/SF2, SR proteins, HuR and U2AF(65)) and markers of differentiation, proliferation and neoplasia (cytokeratin (CK) 13, CK-14, proliferating cell nuclear antigen (PCNA), Syndecan-1 and p16INK4a) were analyzed in 50 formalin fixed paraffin embedded cervical tissues using immunohistochemistry. The samples included histologically normal cervical epithelium, human papillomavirus (HPV) induced low-grade and high-grade pre-malignant lesions and cervical cancers. All samples were tested for HPV DNA using nested PCR. Forty-nine of the 50 tissue samples tested positive for HPV, 27 tissue samples (54%) were HPV-16 positive and 4 samples (8%) were HPV-18 positive. The immunohistochemistry results detected different expression levels of the various proteins in basal epithelial cells in histologically normal epithelium followed by an increase in expression in the intermediate layers, whereas the superficial layers remained negative for all tested RNA-binding proteins. Expression of all RNA-binding proteins increased in neoplastic lesions and highest expression was detected in cervical cancers. p16INK4a had a stronger association with high-grade lesions when compared with the RNA-binding proteins. The expression profile of the RNA-binding proteins is similar to PCNA expression in histologically normal epithelium as well as in lesions (low-grade and high-grade) and cervical cancers. As PCNA expression has been suggested to mimic HPV E6/E7 expression in cervical epithelium, the results suggest the RNA-binding protein analyzed here regulate HPV early gene expression directly and late gene expression indirectly.
Collapse
Affiliation(s)
- Joanna Fay
- School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| | | | | | | |
Collapse
|
39
|
hnRNP A1 interacts with the 5' untranslated regions of enterovirus 71 and Sindbis virus RNA and is required for viral replication. J Virol 2009; 83:6106-14. [PMID: 19339352 DOI: 10.1128/jvi.02476-08] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is involved in pre-mRNA splicing in the nucleus and translational regulation in the cytoplasm. The cytoplasmic redistribution of hnRNP A1 is a regulated process during viral infection and cellular stress. Here we demonstrate that hnRNP A1 not only is an internal ribosome entry site (IRES) trans-acting factor that binds specifically to the 5' untranslated region (UTR) of enterovirus 71 (EV71) and regulates IRES-dependent translation but also binds to the 5' UTR of Sindbis virus (SV) and facilitates its translation. The cytoplasmic relocalization of hnRNP A1 in EV71-infected cells leads to the enhancement of EV71 IRES-mediated translation, and its function can be substituted by hnRNP A2, whereas the cytoplasmic relocalization of hnRNP A1 following SV infection enhances the SV translation, but this function cannot be replaced by hnRNP A2. Our study provides the first direct evidence that the cytoplasmic relocalization of hnRNP A1 controls not only the IRES-dependent but also non-IRES-dependent translation initiations of RNA viruses.
Collapse
|
40
|
Cumming S, Chuen-Im T, Zhang J, Graham S. The RNA stability regulator HuR regulates L1 protein expression in vivo in differentiating cervical epithelial cells. Virology 2009; 383:142-9. [PMID: 18986664 PMCID: PMC2789472 DOI: 10.1016/j.virol.2008.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/29/2008] [Accepted: 10/01/2008] [Indexed: 11/25/2022]
Abstract
Human papillomavirus (HPV) L1 and L2 capsid protein expression is restricted to the granular layer of infected, stratified epithelia and is regulated at least partly at post-transcriptional levels. For HPV16, a 79 nt late regulatory element (LRE) is involved in this control. Using W12 cells as a model for HPV16-infected differentiating cervical epithelial cells we show that HuR, a key cellular protein that controls mRNA stability, binds the LRE most efficiently in nuclear and cytoplasmic extracts of differentiated cells. Further, HuR binds the 3' U-rich portion of the LRE directly in vitro. Overexpression of HuR in undifferentiated W12 cells results in an increase in L1 mRNA and protein levels while siRNA knock-down of HuR in differentiated W12 cells depletes L1 expression. In differentiated cervical epithelial cells HuR may bind and stabilise L1 mRNAs aiding translation of L1 protein.
Collapse
Affiliation(s)
- S.A. Cumming
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| | | | - J. Zhang
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| | - S.V. Graham
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| |
Collapse
|
41
|
Mole S, Milligan SG, Graham SV. Human papillomavirus type 16 E2 protein transcriptionally activates the promoter of a key cellular splicing factor, SF2/ASF. J Virol 2009; 83:357-67. [PMID: 18945764 PMCID: PMC2612322 DOI: 10.1128/jvi.01414-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 10/16/2008] [Indexed: 01/02/2023] Open
Abstract
Human papillomavirus (HPV) gene expression is regulated in concert with the epithelial differentiation program. In particular, expression of the virus capsid proteins L1 and L2 is tightly restricted to differentiated epithelial cells. For HPV16, the capsid proteins are encoded by 13 structurally different mRNAs that are produced by extensive alternative splicing. Previously, we demonstrated that upon epithelial differentiation, HPV16 infection upregulates hnRNP A1 and SF2/ASF, both key factors in alternative splicing regulation. Here we cloned a 1-kb region upstream of and including the transcriptional start site of the SF2ASF gene and used it in in vivo transcription assays to demonstrate that the HPV16 E2 transcription factor transactivates the SF2/ASF promoter. The transactivation domain but not the DNA binding domain of the protein is necessary for this. Active E2 association with the promoter was demonstrated using chromatin immunoprecipitation assays. Electrophoretic mobility shift assays indicated that E2 interacted with a region 482 to 684 bp upstream of the transcription initiation site in vitro. This is the first time that HPV16 E2 has been shown to regulate cellular gene expression and the first report of viral regulation of expression of an RNA processing factor. Such E2-mediated control during differentiation of infected epithelial cells may facilitate late capsid protein expression and completion of the virus life cycle.
Collapse
Affiliation(s)
- Sarah Mole
- Room 312, Jarrett Building, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, Scotland, UK
| | | | | |
Collapse
|
42
|
Cumming SA, Cheun-Im T, Milligan SG, Graham SV. Human papillomavirus type 16 late gene expression is regulated by cellular RNA processing factors in response to epithelial differentiation. Biochem Soc Trans 2008; 36:522-4. [PMID: 18481996 PMCID: PMC2779515 DOI: 10.1042/bst0360522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HPV16 (human papillomavirus type 16) is a 7.9 kb double-stranded DNA virus that infects anogenital mucosal epithelia. In some rare cases, in women, infection can progress to cervical cancer. HPV16 gene expression is regulated through use of multiple promoters and alternative splicing and polyadenylation. The virus genome can be divided into an early and a late coding region. The late coding region contains the L1 and L2 genes. These encode the virus capsid proteins L1 and L2; protein expression is confined to the upper epithelial layers and is regulated post-transcriptionally in response to epithelial differentiation. A 79 nt RNA regulatory element, the LRE (late regulatory element), involved in this regulation is sited at the 3'-end of the L1 gene and extends into the late 3'-UTR (3'-untranslated region). This element represses late gene expression in differentiated epithelial cells and may activate it in differentiated cells. The present paper describes our current knowledge of LRE RNA-protein interaction and their possible functions.
Collapse
Affiliation(s)
- Sarah A Cumming
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, U.K
| | | | | | | |
Collapse
|
43
|
Lai MC, Peng TY, Tarn WY. Functional interplay between viral and cellular SR proteins in control of post-transcriptional gene regulation. FEBS J 2008; 276:1517-26. [PMID: 19220464 PMCID: PMC7164074 DOI: 10.1111/j.1742-4658.2009.06894.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Viruses take advantage of cellular machineries to facilitate their gene expression in the host. SR proteins, a superfamily of cellular precursor mRNA splicing factors, contain a domain consisting of repetitive arginine/serine dipeptides, termed the RS domain. The authentic RS domain or variants can also be found in some virus‐encoded proteins. Viral proteins may act through their own RS domain or through interaction with cellular SR proteins to facilitate viral gene expression. Numerous lines of evidence indicate that cellular SR proteins are important for regulation of viral RNA splicing and participate in other steps of post‐transcriptional viral gene expression control. Moreover, viral infection may alter the expression levels or modify the phosphorylation status of cellular SR proteins and thus perturb cellular precursor mRNA splicing. We review our current understanding of the interplay between virus and host in post‐transcriptional regulation of gene expression via RS domain‐containing proteins.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|