1
|
Hammond J, Huang Q, Jordan R, Meekes E, Fox A, Vazquez-Iglesias I, Vaira AM, Copetta A, Delmiglio C. International Trade and Local Effects of Viral and Bacterial Diseases in Ornamental Plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:73-95. [PMID: 37257057 DOI: 10.1146/annurev-phyto-021621-114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Since the 1950s, there have been major changes in the scope, value, and organization of the ornamental plant industry. With fewer individual producers and a strong trend toward consolidation and globalization, increasing quantities of diverse plant genera and species are being shipped internationally. Many more ornamentals are propagated vegetatively instead of by seed, further contributing to disease spread. These factors have led to global movement of pathogens to countries where they were not formerly known. The emergence of some previously undescribed pathogens has been facilitated by high-throughput sequencing, but biological studies are often lacking, so their roles in economic diseases are not yet known. Case studies of diseases in selected ornamentals discuss the factors involved in their spread, control measures to reduce their economic impact, and some potential effects on agronomic crops. Advances in diagnostic techniques are discussed, and parallels are drawn to the international movement of human diseases.
Collapse
Affiliation(s)
- John Hammond
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, Beltsville, Maryland, USA;
| | - Qi Huang
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, Beltsville, Maryland, USA;
| | - Ramon Jordan
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, Beltsville, Maryland, USA;
| | | | - Adrian Fox
- Fera Science Ltd., York Biotech Campus, York, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Andrea Copetta
- CREA Research Centre for Vegetable and Ornamental Crops, Sanremo, Italy
| | - Catia Delmiglio
- Plant Health & Environment Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Auckland, New Zealand
| |
Collapse
|
2
|
Association of an alphasatellite with tomato yellow leaf curl virus and ageratum yellow vein virus in Japan is suggestive of a recent introduction. Viruses 2014; 6:189-200. [PMID: 24424499 PMCID: PMC3917438 DOI: 10.3390/v6010189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/04/2013] [Accepted: 12/17/2013] [Indexed: 11/22/2022] Open
Abstract
Samples were collected in 2011 from tomato plants exhibiting typical tomato leaf curl disease symptoms in the vicinity of Komae, Japan. PCR mediated amplification, cloning and sequencing of all begomovirus components from two plants from different fields showed the plants to be infected by Tomatoyellowleafcurlvirus (TYLCV) and Ageratumyellowveinvirus (AYVV). Both viruses have previously been shown to be present in Japan, although this is the first identification of AYVV on mainland Japan; the virus previously having been shown to be present on the Okinawa Islands. The plant harboring AYVV was also shown to contain the betasatellite Tomato leaf curl Java betasatellite (ToLCJaB), a satellite not previously shown to be present in Japan. No betasatellite was associated with the TYLCV infected tomato plants analyzed here, consistent with earlier findings for this virus in Japan. Surprisingly both plants were also found to harbor an alphasatellite; no alphasatellites having previously been reported from Japan. The alphasatellite associated with both viruses was shown to be Sida yellow vein China alphasatellite which has previously only been identified in the Yunnan Province of China and Nepal. The results suggest that further begomoviruses, and their associated satellites, are being introduced to Japan. The significance of these findings is discussed.
Collapse
|
3
|
Valverde RA, Sabanadzovic S, Hammond J. Viruses that Enhance the Aesthetics of Some Ornamental Plants: Beauty or Beast? PLANT DISEASE 2012; 96:600-611. [PMID: 30727518 DOI: 10.1094/pdis-11-11-0928-fe] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
| | | | - John Hammond
- Floral and Nursery Plants Research Unit, USDA-ARS, U.S. National Arboretum, Beltsville, MD 20705
| |
Collapse
|
4
|
Park J, Lee H, Kim MK, Kwak HR, Auh CK, Lee KY, Kim S, Choi HS, Lee S. Phylogenetic lineage of Tobacco leaf curl virus in Korea and estimation of recombination events implicated in their sequence variation. Virus Res 2011; 159:124-31. [PMID: 21549772 DOI: 10.1016/j.virusres.2011.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022]
Abstract
New strains of Tobacco leaf curl virus (TbLCV) were isolated from tomato plants in four different local communities of Korea, and hence were designated TbLCV-Kr. Phylogenetic analysis of the sequences of the whole genome and of individual ORFs of these viruses indicated that they are closely related to the Tobacco leaf curl Japan virus (TbLCJV) cluster, which includes Honeysuckle yellow vein virus (HYVV), Honeysuckle yellow vein mosaic virus (HYVMV), and TbLCJV isolates. Four putative recombination events were recognized within these virus sequences, suggesting that the sequence variations observed in these viruses may be attributable to intraspecific and interspecific recombination events involving some TbLCV-Kr isolates, Papaya leaf curl virus (PaLCV), and a local isolate of Tomato yellow leaf curl virus (TYLCV).
Collapse
Affiliation(s)
- Jungan Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lee H, Song W, Kwak HR, Kim JD, Park J, Auh CK, Kim DH, Lee KY, Lee S, Choi HS. Phylogenetic analysis and inflow route of Tomato yellow leaf curl virus (TYLCV) and Bemisia tabaci in Korea. Mol Cells 2010; 30:467-76. [PMID: 20981497 DOI: 10.1007/s10059-010-0143-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/16/2010] [Accepted: 08/26/2010] [Indexed: 11/25/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) is a member of the genus Begomovirus of the family Geminiviridae, members of which are characterized by closed circular single-stranded DNA genomes of 2.7-2.8 kb in length, and include viruses transmitted by the Bemisia tabaci whitefly. No reports of TYLCV in Korea are available prior to 2008, after which TYLCV spread rapidly to most regions of the southern Korean peninsula (Gyeongsang-Do, Jeolla-Do and Jeju-Do). Fifty full sequences of TYLCV were analyzed in this study, and the AC1, AV1, IR, and full sequences were analyzed via the muscle program and bayesian analysis. Phylogenetic analysis demonstrated that the Korea TYLCVs were divided into two subgroups. The TYLCV Korea 1 group (Masan) originated from TYLCV Japan (Miyazaki) and the TYLCV Korea 2 group (Jeju/Jeonju) from TYLCV Japan (Tosa/Haruno). A B. tabaci phylogenetic tree was constructed with 16S rRNA and mitochondria cytochrome oxidase I (MtCOI) sequences using the muscle program and MEGA 4.0 in the neighbor-joining algorithm. The sequence data of 16S rRNA revealed that Korea B. tabaci was closely aligned to B. tabaci isolated in Iran and Nigeria. The Q type of B. tabaci, which was originally identified as a viruliferous insect in 2008, was initially isolated in Korea as a non-viruliferous insect in 2005. Therefore, we suggest that two TYLCV Japan isolates were introduced to Korea via different routes, and then transmitted by native B. tabaci.
Collapse
Affiliation(s)
- Hyejung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sharma P, Ikegami M, Kon T. Identification of the virulence factors and suppressors of posttranscriptional gene silencing encoded by Ageratum yellow vein virus, a monopartite begomovirus. Virus Res 2010; 149:19-27. [PMID: 20079777 DOI: 10.1016/j.virusres.2009.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 11/17/2009] [Accepted: 12/30/2009] [Indexed: 11/30/2022]
Abstract
Ageratum yellow vein disease (AYVD) is caused by the association of a Tomato leaf curl Java betasatellite [Indonesia:Indonesia 1:2003] (ToLCJB-[ID:ID1:03]) with a begomovirus component. Our previous results demonstrated that ToLCJB-[ID:ID:03] is essential for induction of leaf curl symptoms in plants and transgene expression of its betaC1 gene in Nicotiana benthamiana plants induces virus-like symptoms. Here we show that Ageratum yellow vein virus-Indonesia [Indonesia: Tomato] (AYVV-ID[ID:Tom]) alone could systemically infect the plants and induced upward leaf curl symptoms. ToLCJB-[ID:ID1:03] was required, in addition to AYVV-ID[ID:Tom], for induction of severe downward leaf curl disease in N. benthamiana plants. However, DNAbeta01fsbetaC1, which encompasses a frameshift mutation, did not induce severe symptoms in N. benthamiana when co-inoculated with AYVV-ID[ID:Tom]. The infectivity analysis of AYVV-ID[ID:Tom] and its associated betasatellite encoded genes using Potato virus X (PVX) vector were carried out in N. benthamiana, indicate that the V2 and betaC1 genes are symptom determinants. We have identified the DNA encoded V2 and its betasatellite, ToLCJB-[ID:ID1:03], encoded betaC1 proteins as efficient silencing suppressors of posttranscriptional gene silencing (PTGS) by using an Agrobacterium co-infiltration or heterologous PVX vector assays. However, the results also showed weak suppression of gene silencing activities for C2 and C4 induced by GFP and mRNA associated with GFP was detected. Furthermore, confocal imaging analysis of ToLCJB-[ID:ID1:03] betaC1 in the epidermal cells of N. benthamiana shows that this protein is accumulated towards the periphery of the cell and around the nucleus, however, V2 accumulated in the cell cytoplasm, C4 associated with plasma membrane and C2 exclusively targeted into nucleus. In this study, we identified as many as four distinct suppressors of RNA silencing encoded by AYVV-ID[ID:Tom] and its cognate betasatellite in the family Geminiviridae, counteracting innate antiviral response.
Collapse
Affiliation(s)
- P Sharma
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amemiyamachi, Aoba-ku, Sendai, Miyagi 981-8555, Japan.
| | | | | |
Collapse
|
7
|
DaPalma T, Doonan BP, Trager NM, Kasman LM. A systematic approach to virus-virus interactions. Virus Res 2010; 149:1-9. [PMID: 20093154 PMCID: PMC7172858 DOI: 10.1016/j.virusres.2010.01.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 01/02/2010] [Accepted: 01/06/2010] [Indexed: 02/02/2023]
Abstract
A virus–virus interaction is a measurable difference in the course of infection of one virus as a result of a concurrent or prior infection by a different species or strain of virus. Many such interactions have been discovered by chance, yet they have rarely been studied systematically. Increasing evidence suggests that virus–virus interactions are common and may be critical to understanding viral pathogenesis in natural hosts. In this review we propose a system for classifying virus–virus interactions by organizing them into three main categories: (1) direct interactions of viral genes or gene products, (2) indirect interactions that result from alterations in the host environment, and (3) immunological interactions. We have so far identified 15 subtypes of interaction and assigned each to one of these categories. It is anticipated that this framework will provide for a more systematic approach to investigating virus–virus interactions, both at the cellular and organismal levels.
Collapse
Affiliation(s)
- T DaPalma
- Dept. of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, United States
| | | | | | | |
Collapse
|
8
|
Interaction of tomato yellow leaf curl virus with diverse betasatellites enhances symptom severity. Arch Virol 2009; 154:1233-9. [PMID: 19575277 DOI: 10.1007/s00705-009-0431-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
The complete nucleotide sequence was determined for a begomovirus isolated from tomato exhibiting leaf curling and yellowing symptoms in Tochigi Prefecture in Japan. The genome organization of this virus was similar to those of other Old World monopartite begomoviruses. Neither a DNA betasatellite nor a DNA-B component was detected. It had the highest total nucleotide sequence identity (99%) with tomato yellow leaf curl virus-Israel[Japan:Tosa:2005] (TYLCV-IL[JR:Tos:05]) and TYLCV-Israel[Japan:Haruno:2005] (TYLCV-IL[JR:Han:05]). Its coat protein V1 also showed an identical amino acid sequence with those of TYLCV-IL[JR:Tos:05] and TYLCV-IL[JR:Han:05]. Thus, the begomovirus was determined to be an isolate of TYLCV-IL designated as TYLCV-Israel[Japan:Tochigi:2007] (TYLCV-IL[JR:Toc:07]). We investigated the interaction of TYLCV-IL[JR:Toc:07] with two known satellites associated with tomato yellow dwarf disease in Japan, tobacco leaf curl Japan betasatellite [Japan:Ibaraki:2006] and honeysuckle yellow vein mosaic betasatellite [Japan:Nara:2006], as well as with tomato leaf curl Philippines betasatellite [Philippines:Laguna1:2008], in tomato and Nicotiana benthamiana plants. TYLCV-IL[JR:Toc:07] trans-replicated these betasatellites, inducing more severe tomato yellow leaf curl disease-related symptoms than TYLCV-IL[JR:Toc:07] alone.
Collapse
|
9
|
Chen LF, Rojas M, Kon T, Gamby K, Xoconostle-Cazares B, Gilbertson RL. A severe symptom phenotype in tomato in Mali is caused by a reassortant between a novel recombinant begomovirus (Tomato yellow leaf curl Mali virus) and a betasatellite. MOLECULAR PLANT PATHOLOGY 2009; 10:415-30. [PMID: 19400843 PMCID: PMC6640326 DOI: 10.1111/j.1364-3703.2009.00541.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tomato production in West Africa has been severely affected by begomovirus diseases, including yellow leaf curl and a severe symptom phenotype, characterized by extremely stunted and distorted growth and small deformed leaves. Here, a novel recombinant begomovirus from Mali, Tomato yellow leaf curl Mali virus (TYLCMLV), is described that, alone, causes tomato yellow leaf curl disease or, in combination with a betasatellite, causes the severe symptom phenotype. TYLCMLV is an Old World monopartite begomovirus with a hybrid genome composed of sequences from Tomato yellow leaf curl virus-Mild (TYLCV-Mld) and Hollyhock leaf crumple virus (HoLCrV). A TYLCMLV infectious clone induced leaf curl and yellowing in tomato, leaf curl, crumpling and yellowing in Nicotiana benthamiana and common bean, mild symptoms in N. glutinosa, and a symptomless infection in Datura stramonium. In a field-collected sample from a tomato plant showing the severe symptom phenotype in Mali, TYLCMLV was detected together with a betasatellite, identified as Cotton leaf curl Gezira betasatellite (CLCuGB). Tomato plants co-agroinoculated with TYLCMLV and CLCuGB developed severely stunted and distorted growth and small crumpled leaves. These symptoms were more severe than those induced by TYLCMLV alone, and were similar to the severe symptom phenotype observed in the field in Mali and in other West African countries. TYLCMLV and CLCuGB also induced more severe symptoms than TYLCMLV in the other solanaceous hosts, but not in common bean. The increased symptom severity was associated with hyperplasia of phloem-associated cells, but relatively little increase in TYLCMLV DNA levels. In surveys of tomato virus diseases in West Africa, TYLCMLV was commonly detected in plants with leaf curl and yellow leaf curl symptoms, whereas CLCuGB was infrequently detected and always in association with the severe symptom phenotype. Together, these results indicate that TYLCMLV causes tomato yellow leaf curl disease throughout West Africa, whereas TYLCMLV and CLCuGB represent a reassortant that causes the severe symptom phenotype in tomato.
Collapse
Affiliation(s)
- Li-Fang Chen
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
10
|
Strains of a new bipartite begomovirus, pepper yellow leaf curl Indonesia virus, in leaf-curl-diseased tomato and yellow-vein-diseased ageratum in Indonesia. Arch Virol 2008; 153:2307-13. [PMID: 19015934 DOI: 10.1007/s00705-008-0254-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
The complete nucleotide sequences of begomoviruses from pepper with leaf curl and yellowing symptoms, tomato with leaf curl symptoms, and ageratum with yellow vein in Indonesia were determined. On the basis of genome organization and sequence homology, they were proposed to belong to a new species, Pepper yellow leaf curl Indonesia virus (PepYLCIV), which includes the new strains PepYLCIV-Tomato and PepYLCIV-Ageratum. These viruses had bipartite genomes. Pepper virus DNAs from Indonesia (PepYLCIV, PepYLCIV-Tomato and PepYLCIV-Ageratum DNA-As) were noticeably distinct, forming a separate branch from the viruses infecting pepper. Considerable divergence was observed in the common region (CR) of the genomic components of PepYLCIV (77%), PepYLCIV-Tomato (82%) and PeYLCIV-Ageratum (75%). A stem-loop-forming region and a Rep-binding motif were identical in the CR of the three viruses. The CRs of PepYLCIV-Ageratum DNA-A was approximately 10 nucleotides longer than that of PepYLCIV DNA-A and PepYLCIV-Tomato DNA-A. A similar insertion was also found in the CR of PepYLCIV-Ageratum DNA-B. PepYLCIV DNA-A alone was infectious in pepper and Nicotiana benthamiana plants, and association with DNA-B increased symptom severity.
Collapse
|