1
|
Lameront P, Shabanian M, Currie LMJ, Fust C, Li C, Clews A, Meng B. Elucidating the Subcellular Localization of GLRaV-3 Proteins Encoded by the Unique Gene Block in N. benthamiana Suggests Implications on Plant Host Suppression. Biomolecules 2024; 14:977. [PMID: 39199365 PMCID: PMC11352578 DOI: 10.3390/biom14080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is a formidable threat to the stability of the global grape and wine industries. It is the primary etiological agent of grapevine leafroll disease (GLD) and significantly impairs vine health, fruit quality, and yield. GLRaV-3 is a member of the genus Ampelovirus, Closteroviridae family. Viral genes within the 3' proximal unique gene blocks (UGB) remain highly variable and poorly understood. The UGBs of Closteroviridae viruses include diverse open reading frames (ORFs) that have been shown to contribute to viral functions such as the suppression of the host RNA silencing defense response and systemic viral spread. This study investigates the role of GLRaV-3 ORF8, ORF9, and ORF10, which encode the proteins p21, p20A, and p20B, respectively. These genes represent largely unexplored facets of the GLRaV-3 genome. Here, we visualize the subcellular localization of wildtype and mutagenized GLRaV-3 ORFs 8, 9, and 10, transiently expressed in Nicotiana benthamiana. Our results indicate that p21 localizes to the cytosol, p20A associates with microtubules, and p20B is trafficked into the nucleus to carry out the suppression of host RNA silencing. The findings presented herein provide a foundation for future research aimed at the characterization of the functions of these ORFs. In the long run, it would also facilitate the development of innovative strategies to understand GLRaV-3, mitigate its spread, and impacts on grapevines and the global wine industry.
Collapse
Affiliation(s)
- Patrick Lameront
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.S.); (L.M.J.C.); (C.F.); (C.L.); (A.C.); (B.M.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Leastro MO, Pallás V, Sánchez-Navarro JÁ. The capsid protein of citrus leprosis virus C shows a nuclear distribution and interacts with the nucleolar fibrillarin protein. Virus Res 2024; 340:199297. [PMID: 38070688 PMCID: PMC10758971 DOI: 10.1016/j.virusres.2023.199297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Brevipalpus-transmitted viruses (BTVs) have a significant negative economic impact on the citrus industry in Central and South America. Until now, only a few studies have explored the intracellular distribution and interaction of BTVs-encoded proteins with host factors, particularly for cileviruses, the main BTV responsible for the Citrus Leprosis (CL) disease. This study describes the nuclear localization of citrus leprosis virus C (CiLV-C) capsid protein (p29) and its interaction with the fibrillarin (Fib2) within the nucleolar compartment and cell cytoplasm. Our results, obtained by computer predictions and laser scanning confocal microscopy analyses, including colocalization and bimolecular fluorescence complementation (BiFC) approaches, revealed that a fraction of the p29 is localized in the nucleus and colocalizes with the Fib2 in both the nucleolus and cytosol. The nuclear localization of p29 correlated with a smaller nucleus size. Furthermore, co-immunoprecipitation (Co-IP) assays confirmed the interactions between p29 and Fib2. The implications of these findings for the functionalities of the cilevirus capsid protein are discussed.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Jesús Ángel Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain.
| |
Collapse
|
3
|
Sabella E, Pierro R, Luvisi A, Panattoni A, D’Onofrio C, Scalabrelli G, Nutricati E, Aprile A, De Bellis L, Materazzi A. Phylogenetic analysis of viruses in Tuscan Vitis vinifera sylvestris (Gmeli) Hegi. PLoS One 2018; 13:e0200875. [PMID: 30021001 PMCID: PMC6051638 DOI: 10.1371/journal.pone.0200875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
The health status of the native grapevine Vitis vinifera subsp. sylvestris (Gmeli) Hegi in natural areas in Europe has received little attention. A survey was carried out on wild grapevines in Tuscany (Italy), where isolates of the Grapevine rupestris stem pitting virus (GRSPaV), Grapevine leafroll-associated virus 1 and 3 (GLRaV-1 and GLRaV-3) and Grapevine virus A (GVA) were detected. The complete coat protein (CP) region of these isolates was sequenced to investigate the relationship of the viral variants from Tuscan wild grapevines with isolates from different geographical origins. According to the phylogenetic analyses, GLRaV-1 and GLRaV-3 isolates from Tuscan wild grapevines clustered with isolates from cultivated grapevines with nucleotide sequence identities ranging from 66% to 87% and from 72.5% to 99% respectively, without any correlation between the distribution and geographical origin. Conversely, GRSPaV and GVA isolates clustered together with other Italian isolates from V. vinifera with nucleotide sequence identities ranging from 71.14% to 96.12% and from 73.5% to 92%, respectively. Our analysis of the whole amino acid sequences revealed a high conservation level for the studied proteins explained by a selective pressure on this genomic region, probably due to functional constraints imposed on CP, such as specific interactions with cellular receptors in the insect vectors necessary for successful transmission. In addition, analyses of genetic recombination suggest no significant point mutations that might play a significant role in genetic diversification. The dN/dS ratio also estimated a low number of non-silent mutations, highlighting the purifying selective pressure. The widespread distribution of the Rugose wood complex (GRSPaV and GVA associated disease) in comparison with the Grapevine Leafroll associated viruses (GLRaV-1 and -3) could explain the major geographical correlation found for the viral variants detected in Tuscany.
Collapse
Affiliation(s)
- Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni, Lecce, Italy
| | - Roberto Pierro
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni, Lecce, Italy
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Alessandra Panattoni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Claudio D’Onofrio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Giancarlo Scalabrelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Eliana Nutricati
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni, Lecce, Italy
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni, Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni, Lecce, Italy
| | - Alberto Materazzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| |
Collapse
|
4
|
Hu GJ, Dong YF, Zhu HJ, Zhang ZP, Fan XD, Ren F, Zhou J. Molecular characterizations of two grapevine rupestris stem pitting-associated virus isolates from China. Arch Virol 2015. [PMID: 26215445 DOI: 10.1007/s00705-015-2544-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The complete nucleotide sequences of two isolates of grapevine rupestris stem pitting-associated virus (LSL and JF) collected from grapevine of Xingcheng in Liaoning Province, China, were determined. The genomes of both LSL and JF were found to contain five open reading frames (ORFs). Sequence alignments showed that the genomic sequences of JF were 76.1 %-83.5 % identical to the other ten GRSPaV isolates that have been reported previously and that the nucleotide sequence identity of isolate LSL to other isolates was no more than 78 %. Phylogenetic analysis based on the complete genome sequence indicated that JF belongs to group III and that LSL belongs to a new group (group IV). The average genetic distances of the new genetic lineage from groups I, II and III were 0.34, 0.32 and 0.33, respectively.
Collapse
Affiliation(s)
- Guo-Jun Hu
- National Center for Eliminating Viruses from Deciduous Fruit Trees, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, People's Republic of China.
| | - Ya-Feng Dong
- National Center for Eliminating Viruses from Deciduous Fruit Trees, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, People's Republic of China.
| | - Hong-Juan Zhu
- National Center for Eliminating Viruses from Deciduous Fruit Trees, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, People's Republic of China
| | - Zun-Ping Zhang
- National Center for Eliminating Viruses from Deciduous Fruit Trees, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, People's Republic of China
| | - Xu-Dong Fan
- National Center for Eliminating Viruses from Deciduous Fruit Trees, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, People's Republic of China
| | - Fang Ren
- National Center for Eliminating Viruses from Deciduous Fruit Trees, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, People's Republic of China
| | - Jun Zhou
- National Center for Eliminating Viruses from Deciduous Fruit Trees, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, People's Republic of China
| |
Collapse
|
5
|
Prosser SW, Xiao H, Li C, Nelson RS, Meng B. Subcellular localization and membrane association of the replicase protein of grapevine rupestris stem pitting-associated virus, family Betaflexiviridae. J Gen Virol 2015; 96:921-932. [PMID: 25502653 DOI: 10.1099/jgv.0.000019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a member of the newly established Betaflexiviridae family, grapevine rupestris stem pitting-associated virus (GRSPaV) has an RNA genome containing five ORFs. ORF1 encodes a putative replicase polyprotein typical of the alphavirus superfamily of positive-strand ssRNA viruses. Several viruses of this superfamily have been demonstrated to replicate in structures designated viral replication complexes associated with intracellular membranes. However, structure and cellular localization of the replicase complex have not been studied for members of Betaflexiviridae, a family of mostly woody plant viruses. As a first step towards the elucidation of the replication complex of GRSPaV, we investigated the subcellular localization of full-length and truncated versions of its replicase polyprotein via fluorescent tagging, followed by fluorescence microscopy. We found that the replicase polyprotein formed distinctive punctate bodies in both Nicotiana benthamiana leaf cells and tobacco protoplasts. We further mapped a region of 76 amino acids in the methyl-transferase domain responsible for the formation of these punctate structures. The punctate structures are distributed in close proximity to the endoplasmic reticulum network. Membrane flotation and biochemical analyses demonstrate that the N-terminal region responsible for punctate structure formation associated with cellular membrane is likely through an amphipathic α helix serving as an in-plane anchor. The identity of this membrane is yet to be determined. This is, to our knowledge, the first report on the localization and membrane association of the replicase proteins of a member of the family Betaflexiviridae.
Collapse
Affiliation(s)
- Sean W Prosser
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada N1G2W1
| | - Huogen Xiao
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada N1G2W1
| | - Caihong Li
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada N1G2W1
| | - Richard S Nelson
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73410, USA
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada N1G2W1
| |
Collapse
|
6
|
Meng B, Venkataraman S, Li C, Wang W, Dayan-Glick C, Mawassi M. Construction and biological activities of the first infectious cDNA clones of the genus Foveavirus. Virology 2013; 435:453-62. [PMID: 23099206 DOI: 10.1016/j.virol.2012.09.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/06/2012] [Accepted: 09/30/2012] [Indexed: 11/30/2022]
Abstract
Grapevine rupestris stem pitting-associated virus (GRSPaV, genus Foveavirus, family Betaflexiviridae) is one of the most prevalent viruses in grapevines and is associated with three distinct diseases: rupestris stem pitting, vein necrosis and Syrah decline. Little is known about the biology and pathological properties of GRSPaV. In this work, we engineered a full-length infectious cDNA clone for GRSPaV and a GFP-tagged variant, both under the transcriptional control of Cauliflower mosaic virus 35S promoter. We demonstrated that these cDNA clones were infectious in grapevines and Nicotiana benthamiana through fluorescence microscopy, RT-PCR, Western blotting and immuno electron microscopy. Interestingly, GRSPaV does not cause systemic infection in four of the most commonly used herbaceous plants, even in the presence of the movement proteins of two other viruses which are known to complement numerous movement-defective viruses. These infectious clones are the first of members of Foveavirus which would allow further investigations into mechanisms governing different aspects of replication for GRSPaV and perhaps related viruses.
Collapse
Affiliation(s)
- Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario, Canada N1G2W1.
| | | | | | | | | | | |
Collapse
|
7
|
Veneault-Fourrey C, Martin F. Mutualistic interactions on a knife-edge between saprotrophy and pathogenesis. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:444-450. [PMID: 21530366 DOI: 10.1016/j.pbi.2011.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 05/30/2023]
Abstract
Saprophytic, ectomycorrhizal (ECM) and pathogenic fungi play a key role in carbon and nutrient cycling in forest ecosystems. Whereas more than 50 genomes of saprotrophic and pathogenic fungi have been published, only two genomes of ECM fungi, Laccaria bicolor and Tuber melanosporum, have been released. Comparative analysis of the genomes of biotrophic species highlighted convergent evolution. Mutualistic and pathogenic biotrophic fungi share expansion of genome size through transposon proliferation and common strategies to avoid plant detection. Differences mainly rely on nutritional strategies. Such analyses also pinpointed how blurred the molecular boundaries are between saprotrophism, symbiosis and pathogenesis. Sequencing of additional ECM species, as well as soil saprotrophic fungi, will facilitate the identification of conserved traits for ECM symbiosis and those leading to the transition from white-rotting and brown-rotting to the ECM lifestyle.
Collapse
Affiliation(s)
- Claire Veneault-Fourrey
- UMR 1136 INRA-Nancy Université « Tree-Microorganisms Interactions », Ecogenomics of Interactions, Centre INRA de Nancy, 54280 Champenoux, France
| | | |
Collapse
|
8
|
Complete nucleotide sequence of a new variant of grapevine rupestris stem pitting-associated virus from southern Italy. Arch Virol 2011; 156:543-6. [DOI: 10.1007/s00705-011-0936-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/22/2011] [Indexed: 10/18/2022]
|