1
|
Karki D, Musetti R, Meng B. Comparative analyses of three grapevine Pinot gris virus cDNA clones reveal insights into the pathological properties of different phylogroups. Virology 2025; 603:110360. [PMID: 39705896 DOI: 10.1016/j.virol.2024.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Grapevine Pinot gris virus (GPGV) is an emerging grapevine virus associated with grapevine leaf mottling and deformation (GLMD) disease. Being a recently identified virus, the molecular biology, pathological properties, and etiological complexity of GPGV remain poorly studied. Previous research revealed that GPGV comprises genetically different variants, some encoding a larger movement protein (MP) and others a shorter MP due to a C/T polymorphic site in ORF2 encoding MP. Variants that encode the shorter MP are associated with severe disease, whereas variants encoding the longer MP are associated with mild or no symptoms. However, this has yet to be demonstrated experimentally. Here, we report the construction of a wildtype cDNA clone, pGPGV-SY, based on ON93-12, a local isolate from Syrah closely related to the variants encoding the larger MP. Surprisingly, our clone exhibited significantly faster replication and caused more severe disease symptoms than pRI::GPGV-lat, an Italian GPGV clone, with a longer MP and demonstrated similar efficacies with that of pRI::GPGV-vir, another Italian clone with a shorter MP. A single C to T mutation at the polymorphic site of pGPGV-SY resulted in a two-fold higher RNA accumulation in the grapevine. Findings from this work constitute a leap toward the long-standing and complex question pertaining to the relationship between GPGV variant groups and GLMD. Integrating findings from this work and those by others, we propose an updated model to explain the complex relationship between GPGV variants and GLMD.
Collapse
Affiliation(s)
- Dipendra Karki
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Rita Musetti
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy; Department of Land, Environment, Agriculture and Forestry, University of Padua, Viale dell' Universita, 16 - Agripolis, 35020, Legnaro (PD), Italy
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Rott ME, Ghoshal K, Lerat S, Brosseau C, Clément G, Phelan J, Poojari S, Gaafar Y, Vemulapati BM, Scheer H, Ritzenthaler C, Fall ML, Moffett P. Improving grapevine virus diagnostics: Comparative analysis of three dsRNA enrichment methods for high-throughput sequencing. J Virol Methods 2024; 329:114997. [PMID: 39059502 DOI: 10.1016/j.jviromet.2024.114997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The extraction of double stranded (ds) RNA is a common enrichment method for the study, characterization, and detection of RNA viruses. In addition to RNA viruses, viroids, and some DNA viruses, can also be detected from dsRNA enriched extracts which makes it an attractive method for detecting a wide range of viruses when coupled with HTS. Several dsRNA enrichment strategies have been developed. The oldest utilizes the selective binding properties of dsRNA to cellulose. More recent methods are based on the application of anti-dsRNA antibodies and viral proteins with a specific affinity for dsRNA. All three methods have been used together with HTS for plant virus detection and study. To our knowledge, this is the first comparative study of three alternative dsRNA enrichment methods for virus and viroid detection through HTS using virus-infected, and healthy grapevine test plants. Extracts were performed in triplicate using methods based on, the anti-dsRNA antibody mAb rJ2 (Millipore Sigma Canada Ltd, Oakville, ON, Canada), the B2 dsRNA binding protein, and ReliaPrep™ Resin (Promega Corporation, Madison, WI, USA). The results show that the workflows for all three methods are effectively comparable, apart from purification steps related to antibody and binding protein construct. Both the cellulose resin and dsRNA binding protein construct methods provide highly enriched dsRNA extracts suitable for HTS with the B2 method providing a 36× and the ReliaPrep™ Resin a 163× increase in dsRNA enrichment compared to the mAb rJ2 antibody. The overall consistency and cost effectiveness of the ReliaPrep™ cellulose resin-based method and the potentially simpler adaptation to robotics made it the method of choice for future transfer to a semi-automated workflow.
Collapse
Affiliation(s)
- Michael E Rott
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, 8801 East Saanich Rd, North Saanich, British Columbia V8L 1H3, Canada.
| | - Kankana Ghoshal
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, 8801 East Saanich Rd, North Saanich, British Columbia V8L 1H3, Canada
| | - Sylvain Lerat
- Département de Biologie, Université de Sherbrooke, 2500 Bd de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Chantal Brosseau
- Département de Biologie, Université de Sherbrooke, 2500 Bd de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Geneviève Clément
- Département de Biologie, Université de Sherbrooke, 2500 Bd de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - James Phelan
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, 8801 East Saanich Rd, North Saanich, British Columbia V8L 1H3, Canada
| | - Sudarsana Poojari
- Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Yahya Gaafar
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, 8801 East Saanich Rd, North Saanich, British Columbia V8L 1H3, Canada
| | - Bhadra M Vemulapati
- Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Hélène Scheer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67000, France
| | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67000, France
| | - Mamadou L Fall
- Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, Québec J3B 3EB, Canada
| | - Peter Moffett
- Département de Biologie, Université de Sherbrooke, 2500 Bd de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
3
|
Messmer N, Bohnert P, Askani L, Schumacher S, Voegele RT, Fuchs R. Grapevine Pinot gris virus spreads in infected vineyards: latent infections have no direct impact on grape production. Virol J 2024; 21:178. [PMID: 39107785 PMCID: PMC11304625 DOI: 10.1186/s12985-024-02453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Grapevine Pinot gris virus (GPGV) infects grapevines worldwide and causes symptoms such as chlorotic mottling and deformations on leaves, stunted shoots and short panicles, or none of these symptoms if it appears as latent infection. So far, the consequences of GPGV infections for winegrowers are difficult to assess since important information such as plant performance at different GPGV infection levels and symptom expression are not fully clarified. METHODS In order to investigate the course of GPGV spread, annual visual evaluations and ELISA tests were conducted over 3-4 consecutive years in four GPGV-infected vineyards in southern Germany: GEM, HEC, NIM, and REI. The program PATCHY was used to analyze spatial disease patterns. Sanger sequencing was used to determine virus isolates in vines at different GPGV infection levels, to test their respective influence on symptom expression. Yield and GrapeScan (FTIR) analyses were conducted to test the impact of different GPGV infection levels and isolates on fruit quantity and quality. RESULTS GPGV infections significantly increased in all four vineyards (GEM 22-32%, HEC 50-99%, NIM 83-90%, REI 56-76%) with significant spreading patterns across and along rows. Specific symptom progression patterns were not observed. According to our results, the virus isolate has an influence on whether symptoms develop during a GPGV infection. While yield analyses revealed that yield losses only occur in symptomatic vines and range from 13 to 96% depending on the severity of symptoms, latent infections have no impact on grape production. No relevant effects of GPGV infections on must quality were observed. CONCLUSIONS Secondary spread of GPGV was observed in all vineyards monitored, indicating vector-borne transmission that is likely to be accelerated by human viticultural management. GPGV should be further monitored to prevent the accumulation of detrimental symptomatic isolates. The results of this study can be used to assess the risk of GPGV to viticulture and should be considered when developing management strategies against the virus.
Collapse
Affiliation(s)
- Noemi Messmer
- Department of Biology, State Institute of Viticulture and Enology (WBI), Merzhauser Strasse 119, 79100, Freiburg, Germany
- Department of Phytopathology, University of Hohenheim, Otto-Sander-Strasse 5, 70593, Stuttgart, Germany
| | - Patricia Bohnert
- Department of Biology, State Institute of Viticulture and Enology (WBI), Merzhauser Strasse 119, 79100, Freiburg, Germany
| | - Lars Askani
- Department of Biology, State Institute of Viticulture and Enology (WBI), Merzhauser Strasse 119, 79100, Freiburg, Germany
| | - Stefan Schumacher
- Department of Biology, State Institute of Viticulture and Enology (WBI), Merzhauser Strasse 119, 79100, Freiburg, Germany
| | - Ralf T Voegele
- Department of Phytopathology, University of Hohenheim, Otto-Sander-Strasse 5, 70593, Stuttgart, Germany
| | - René Fuchs
- Department of Biology, State Institute of Viticulture and Enology (WBI), Merzhauser Strasse 119, 79100, Freiburg, Germany.
| |
Collapse
|
4
|
Komínková M, Ben Mansour K, Komínek P, Brožová J, Střalková R. Multiple Infections with Viruses of the Family Tymoviridae in Czech Grapevines. Viruses 2024; 16:343. [PMID: 38543709 PMCID: PMC10975331 DOI: 10.3390/v16030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 05/23/2024] Open
Abstract
This study focused on the viruses of the Tymoviridae family that infect grapevines in the Czech Republic. Complete sequences of GFkV (grapevine fleck virus) and GRGV (grapevine red globe virus) from the genus Maculavirus and GRVFV (grapevine rupestris vein feathering virus) and GSyV-1 (grapevine Syrah virus 1) from the genus Marafivirus were obtained using high-throughput sequencing of small RNAs and total RNAs. Mixed infections with these viruses were observed, as well as several variants of these viruses in the same plant. Phylogenetic analysis showed the position of the newly obtained virus isolates within the Tymoviridae family. Recombinant analysis provided evidence of single and multiple intraspecific recombinations in GRGV, GSyV-1, and GRVFV. Additionally, GAMaV, a grapevine virus from the genus Marafivirus, was reported for the first time in the Czech Republic.
Collapse
Affiliation(s)
- Marcela Komínková
- Ecology, Diagnostics and Genetic Resources of Agriculturally Important Viruses, Fungi and Phytoplasmas, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic; (M.K.); or (K.B.M.); (J.B.)
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Karima Ben Mansour
- Ecology, Diagnostics and Genetic Resources of Agriculturally Important Viruses, Fungi and Phytoplasmas, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic; (M.K.); or (K.B.M.); (J.B.)
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Petr Komínek
- Ecology, Diagnostics and Genetic Resources of Agriculturally Important Viruses, Fungi and Phytoplasmas, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic; (M.K.); or (K.B.M.); (J.B.)
| | - Jana Brožová
- Ecology, Diagnostics and Genetic Resources of Agriculturally Important Viruses, Fungi and Phytoplasmas, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic; (M.K.); or (K.B.M.); (J.B.)
| | - Radomíra Střalková
- Crop Research Institute, Prague, Research Station for Viticulture Karlštejn, Karlštejn 98, 267 18 Karlštejn, Czech Republic;
| |
Collapse
|
5
|
Guedes LM, Henríquez IAA, Sanhueza C, Rodríguez-Cerda L, Figueroa C, Gavilán E, Aguilera N. Alterations induced by Colomerus vitis on the structural and physiological leaf features of two grape cultivars. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:183-201. [PMID: 38358409 DOI: 10.1007/s10493-023-00884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
Vitis vinifera is cultivated worldwide for its high nutritional and commercial value. More than 60 grape cultivars are cultivated in Chile. Two of these, the país and the corinto cultivars, are the oldest known and widely used for the preparation of traditional homemade drinks and consumption as table grapes. These two grape cultivars are affected by Colomerus vitis, an eriophyid mite which establishes on their leaves and forms erinea, where the mite and its offspring obtain shelter and food. Although C. vitis has a cosmopolitan distribution, few studies of its impact on the structure and physiology of affected plants have been reported. Herein we aimed to evaluate the impact of C. vitis infection on the structural and physiological leaf performance of the two grape cultivars. The results showed tissue hyperplasia and cell hypertrophy in the epidermis, with an overproduction of trichomes and emergences in the abaxial epidermis in both cultivars. The anatomical changes were similar between the país and corinto cultivars, but they were proportionally greater in the país, where the area affected by the erinea were greater. No significant changes were detected in the photosynthetic pigment content; however, there was an increase in the total soluble sugars content in the erineum leaves of the país cultivar. Higher contents of anthocyanins and total phenols, as well as the presence of the pinocembrin in the corinto cultivar, which was less affected by C. vitis, could also indicate some resistance to mites' attack, which should be investigated in future studies.
Collapse
Affiliation(s)
- Lubia M Guedes
- Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile
| | - Ignacio A A Henríquez
- Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile
| | - Carolina Sanhueza
- Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Laboratorio de Fisiología Vegetal, Universidad de Concepción, Casilla 160- C, Concepción, CP 4030000, Chile
| | - Lorena Rodríguez-Cerda
- Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile
| | - Camilo Figueroa
- Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile
| | - Elvis Gavilán
- Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile
| | - Narciso Aguilera
- Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile.
| |
Collapse
|
6
|
Jaksa-Czotter N, Nagyné Galbács Z, Jahan A, Demián E, Várallyay É. Viromes of Plants Determined by High-Throughput Sequencing of Virus-Derived siRNAs. Methods Mol Biol 2024; 2732:179-198. [PMID: 38060126 DOI: 10.1007/978-1-0716-3515-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Plants growing in open airfields can be infected by several viruses even as a multiple infection. Virus infection in crops can lead to a serious damage to the harvest. In addition, virus presence in grapevine, fruit trees, and tuberous vegetables, propagated vegetatively affects the phytosanitary status of the propagation material (both the rootstock and the variety) having profound effect on the lifetime and health of the new plantations. The fast evolution of sequencing techniques provides a new opportunity for metagenomics-based viral diagnostics. Small interfering (si) RNAs produced by the RNA silencing-based host immune system during viral infection can be sequenced by high-throughput techniques and analyzed for the presence of viruses, revealing the presence of all known viral pathogens in the sample and therefore opening new avenues in virus diagnostics. This method is based on Illumina sequencing and bioinformatics analysis of virus-derived siRNAs in the host. Here we describe a protocol for this challenging technique step by step with notes, to ensure success for every user.
Collapse
Affiliation(s)
- Nikoletta Jaksa-Czotter
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary
| | - Zsuzsanna Nagyné Galbács
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary
| | - Almash Jahan
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary
| | - Emese Demián
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary
| | - Éva Várallyay
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary.
| |
Collapse
|
7
|
Belkina D, Karpova D, Porotikova E, Lifanov I, Vinogradova S. Grapevine Virome of the Don Ampelographic Collection in Russia Has Concealed Five Novel Viruses. Viruses 2023; 15:2429. [PMID: 38140672 PMCID: PMC10747563 DOI: 10.3390/v15122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, an analysis of the virome of 51 grapevines from the Don ampelographic collection named after Ya. I. Potapenko (Russia) was performed using high-throughput sequencing of total RNA. A total of 20 previously described grapevine viruses and 4 viroids were identified. The most detected were grapevine rupestris stem pitting-associated virus (98%), hop stunt viroid (98%), grapevine Pinot gris virus (96%), grapevine yellow speckle viroid 1 (94%), and grapevine fleck virus (GFkV, 80%). Among the economically significant viruses, the most present were grapevine leafroll-associated virus 3 (37%), grapevine virus A (24%), and grapevine leafroll-associated virus 1 (16%). For the first time in Russia, a grapevine-associated tymo-like virus (78%) was detected. After a bioinformatics analysis, 123 complete or nearly complete viral genomes and 64 complete viroid genomes were assembled. An analysis of the phylogenetic relationships with reported global isolates was performed. We discovered and characterized the genomes of five novel grapevine viruses: bipartite dsRNA grapevine alphapartitivirus (genus Alphapartitivirus, family Partitiviridae), bipartite (+) ssRNA grapevine secovirus (genus Fabavirus, family Secoviridae) and three (+) ssRNA grapevine umbra-like viruses 2, -3, -4 (which phylogenetically occupy an intermediate position between representatives of the genus Umbravirus and umbravirus-like associated RNAs).
Collapse
Affiliation(s)
- Daria Belkina
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Daria Karpova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Elena Porotikova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Ilya Lifanov
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Svetlana Vinogradova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| |
Collapse
|
8
|
Shabanian M, Li C, Ebadi A, Dolja V, Meng B. Optimization of a Protocol for Launching Grapevine Infection with the Biologically Active cDNA Clones of a Virus. Pathogens 2023; 12:1314. [PMID: 38003779 PMCID: PMC10674828 DOI: 10.3390/pathogens12111314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Grapevine leafroll disease (GLRD) is the most globally prevalent and destructive disease complex responsible for significant reductions in grape yield and quality as well as wine production. GLRD is associated with several positive-strand RNA viruses of the family Closteroviridae, designated as grapevine leafroll-associated viruses (GLRaVs). However, the specific etiological role of any of these GLRaVs in GLRD has not been demonstrated. Even though GLRaV-3 is considered the chief GLRD agent, little is known about the molecular, cellular, and pathological properties of this virus. Such a knowledge gap is due to multiple factors, including the unavailability of biologically active virus cDNA clones and the lack of reliable experimental systems for launching grapevine infection using such clones. In this work, we tested four methods for inoculating tissue-cultured grapevine plantlets with cDNA clones of GLRaV-3: (i) vacuum agro-infiltration; (ii) agro-pricking; (iii) agro-drenching; and (iv) agro-injection. We showed that vacuum agro-infiltration was the most effective of these methods. Furthermore, we examined the impacts of different experimental conditions on the survival and infectivity rate of grapevines after infiltration. To verify the infectivity rate for different treatments, we used RT-PCR, RT-qPCR, and Western blotting. We found that humidity plays a critical role in the survival of plantlets after agro-infiltration and that the use of RNA silencing suppressor and dormancy treatment both had strong effects on the infection rates. To our knowledge, the experimental protocol reported herein is the most effective system for launching the infection of grapevine using cDNA clones of grapevine viruses featuring up to a 70% infection rate. This system has strong potential to facilitate grapevine virology research including the fulfillment of Koch's postulates for GLRD and other major virus diseases as well as identifying the molecular, cellular, and pathological properties of GLRaVs and, potentially, other important grapevine viruses.
Collapse
Affiliation(s)
- Mehdi Shabanian
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.L.); (B.M.)
| | - Caihong Li
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.L.); (B.M.)
| | - Ali Ebadi
- Department of Horticulture, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-11167, Iran;
| | - Valerian Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.L.); (B.M.)
| |
Collapse
|
9
|
Vinogradova S, Porotikova E, Navrotskaya E, Galbacs ZN, Massart S, Varallyay E. The First Virome of a Russian Vineyard. PLANTS (BASEL, SWITZERLAND) 2023; 12:3292. [PMID: 37765456 PMCID: PMC10534617 DOI: 10.3390/plants12183292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Among other pathogens, more than 80 viruses infect grapevine. The aim of this work was to study the virome diversity of grapevine viruses and mycoviruses of a vineyard using high-throughput sequencing technologies. The grapevine virome was studied in symptomatic vines of the Rkatsiteli cultivar (V. vinifera) collected at the vineyards of the Krasnodar Krai in Russia. Ribosomal-depleted total RNA and isolated small RNAs were used for library preparation and high-throughput sequencing. Six grapevine-infecting viruses and two viroids were validated by RT-PCR and analyzed phylogenetically. We identified the presence of grapevine leafroll-associated virus 3, grapevine Pinot gris virus, grapevine virus T, grapevine rupestris stem-pitting-associated virus, grapevine fleck virus, and grapevine rupestris vein feathering virus, as well as two viroids, grapevine yellow speckle viroid 1 and hop stunt viroid. We also studied the mycovirome of the vineyard and identified nine viruses with single-stranded positive-sense RNA genomes: alternaria arborescens mitovirus 1, botrytis cinerea mitovirus 1, botrytis cinerea mitovirus 2, botrytis cinerea mitovirus 3, botrytis cinerea mitovirus 4, sclerotinia sclerotiorum mitovirus 3, botrytis cinerea hypovirus 1, grapevine-associated narnavirus 1, and botrytis virus F. In addition, we identified botrytis cinerea hypovirus 1 satellite-like RNA and two single-stranded negative-sense RNA viruses. This is the first study of grapevine mycoviruses in Russia. The obtained result will contribute to the development of biocontrol strategies in the future.
Collapse
Affiliation(s)
- Svetlana Vinogradova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Elena Porotikova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Emiliya Navrotskaya
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Zsuzsanna Nagyne Galbacs
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, H-2100 Godollo, Hungary
| | - Sébastien Massart
- Laboratory of Integrated and Urban Phytopathology, TERRA, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Eva Varallyay
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, H-2100 Godollo, Hungary
| |
Collapse
|
10
|
Kaur K, Rinaldo A, Lovelock D, Rodoni B, Constable F. The genetic variability of grapevine Pinot gris virus (GPGV) in Australia. Virol J 2023; 20:211. [PMID: 37705082 PMCID: PMC10500770 DOI: 10.1186/s12985-023-02171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Grapevine Pinot gris virus (GPGV; genus Trichovirus in the family Betaflexiviridae) was detected in Australia in 2016, but its impact on the production of nursery material and fruit in Australia is still currently unknown. This study investigated the prevalence and genetic diversity of GPGV in Australia. GPGV was detected by reverse transcription-polymerase chain reaction (RT-PCR) in a range of rootstock, table and wine grape varieties from New South Wales, South Australia, and Victoria, with 473/2171 (21.8%) samples found to be infected. Genomes of 32 Australian GPGV isolates were sequenced and many of the isolates shared high nucleotide homology. Phylogenetic and haplotype analyses demonstrated that there were four distinct clades amongst the 32 Australian GPGV isolates and that there were likely to have been at least five separate introductions of the virus into Australia. Recombination and haplotype analysis indicate the emergence of new GPGV strains after introduction into Australia. When compared with 168 overseas GPGV isolates, the analyses suggest that the most likely origin of Australian GPGV isolates is from Europe. There was no correlation between specific GPGV genotypes and symptoms such as leaf mottling, leaf deformation, and shoot stunting, which were observed in some vineyards, and the virus was frequently found in symptomless grapevines.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia.
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Melbourne, VIC, Australia.
| | - Amy Rinaldo
- The Australian Wine Research Institute, Adelaide, SA, Australia
| | - David Lovelock
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Melbourne, VIC, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Melbourne, VIC, Australia
| | - Fiona Constable
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Phylogenetic and Evolutionary Studies of Grapevine Pinot Gris Virus Isolates from Canada. Viruses 2023; 15:v15030735. [PMID: 36992444 PMCID: PMC10057519 DOI: 10.3390/v15030735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
This study investigated the phylogenetic relationship of grapevine Pinot gris virus (GPGV) isolates from Canada with GPGV isolates reported worldwide. Full-length genomes of 25 GPGV isolates representing the main four grape-growing regions in Canada (British Columbia, Ontario, Nova Scotia and Quebec) were sequenced and compared to genomes of 43 GPGV isolates representing eight countries and three continents. Phylogenetic analysis based on full genome sequences revealed an unambiguous separation of North American GPGV isolates with isolates from Europe and Asia. Within the North American clade, GPGV isolates from the USA segregated into a distinct subclade, whereas the relationships amongst GPGV isolates from different regions of Canada were not clearly defined. The phylogenetic analysis of the overlapping regions of MP and CP genes involving 169 isolates from 14 countries resulted in two distinctive clades, which were seemingly independent of their country of origin. Clade 1 included the majority of asymptomatic isolates (81% asymptomatic), whereas clade 2 was predominantly formed of symptomatic isolates (78% symptomatic). This research is the first study focused on the genetic variability and origin of GPGV in Canada.
Collapse
|
12
|
Santiago-Rodriguez TM, Hollister EB. Unraveling the viral dark matter through viral metagenomics. Front Immunol 2022; 13:1005107. [PMID: 36189246 PMCID: PMC9523745 DOI: 10.3389/fimmu.2022.1005107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses are part of the microbiome and have essential roles in immunology, evolution, biogeochemical cycles, health, and disease progression. Viruses influence a wide variety of systems and processes, and the continued discovery of novel viruses is anticipated to reveal new mechanisms influencing the biology of diverse environments. While the identity and roles of viruses continue to be discovered and understood through viral metagenomics, most of the sequences in virome datasets cannot be attributed to known viruses or may be only distantly related to species already described in public sequence databases, at best. Such viruses are known as the viral dark matter. Ongoing discoveries from the viral dark matter have provided insights into novel viruses from a variety of environments, as well as their potential in immunological processes, virus evolution, health, disease, therapeutics, and surveillance. Increased understanding of the viral dark matter will continue with a combination of cultivation, microscopy, sequencing, and bioinformatic efforts, which are discussed in the present review.
Collapse
|
13
|
Grapevine Pinot Gris Virus Is Present in Different Non-Vitis Hosts. PLANTS 2022; 11:plants11141830. [PMID: 35890463 PMCID: PMC9315623 DOI: 10.3390/plants11141830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Grapevine Pinot gris virus (GPGV) was described in Italy using a metagenomic approach: next-generation sequencing of the virus-derived small RNAs. Since that time, it has been reported all over the world. The presence of GPGV is associated with grapevine disease, but most of the time, the disease is asymptomatic. Although the host range of this virus has not been investigated, it has been found in the non-Vitis hosts, Silene latifolia and Chenopodium album. We investigated the presence of GPGV in grapevine and other plant species growing as weeds in the vineyard. Using RT-PCR, we identified GPGV in seven non-Vitis hosts: Ailanthus, Asclepias, Crataegus, Fraxinus, Rosa, Rubus, and Sambucus. In the case of Rosa and Rubus, this finding was supported by Northern blot detection of the virus. GPGV strains in non-Vitis hosts belong to the asymptomatic clade, and are clustered according to their original geographic locations. The presence of GPGV in species other than grapevine shows that besides well-known vector and propagating material-based infections, other possible entry sites for the virus can exist, which have to be taken into consideration when developing reliable regulation strategies.
Collapse
|
14
|
Shvets D, Porotikova E, Sandomirsky K, Vinogradova S. Virome of Grapevine Germplasm from the Anapa Ampelographic Collection (Russia). Viruses 2022; 14:1314. [PMID: 35746784 PMCID: PMC9230720 DOI: 10.3390/v14061314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Grapevine germplasm collections are unique repositories of grape cultivars; therefore, it is necessary to minimize their infection with pathogens, including viruses, and develop various programs to maintain them in a virus-free state. In our study, we examined the virome of the largest Russian grapevine germplasm collection, the Anapa Ampelographic Collection, using high-throughput sequencing of total RNAs. As a result of bioinformatics analysis and validation of its results by reverse transcription PCR (RT-PCR) and quantitative RT-PCR (RT-qPCR), we identified 20 viruses and 3 viroids in 47 libraries. All samples were infected with 2 to 12 viruses and viroids, including those that cause economically significant diseases: leafroll, fleck, and rugose wood complex. For the first time in Russia, we detected Grapevine virus B (GVB), Grapevine virus F (GVF), Grapevine asteroid mosaic-associated virus (GAMaV), Grapevine Red Globe virus (GRGV), Grapevine satellite virus (GV-Sat), Grapevine virga-like virus (GVLV), Grapevine-associated jivivirus 1 (GaJV-1) and Vitis cryptic virus (VCV). A new putative representative of the genus Umbravirus with the provisional name Grapevine umbra-like virus (GULV) was also identified in Russian grape samples.
Collapse
Affiliation(s)
| | | | | | - Svetlana Vinogradova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky, Prospect 33, 119071 Moscow, Russia; (D.S.); (E.P.); (K.S.)
| |
Collapse
|
15
|
Miljanić V, Jakše J, Rusjan D, Škvarč A, Štajner N. Small RNA Sequencing and Multiplex RT-PCR for Diagnostics of Grapevine Viruses and Virus-Like Organisms. Viruses 2022; 14:v14050921. [PMID: 35632662 PMCID: PMC9145883 DOI: 10.3390/v14050921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/18/2022] Open
Abstract
Metagenomic approaches used for virus diagnostics allow for rapid and accurate detection of all viral pathogens in the plants. In order to investigate the occurrence of viruses and virus-like organisms infecting grapevine from the Ampelographic collection Kromberk in Slovenia, we used Ion Torrent small RNA sequencing (sRNA-seq) and the VirusDetect pipeline to analyze the sRNA-seq data. The used method revealed the presence of: Grapevine leafroll-associated virus 1 (GLRaV-1), Grapevine leafroll-associated virus 2 (GLRaV-2), Grapevine leafroll-associated virus 3 (GLRaV-3), Grapevine rupestris stem pitting-associated virus (GRSPaV), Grapevine fanleaf virus (GFLV) and its satellite RNA (satGFLV), Grapevine fleck virus (GFkV), Grapevine rupestris vein feathering virus (GRVFV), Grapevine Pinot gris virus (GPGV), Grapevine satellite virus (GV-Sat), Hop stunt viroid (HSVd), and Grapevine yellow speckle viroid 1 (GYSVd-1). Multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed for validation of sRNA-seq predicted infections, including various combinations of viruses or viroids and satellite RNA. mRT-PCR could further be used for rapid and cost-effective routine molecular diagnosis, including widespread, emerging, and seemingly rare viruses, as well as viroids which testing is usually overlooked.
Collapse
Affiliation(s)
- Vanja Miljanić
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Denis Rusjan
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Škvarč
- Chamber of Agriculture and Forestry of Slovenia, Agriculture and Forestry Institute Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Shvets D, Vinogradova S. Occurrence and Genetic Characterization of Grapevine Pinot Gris Virus in Russia. PLANTS (BASEL, SWITZERLAND) 2022; 11:1061. [PMID: 35448789 PMCID: PMC9028157 DOI: 10.3390/plants11081061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Grapevine Pinot gris virus (GPGV) is a widespread grapevine pathogen associated with symptoms of leaf mottling and deformation. In order to study the distribution and genetic diversity of GPGV in Russia, we tested 1347 grapevine samples from 3 regions of Russia-the Krasnodar Krai, Stavropol Krai, and Republic of Crimea-using duplex real-time RT-PCR. GPGV was detected in 993 grapevines, both symptomatic and asymptomatic. In 119 isolates, we sequenced complete movement protein (MP) and coat protein (CP) genes of the GPGV genome. The percentage of identity of the obtained nucleotide MP/CP sequences with the closest isolates from the GenBank was 97.75-99.56%. A phylogenetic analysis showed that these Russian GPGV isolates are mainly grouped with previously described representative asymptomatic isolates. New post-translational modifications of the MP and CP at the positions of polymorphisms in the genomes of Russian isolates were predicted. The present work is the first study on the distribution and genetic diversity of GPGV in Russia.
Collapse
|
17
|
Elimination of Eight Viruses and Two Viroids from Preclonal Candidates of Six Grapevine Varieties (Vitis vinifera L.) through In Vivo Thermotherapy and In Vitro Meristem Tip Micrografting. PLANTS 2022; 11:plants11081064. [PMID: 35448791 PMCID: PMC9029751 DOI: 10.3390/plants11081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Viruses and virus-like organisms are a major problem in viticulture worldwide. They cannot be controlled by standard plant protection measures, and once infected, plants remain infected throughout their life; therefore, the propagation of healthy vegetative material is crucial. In vivo thermotherapy at 36–38 °C for at least six weeks, followed by meristem tip micrografting (0.1–0.2 mm) onto in vitro-growing seedling rootstocks of Vialla (Vitis labrusca × Vitis riparia), was successfully used to eliminate eight viruses (grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine Pinot gris virus (GPGV), grapevine fanleaf virus (GFLV), grapevine leafroll-associated virus 3 (GLRaV-3), grapevine fleck virus (GFkV), grapevine rupestris vein feathering virus (GRVFV), grapevine Syrah virus-1 (GSyV-1), and raspberry bushy dwarf virus (RBDV)), as well as two viroids (hop stunt viroid (HSVd) and grapevine yellow speckle viroid 1 (GYSVd-1)) from preclonal candidates of six grapevine varieties (Vitis vinifera L.). A half-strength MS medium including vitamins supplemented with 30 g/L of sucrose and solidified with 8 g/L of agar, without plant growth regulators, was used for the growth and root development of micrografts and the subsequently micropropagated plants; no callus formation, hyperhydricity, or necrosis of shoot tips was observed. Although the overall regeneration was low (higher in white than in red varieties), a 100% elimination was achieved for all eight viruses, whereas the elimination level for viroids was lower, reaching only 39.2% of HSVd-free and 42.6% GYSVd-1-free vines. To the best of our knowledge, this is the first report of GPGV, GRVFV, GSyV-1, HSVd, and GYSVd-1 elimination through combining in vivo thermotherapy and in vitro meristem tip micrografting, and the first report of RBDV elimination from grapevines. The virus-free vines were successfully acclimatized in rockwool plugs and then transferred to soil.
Collapse
|
18
|
Miljanić V, Jakše J, Kunej U, Rusjan D, Škvarč A, Štajner N. Virome Status of Preclonal Candidates of Grapevine Varieties ( Vitis vinifera L.) From the Slovenian Wine-Growing Region Primorska as Determined by High-Throughput Sequencing. Front Microbiol 2022; 13:830866. [PMID: 35265062 PMCID: PMC8899541 DOI: 10.3389/fmicb.2022.830866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Diseases caused by viruses and virus-like organisms are one of the major problems in viticulture and grapevine marketing worldwide. Therefore, rapid and accurate diagnosis and identification is crucial. In this study, we used HTS of virus- and viroid-derived small RNAs to determine the virome status of Slovenian preclonal candidates of autochthonous and local grapevine varieties (Vitis vinifera L.). The method applied to the studied vines revealed the presence of nine viruses and two viroids. All viral entities were validated and more than 160 Sanger sequences were generated and deposited in NCBI. In addition, a complete description into the co-infections in each plant studied was obtained. No vine was found to be virus- and viroid-free, and no vine was found to be infected with only one virus or viroid, while the highest number of viral entities in a plant was eight.
Collapse
Affiliation(s)
- Vanja Miljanić
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Denis Rusjan
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andreja Škvarč
- Chamber of Agriculture and Forestry of Slovenia, Agriculture and Forestry Institute Nova Gorica, Nova Gorica, Slovenia
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Nuzzo F, Moine A, Nerva L, Pagliarani C, Perrone I, Boccacci P, Gribaudo I, Chitarra W, Gambino G. Grapevine virome and production of healthy plants by somatic embryogenesis. Microb Biotechnol 2022; 15:1357-1373. [PMID: 35182024 PMCID: PMC9049623 DOI: 10.1111/1751-7915.14011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Grapevine (Vitis spp.) is a widespread fruit tree hosting many viral entities that interact with the plant modifying its responses to the environment. The production of virus‐free plants is becoming increasingly crucial for the use of grapevine as a model species in different studies. Using high‐throughput RNA sequencing, the viromes of seven mother plants grown in a germplasm collection vineyard were sequenced. In addition to the viruses and viroids already detected in grapevine, we identified 13 putative new mycoviruses. The different spread among grapevine tissues collected in vineyard, greenhouse and in vitro conditions suggested a clear distinction between viruses/viroids and mycoviruses that can successfully be exploited for their identification. Mycoviruses were absent in in vitro cultures, while plant viruses and viroids were particularly accumulated in these plantlets. Somatic embryogenesis applied to the seven mother plants was effective in the elimination of the complete virome, including mycoviruses. However, different sanitization efficiencies for viroids and grapevine pinot gris virus were observed among genotypes. The absence of mycoviruses in in vitro plantlets, associated with the absence of all viral entities in somaclones, suggested that this regeneration technique is also effective to eradicate endophytic/epiphytic fungi, resulting in gnotobiotic or pseudo‐gnotobiotic plants.
Collapse
Affiliation(s)
- Floriana Nuzzo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy.,Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, Conegliano, 31015, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy.,Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, Conegliano, 31015, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| |
Collapse
|
20
|
Raza A, Wu Q. Diagnosis of Viral Diseases Using Deep Sequencing and Metagenomics Analyses. Methods Mol Biol 2022; 2400:225-243. [PMID: 34905206 DOI: 10.1007/978-1-0716-1835-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Viruses are ubiquitous in nature and exist in a variety of habitats. The advancement in sequencing technologies has revolutionized the understanding of viral biodiversity associated with plant diseases. Deep sequencing combined with metagenomics is a powerful approach that has proven to be revolutionary in the last decade and involves the direct analysis of viral genomes present in a diseased tissue sample. This protocol describes the details of RNA extraction and purification from wild rice plant and their yield, RNA purity, and integrity assessment. As a final step, bioinformatics data analysis including demultiplexing, quality control, de novo transcriptome assembly, taxonomic allocation and read mapping following Illumina HiSeq small and total RNA sequencing are described. Furthermore, the total RNAs extraction protocol and an additional ribosomal rRNAs depletion step which are significantly important for viral genomes construction are provided.
Collapse
Affiliation(s)
- Ali Raza
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qingfa Wu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
21
|
Rienth M, Vigneron N, Walker RP, Castellarin SD, Sweetman C, Burbidge CA, Bonghi C, Famiani F, Darriet P. Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario. FRONTIERS IN PLANT SCIENCE 2021; 12:717223. [PMID: 34956249 PMCID: PMC8693719 DOI: 10.3389/fpls.2021.717223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
The grapevine is subject to high number of fungal and viral diseases, which are responsible for important economic losses in the global wine sector every year. These pathogens deteriorate grapevine berry quality either directly via the modulation of fruit metabolic pathways and the production of endogenous compounds associated with bad taste and/or flavor, or indirectly via their impact on vine physiology. The most common and devastating fungal diseases in viticulture are gray mold, downy mildew (DM), and powdery mildew (PM), caused, respectively by Botrytis cinerea, Plasmopara viticola, and Erysiphe necator. Whereas B. cinerea mainly infects and deteriorates the ripening fruit directly, deteriorations by DM and PM are mostly indirect via a reduction of photosynthetic leaf area. Nevertheless, mildews can also infect berries at certain developmental stages and directly alter fruit quality via the biosynthesis of unpleasant flavor compounds that impair ultimate wine quality. The grapevine is furthermore host of a wide range of viruses that reduce vine longevity, productivity and berry quality in different ways. The most widespread virus-related diseases, that are known nowadays, are Grapevine Leafroll Disease (GLRD), Grapevine Fanleaf Disease (GFLD), and the more recently characterized grapevine red blotch disease (GRBD). Future climatic conditions are creating a more favorable environment for the proliferation of most virus-insect vectors, so the spread of virus-related diseases is expected to increase in most wine-growing regions. However, the impact of climate change on the evolution of fungal disease pressure will be variable and depending on region and pathogen, with mildews remaining certainly the major phytosanitary threat in most regions because their development rate is to a large extent temperature-driven. This paper aims to provide a review of published literature on most important grapevine fungal and viral pathogens and their impact on grape berry physiology and quality. Our overview of the published literature highlights gaps in our understanding of plant-pathogen interactions, which are valuable for conceiving future research programs dealing with the different pathogens and their impacts on grapevine berry quality and metabolism.
Collapse
Affiliation(s)
- Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Nicolas Vigneron
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Crista A. Burbidge
- School of Agriculture and Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Glen Osmond, SA, Australia
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Philippe Darriet
- Univ. Bordeaux, Unité de recherche Œnologie EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| |
Collapse
|
22
|
Navrotskaya E, Porotikova E, Yurchenko E, Galbacs ZN, Varallyay E, Vinogradova S. High-Throughput Sequencing of Small RNAs for Diagnostics of Grapevine Viruses and Viroids in Russia. Viruses 2021; 13:2432. [PMID: 34960701 PMCID: PMC8709451 DOI: 10.3390/v13122432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The use of high-throughput sequencing (HTS) technology has led to significant progress in the identification of many viruses and their genetic variants. In this study, we used the HTS platform to sequence small RNAs (sRNAs) of grapevine to study the virome. Isolation of RNA was performed using symptomatic grapevines collected from commercial vineyards in Krasnodar Krai in 2017-2018. To determine the viromes of vineyards, we used an integrated approach that included a bioinformatic analysis of the results of sRNA HTS and the molecular method RT-PCR, which made it possible to identify 13 viruses and 4 viroids. Grapevine leafroll-associated virus 4 (GLRaV-4), Grapevine Syrah Virus-1 (GSyV-1), Raspberry bushy dwarf virus (RBDV), Australian grapevine viroid (AGVd), and Grapevine yellow speckle viroid 2 (GYSVd-2) were identified for the first time in Russia. Out of 38 samples analyzed, 37 had mixed infections with 4-11 viruses, indicating a high viral load. Analysis of the obtained sequences of fragments of virus genomes made it possible to identify recombination events in GLRaV-1, GLRaV-2, GLRaV-3, GLRaV-4, GVT, GPGV, GRSPaV, GVA, and GFLV. The obtained results indicate a wide spread of the viruses and a high genetic diversity in the vineyards of Krasnodar Krai and emphasize the urgent need to develop and implement long-term strategies for the control of viral grapevine diseases.
Collapse
Affiliation(s)
- Emiliya Navrotskaya
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.N.); (E.P.)
| | - Elena Porotikova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.N.); (E.P.)
| | - Eugeniya Yurchenko
- Federal State Budgetary Scientific Institution ‘North Caucasian Federal Scientific Horticulture and Viticulture Center’, Protection and Plant Biotechnology Scientific Center, Head, 40 Years of Victory Street 39, 350072 Krasnodar, Russia;
| | - Zsuzsanna Nagyne Galbacs
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, H-2100 Godollo, Hungary; (Z.N.G.); (E.V.)
| | - Eva Varallyay
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, H-2100 Godollo, Hungary; (Z.N.G.); (E.V.)
| | - Svetlana Vinogradova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.N.); (E.P.)
| |
Collapse
|
23
|
Evaluation of sensitivity and specificity in RNA-Seq-based detection of grapevine viral pathogens. J Virol Methods 2021; 300:114383. [PMID: 34843827 DOI: 10.1016/j.jviromet.2021.114383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/14/2021] [Accepted: 11/25/2021] [Indexed: 11/22/2022]
Abstract
Virus detection is a crucial step for the implementation of clean stock programs that preserve healthy crop species. Viral infections in grapevine, a vegetatively propagated perennial crop, cannot be eradicated from the vineyards by the application of agrochemicals and must be curtailed at the stage of nursery production during the propagation of planting material. Viral detection is routinely performed using enzyme-linked immunosorbent assays (ELISA) or Reverse Transcription-quantitative Polymerase Chain Reactions (RT-qPCR). High throughput sequencing (HTS) approaches have the potential to detect all viral pathogens in a plant specimen. However, to date, no published HTS-based study has used threshold selection based on ROC curves for discriminating positive from negative samples. To fill this gap, we assessed the specificity and sensitivity of different sequencing and bioinformatics approaches for nine common viruses, which were tested in the same specimens using ELISA and/or RT-qPCR. The normalized detection thresholds giving the best results were 19.28 Fragments Per Kilobase of transcript per Million mapped reads (FPKM) for alignment-based total RNA-Seq approaches, 386 Reads Per Million mapped reads (RPM) for metagenomics-based total RNA-Seq, 1572 FPKM for alignment-based small RNA-Seq analysis and 0.97 % of contigs for de novo analysis of small RNA-Seq data. Validation of the proposed thresholds using independent specimens collected over time from the same stocks and other specimens collected from nearby stocks that had derived from the same propagating material showed that HTS approaches are accurate, with RNA-Seq approaches showing better performance than small RNA-Seq.
Collapse
|
24
|
Javaran VJ, Moffett P, Lemoyne P, Xu D, Adkar-Purushothama CR, Fall ML. Grapevine Virology in the Third-Generation Sequencing Era: From Virus Detection to Viral Epitranscriptomics. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112355. [PMID: 34834718 PMCID: PMC8623739 DOI: 10.3390/plants10112355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 05/30/2023]
Abstract
Among all economically important plant species in the world, grapevine (Vitis vinifera L.) is the most cultivated fruit plant. It has a significant impact on the economies of many countries through wine and fresh and dried fruit production. In recent years, the grape and wine industry has been facing outbreaks of known and emerging viral diseases across the world. Although high-throughput sequencing (HTS) has been used extensively in grapevine virology, the application and potential of third-generation sequencing have not been explored in understanding grapevine viruses and their impact on the grapevine. Nanopore sequencing, a third-generation technology, can be used for the direct sequencing of both RNA and DNA with minimal infrastructure. Compared to other HTS methods, the MinION nanopore platform is faster and more cost-effective and allows for long-read sequencing. Due to the size of the MinION device, it can be easily carried for field viral disease surveillance. This review article discusses grapevine viruses, the principle of third-generation sequencing platforms, and the application of nanopore sequencing technology in grapevine virus detection, virus-plant interactions, as well as the characterization of viral RNA modifications.
Collapse
Affiliation(s)
- Vahid Jalali Javaran
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Peter Moffett
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Pierre Lemoyne
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| | - Dong Xu
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| | - Charith Raj Adkar-Purushothama
- Département de Biochimie, Faculté de Médecine des Sciences de la Santé, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada;
| | - Mamadou Lamine Fall
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| |
Collapse
|
25
|
Mushtaq M, Dar AA, Basu U, Bhat BA, Mir RA, Vats S, Dar MS, Tyagi A, Ali S, Bansal M, Rai GK, Wani SH. Integrating CRISPR-Cas and Next Generation Sequencing in Plant Virology. Front Genet 2021; 12:735489. [PMID: 34759957 PMCID: PMC8572880 DOI: 10.3389/fgene.2021.735489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Plant pathology has been revolutionized by the emergence and intervention of next-generation sequencing technologies (NGS) which provide a fast, cost-effective, and reliable diagnostic for any class of pathogens. NGS has made tremendous advancements in the area of research and diagnostics of plant infecting viromes and has bridged plant virology with other advanced research fields like genome editing technologies. NGS in a broader perspective holds the potential for plant health improvement by diagnosing and mitigating the new or unusual symptoms caused by novel/unidentified viruses. CRISPR-based genome editing technologies can enable rapid engineering of efficient viral/viroid resistance by directly targeting specific nucleotide sites of plant viruses and viroids. Critical genes such as eIf (iso) 4E or eIF4E have been targeted via the CRISPR platform to produce plants resistant to single-stranded RNA (ssRNA) viruses. CRISPR/Cas-based multi-target DNA or RNA tests can be used for rapid and accurate diagnostic assays for plant viruses and viroids. Integrating NGS with CRISPR-based genome editing technologies may lead to a paradigm shift in combating deadly disease-causing plant viruses/viroids at the genomic level. Furthermore, the newly discovered CRISPR/Cas13 system has unprecedented potential in plant viroid diagnostics and interference. In this review, we have highlighted the application and importance of sequencing technologies on covering the viral genomes for precise modulations. This review also provides a snapshot vision of emerging developments in NGS technologies for the characterization of plant viruses and their potential utilities, advantages, and limitations in plant viral diagnostics. Furthermore, some of the notable advances like novel virus-inducible CRISPR/Cas9 system that confers virus resistance with no off-target effects have been discussed.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Aejaz Ahmad Dar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Umer Basu
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | | | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Sanskriti Vats
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - M. S. Dar
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Monika Bansal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| |
Collapse
|
26
|
Tarquini G, Pagliari L, Ermacora P, Musetti R, Firrao G. Trigger and Suppression of Antiviral Defenses by Grapevine Pinot Gris Virus (GPGV): Novel Insights into Virus-Host Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1010-1023. [PMID: 33983824 DOI: 10.1094/mpmi-04-21-0078-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Grapevine Pinot gris virus (GPGV) is an emerging trichovirus that has been putatively associated with a novel grapevine disease known as grapevine leaf mottling and deformation (GLMD). Yet the role of GPGV in GLMD disease is poorly understood, since it has been detected both in symptomatic and symptomless grapevines. We exploited a recently constructed GPGV infectious clone (pRI::GPGV-vir) to induce an antiviral response in Nicotiana benthamiana plants. In silico prediction of virus-derived small interfering RNAs and gene expression analyses revealed the involvement of DCL4, AGO5, and RDR6 genes during GPGV infection, suggesting the activation of the posttranscriptional gene-silencing (PTGS) pathway as a plant antiviral defense. PTGS suppression assays in transgenic N. benthamiana 16c plants revealed the ability of the GPGV coat protein to suppress RNA silencing. This work provides novel insights on the interaction between GPGV and its host, revealing the ability of the virus to trigger and suppress antiviral RNA silencing.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Giulia Tarquini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| | - Laura Pagliari
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| | - Paolo Ermacora
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| | - Rita Musetti
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| | - Giuseppe Firrao
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| |
Collapse
|
27
|
Pagliari L, Tarquini G, Loschi A, Buoso S, Kapun G, Ermacora P, Musetti R. Gimme shelter: three-dimensional architecture of the endoplasmic reticulum, the replication site of grapevine Pinot gris virus. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1074-1085. [PMID: 34462050 DOI: 10.1071/fp21084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Grapevine leaf mottling and deformation is a novel grapevine disease that has been associated with grapevine Pinot gris virus (GPGV). The virus was observed exclusively inside membrane-bound structures in the bundle sheath cells of the infected grapevines. As reported widely in the literature, many positive-sense single-stranded RNA viruses modify host-cell membranes to form a variety of deformed organelles, which shelter viral genome replication from host antiviral compounds. Morphologically, the GPGV-associated membranous structures resemble the deformed endoplasmic reticulum described in other virus-host interactions. In this study we investigated the GPGV-induced membranous structures observed in the bundle sheath cells of infected plants. The upregulation of different ER stress-related genes was evidenced by RT-qPCR assays, further confirming the involvement of the ER in grapevine/GPGV interaction. Specific labelling of the membranous structures with an antibody against luminal-binding protein identified them as ER. Double-stranded RNA molecules, which are considered intermediates of viral replication, were localised exclusively in the ER-derived structures and indicated that GPGV exploited this organelle to replicate itself in a shelter niche. Novel analyses using focussed ion-beam scanning electron microscopy (FIB-SEM) were performed in grapevine leaf tissues to detail the three-dimensional organisation of the ER-derived structures and their remodelling due to virus replication.
Collapse
Affiliation(s)
- Laura Pagliari
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine,via delle Scienze, 206, 33100 - Udine, Italy
| | - Giulia Tarquini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine,via delle Scienze, 206, 33100 - Udine, Italy
| | - Alberto Loschi
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine,via delle Scienze, 206, 33100 - Udine, Italy
| | - Sara Buoso
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine,via delle Scienze, 206, 33100 - Udine, Italy
| | - Gregor Kapun
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia; and Centre of Excellence on Nanoscience and Nanotechnology - Nanocenter, Jamova 39, SI1000 Ljubljana, Slovenia
| | - Paolo Ermacora
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine,via delle Scienze, 206, 33100 - Udine, Italy
| | - Rita Musetti
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine,via delle Scienze, 206, 33100 - Udine, Italy; and Corresponding author.
| |
Collapse
|
28
|
Hily JM, Komar V, Poulicard N, Velt A, Renault L, Mustin P, Vigne E, Spilmont AS, Lemaire O. Evidence of differential spreading events of grapevine pinot Gris virus in Italy using datamining as a tool. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2021; 161:735-742. [PMID: 34465944 PMCID: PMC8390104 DOI: 10.1007/s10658-021-02343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Since its identification in 2003, grapevine Pinot gris virus (GPGV, Trichovirus) has now been detected in most grape-growing countries. So far, little is known about the epidemiology of this newly emerging virus. In this work, we used datamining as a tool to monitor in-silico the sanitary status of three vineyards in Italy. All data used in the study were recovered from a work that was already published and for which data were publicly available as SRA (Sequence Read Archive, NCBI) files. While incomplete, knowledge gathered from this work was still important, with evidence of differential accumulation of the virus in grapevine according to year, location, and variety-rootstock association. Additional data regarding GPGV genetic diversity were collected. Some advantages and pitfalls of datamining are discussed.
Collapse
Affiliation(s)
| | - Véronique Komar
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Nils Poulicard
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Amandine Velt
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Lauriane Renault
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Pierre Mustin
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Emmanuelle Vigne
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | | | - Olivier Lemaire
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| |
Collapse
|
29
|
Quintanilha-Peixoto G, Fonseca PLC, Raya FT, Marone MP, Bortolini DE, Mieczkowski P, Olmo RP, Carazzolle MF, Voigt CA, Soares ACF, Pereira GAG, Góes-Neto A, Aguiar ERGR. The Sisal Virome: Uncovering the Viral Diversity of Agave Varieties Reveals New and Organ-Specific Viruses. Microorganisms 2021; 9:microorganisms9081704. [PMID: 34442783 PMCID: PMC8400513 DOI: 10.3390/microorganisms9081704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022] Open
Abstract
Sisal is a common name for different plant varieties in the genus Agave (especially Agave sisalana) used for high-quality natural leaf fiber extraction. Despite the economic value of these plants, we still lack information about the diversity of viruses (virome) in non-tequilana species from the genus Agave. In this work, by associating RNA and DNA deep sequencing we were able to identify 25 putative viral species infecting A. sisalana, A. fourcroydes, and Agave hybrid 11648, including one strain of Cowpea Mild Mottle Virus (CPMMV) and 24 elements likely representing new viruses. Phylogenetic analysis indicated they belong to at least six viral families: Alphaflexiviridae, Betaflexiviridae, Botourmiaviridae, Closteroviridae, Partitiviridae, Virgaviridae, and three distinct unclassified groups. We observed higher viral taxa richness in roots when compared to leaves and stems. Furthermore, leaves and stems are very similar diversity-wise, with a lower number of taxa and dominance of a single viral species. Finally, approximately 50% of the identified viruses were found in all Agave organs investigated, which suggests that they likely produce a systemic infection. This is the first metatranscriptomics study focused on viral identification in species from the genus Agave. Despite having analyzed symptomless individuals, we identified several viruses supposedly infecting Agave species, including organ-specific and systemic species. Surprisingly, some of these putative viruses are probably infecting microorganisms composing the plant microbiota. Altogether, our results reinforce the importance of unbiased strategies for the identification and monitoring of viruses in plant species, including those with asymptomatic phenotypes.
Collapse
Affiliation(s)
- Gabriel Quintanilha-Peixoto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Paula Luize Camargos Fonseca
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Fábio Trigo Raya
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Marina Pupke Marone
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Dener Eduardo Bortolini
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Piotr Mieczkowski
- High-Throughput Sequencing Facility, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA;
| | - Roenick Proveti Olmo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, 67084 Strasbourg, France
| | - Marcelo Falsarella Carazzolle
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | | | - Ana Cristina Fermino Soares
- Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, Brazil;
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
- Correspondence: (A.G.-N.); (E.R.G.R.A.)
| | - Eric Roberto Guimarães Rocha Aguiar
- Center of Biotechnology and Genetics, Department of Biological Science, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil
- Correspondence: (A.G.-N.); (E.R.G.R.A.)
| |
Collapse
|
30
|
Emerging and population analysis of Grapevine Pinot gris virus isolates from Iran. 3 Biotech 2021; 11:368. [PMID: 34295608 DOI: 10.1007/s13205-021-02914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022] Open
Abstract
Grapevine Pinot gris virus (GPGV) is a novel member of Trichovirus genus in Betaflexiviridae family. During 2018-2019, 114 leaf and green shoot samples were collected from the main vineyards in Iran Zanjan, Hamedan and East Azerbaijan provinces. After total RNA extraction and cDNA synthesis, the samples were tested by PCR assay using two pairs of specific primers corresponding to the coat protein (CP) and movement protein (MP) regions of GPGV, in which 6 out of 114 samples were found to be infected by GPGV. Population genetics analysis and molecular evolution of GPGV were done based on the CP and MP gene sequences of six new Iranian isolates and 53 additional isolates from several different countries in three continents: Asia, Europe, and America. The phylogenetic tree of GPGV isolates was clustered into two independent clades with significant F ST values (> 0.44). The ω values were calculated < 1 for the GPGV isolates for both genes. These findings demonstrated that the GPGV evolutionary selection pressure is under negative selection. To our knowledge, this is the first detailed study on the molecular characterization, phylogenetic analysis, and provide a better understanding of the population evolution of GPGV isolates from vineyards in Iran. The new Iranian isolates were lied in a new cluster near to European isolates. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02914-5.
Collapse
|
31
|
Tarquini G, Ermacora P, Firrao G. Polymorphisms at the 3'end of the movement protein (MP) gene of grapevine Pinot gris virus (GPGV) affect virus titre and small interfering RNA accumulation in GLMD disease. Virus Res 2021; 302:198482. [PMID: 34119570 DOI: 10.1016/j.virusres.2021.198482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 01/15/2023]
Abstract
Grapevine Leaf Mottling and Deformation (GLMD) is a grapevine disease that has been associated with a trichovirus, the grapevine Pinot gris virus (GPGV). A wide diversity in the severity of GLMD disease symptoms has been recorded worldwide, but the relationship of this diversity to the sequence variation in the GPGV genome is still a matter of debate. Results from comparative analysis of GPGV genomic sequences have suggested an association of polymorphisms at the 3'-end of the movement protein (MP) with GLMD severity. Here, the 3'-terminus of the MP gene of a GPGV infectious clone derived from an isolate from grapevine showing severe symptoms (fvg-12), was substituted with a 356 bp synthetic DNA fragment having a sequence resembling that of another GPGV isolate (fvg-15), recovered from an asymptomatic grapevine. The clone containing this chimeric construct was root-inoculated in virus-free Kober rootstocks along with the clones containing the fvg-12 and fvg-15 full length sequence. Remarkable differences in virus titre, accumulation of GPGV-derived small interfering RNAs (siRNAs), alterations in the gene expression of boron transporters and, to a lesser extent, in symptom expression were recorded among plants infected with either one of the three GPGV derived clones. In particular, the chimeric clone behaviour was indistinguishable from that of the donor of the small 356 bp fragment and significantly different from the other. Thus, this work experimentally confirmed the critical role of the GPGV-MP C-terminus in determining the fate of the infection, as it had been previously hypothesized on the basis of comparative sequence analysis.
Collapse
Affiliation(s)
- Giulia Tarquini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy
| | - Paolo Ermacora
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy
| | - Giuseppe Firrao
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy; Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.
| |
Collapse
|
32
|
Demian E, Holczbauer A, Galbacs ZN, Jaksa-Czotter N, Turcsan M, Olah R, Varallyay E. Variable Populations of Grapevine Virus T Are Present in Vineyards of Hungary. Viruses 2021; 13:1119. [PMID: 34200935 PMCID: PMC8230486 DOI: 10.3390/v13061119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/02/2022] Open
Abstract
Grapevine virus T (GVT) is a recently described foveavirus, which was identified from a transcriptome of a Teroldego grapevine cultivar in 2017. Recently, we surveyed vineyards and rootstock plantations in Hungary using small RNA (sRNA) high-throughput sequencing (HTS), at a time when GVT had not yet been described. A re-analysis of our sRNA HTS datasets and a survey of grapevines by RT-PCR revealed the presence of GVT in most of the vineyards tested, while at rootstock fields its presence was very rare. The presence and high variability of the virus in the country was confirmed by sequence analysis of strains originating from different vineyards. In this study, we demonstrate the presence of GVT in Hungary and show its high diversity, suggesting that GVT presence may not seriously affect grapevine health and that it could have been present in European vineyards for a long time as a latent infection.
Collapse
Affiliation(s)
- Emese Demian
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Ménesi Road 44, H-1118 Budapest, Hungary; (E.D.); (A.H.); (Z.N.G.); (N.J.-C.)
| | - Aliz Holczbauer
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Ménesi Road 44, H-1118 Budapest, Hungary; (E.D.); (A.H.); (Z.N.G.); (N.J.-C.)
| | - Zsuzsanna Nagyne Galbacs
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Ménesi Road 44, H-1118 Budapest, Hungary; (E.D.); (A.H.); (Z.N.G.); (N.J.-C.)
| | - Nikoletta Jaksa-Czotter
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Ménesi Road 44, H-1118 Budapest, Hungary; (E.D.); (A.H.); (Z.N.G.); (N.J.-C.)
| | - Mihaly Turcsan
- Institute for Viticulture and Oenology, Hungarian University of Agriculture and Life Sciences, Villányi Str. 29-43, H-1118 Budapest, Hungary; (M.T.); (R.O.)
| | - Robert Olah
- Institute for Viticulture and Oenology, Hungarian University of Agriculture and Life Sciences, Villányi Str. 29-43, H-1118 Budapest, Hungary; (M.T.); (R.O.)
| | - Eva Varallyay
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Ménesi Road 44, H-1118 Budapest, Hungary; (E.D.); (A.H.); (Z.N.G.); (N.J.-C.)
| |
Collapse
|
33
|
Incidence of GLMD-Like Symptoms on Grapevines Naturally Infected by Grapevine Pinot gris virus, Boron Content and Gene Expression Analysis of Boron Metabolism Genes. AGRONOMY-BASEL 2021. [DOI: 10.3390/agronomy11061020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Grapevine Pinot gris virus (GPGV) is considered to be a causal agent of Grapevine Leaf Mottling and Deformation (GLMD) disease that has been reported worldwide through the grapevine-growing regions. Seven grapevines that were collected from a vineyard in the Czech Republic were tested for the presence of GPGV in leaf and phloem tissues. Each of the seven grapevines was infected by GPGV, from which sic symptoms were mostly shown without a typical mottling. The phylogeny based on RNA-dependent RNA polymerase and movement/coat protein sequences indicated the same origin of the GPGV isolates. The GPGV titer was the highest in the grapevines with the highest GLMD-like symptoms; however, some of the grapevines with milder GLMD-like symptoms had a lower GPGV titer than the asymptomatic grapevine. Soil analysis showed uneven boron content in the direct vicinity of the grapevines, while the boron content in the grapevines was more, even showing no boron deficiency. The quantitative analysis of selected gene expressions associated with boron efflux and transport only partially explained the boron content in the soil and grapevines and only in the grapevines growing in soils with the highest or lowest boron contents. The VvBor2 and VvNIP5 genes had a higher expression and VvNIP6 had a lower expression in the grapevine growing in the soil with the lowest boron content, while a low expression of VvBor1 and VvBor2 was observed in the grapevine that was grown in the soil with the highest boron content.
Collapse
|
34
|
Virus Surveys in Olive Orchards in Greece Identify Olive Virus T, a Novel Member of the Genus Tepovirus. Pathogens 2021; 10:pathogens10050574. [PMID: 34066889 PMCID: PMC8150953 DOI: 10.3390/pathogens10050574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
Field surveys were conducted in Greek olive orchards from 2017 to 2020 to collect information on the sanitary status of the trees. Using a high-throughput sequencing approach, viral sequences were identified in total RNA extracts from several trees and assembled to reconstruct the complete genomes of two isolates of a new viral species of the genus Tepovirus (Betaflexiviridae), for which the name olive virus T (OlVT) is proposed. A reverse transcription–polymerase chain reaction assay was developed which detected OlVT in samples collected in olive growing regions in Central and Northern Greece, showing a virus prevalence of 4.4% in the olive trees screened. Sequences of amplified fragments from the movement–coat protein region of OlVT isolates varied from 75.64% to 99.35%. Three olive varieties (Koroneiki, Arbequina and Frantoio) were infected with OlVT via grafting to confirm a graft-transmissible agent, but virus infections remained latent. In addition, cucumber mosaic virus, olive leaf yellowing-associated virus and cherry leaf roll virus were identified.
Collapse
|
35
|
High-Throughput Sequencing Indicates Novel Varicosavirus, Emaravirus, and Deltapartitivirus Infections in Vitis coignetiae. Viruses 2021; 13:v13050827. [PMID: 34063722 PMCID: PMC8147796 DOI: 10.3390/v13050827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 11/17/2022] Open
Abstract
Vitis coignetiae samples were collected from several locations in the northern area of Japan, and virome analysis using a high-throughput sequencing technique was performed. The data indicated that some of the collected samples were in mixed infections by various RNA viruses. Among these viruses, three were identified as newly recognized species with support of sequence identity and phylogenetic analysis. The viruses have been provisionally named the Vitis varicosavirus, Vitis emaravirus, and Vitis crypticvirus, and were assigned to the genus Varicosavirus, Emaravirus, and Deltapartitivirus, respectively.
Collapse
|
36
|
Messmer N, Bohnert P, Schumacher S, Fuchs R. Studies on the Occurrence of Viruses in Planting Material of Grapevines in Southwestern Germany. Viruses 2021; 13:v13020248. [PMID: 33562555 PMCID: PMC7915916 DOI: 10.3390/v13020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/02/2022] Open
Abstract
Viral diseases in viticulture lead to annual losses in the quantity and quality of grape production. Since no direct control measures are available in practice, preventive measures are taken to keep the vines healthy. These include, for example, the testing of propagation material for viruses such as Arabis mosaic virus (ArMV), Grapevine fanleaf virus (GFLV) or Grapevine leafroll-associated virus 1 (GLRaV-1) and 3 (GLRaV-3). As long-term investigations have shown, GLRaV-1 (2.1%) occurs most frequently in southwestern German wine-growing regions, whereas GLRaV-3 (<0.1%) is almost never found. However, tests conducted over 12 years indicate that there is no general decline in virus-infected planting material. Thus, it can be assumed that a spread of the viruses via corresponding vectors still takes place unhindered. Beyond the examinations regulated within the German Wine Growing Ordinance, one-time tests were carried out on Grapevine Pinot gris virus (GPGV). This analysis showed that GPGV was found in 17.2% of the samples.
Collapse
Affiliation(s)
| | | | | | - René Fuchs
- Correspondence: ; Tel.: +49-761-40165-1101
| |
Collapse
|
37
|
Diaz-Lara A, Dangl G, Yang J, Golino DA, Al Rwahnih M. Identification of grapevine Pinot gris virus in free-living Vitis spp. located in riparian areas adjacent to commercial vineyards. PLANT DISEASE 2021; 105:2295-2298. [PMID: 33417499 DOI: 10.1094/pdis-10-20-2121-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Grapevine Pinot gris virus (GPGV) is a recently identified pathogen of grapevines in California. To advance our knowledge about the epidemiology of GPGV, we investigated if free-living Vitis spp. can represent a source of virus infection. In 2019 a field survey of GPGV infection was conducted in Napa County. During the inspection 60 free-living vines in riparian habitats near commercial vineyards with GPGV infection were sampled. Samples were tested by real-time reverse transcription PCR (RT-PCR), identifying 23 free-living Vitis spp. positive for GPGV. Later, GPGV infection was confirmed in these plants via end-point RT-PCR and Sanger sequencing. Based on sequence analysis, detected GPGV isolates are more related to the asymptomatic variant of the virus. Vitis species ancestry was determined by DNA fingerprinting. GPGV-infected material included V. californica, V. californica × V. vinifera hybrids and hybrid rootstock cultivars. Here, GPGV is reported for the first time in free-living Vitis spp. The results of this study will support the development of management strategies for GPGV in California and beyond.
Collapse
Affiliation(s)
- Alfredo Diaz-Lara
- University of California, Dept. of Plant Pathology, One Shields Avenue, Davis, California, United States, 95616;
| | - Gerald Dangl
- University of California Davis, Foundation Plant Services, Davis, California, United States;
| | - Jydy Yang
- University of California Davis, 8789, Foundation Plant Services , Davis, California, United States;
| | - Deborah Anne Golino
- UC Davis, FPS, One Shields Ave, UC Davis, Davis, California, United States, 95616;
| | - Maher Al Rwahnih
- University of California, Dept. of Plant Pathology, One Shields Avenue, Davis, California, United States, 95616;
| |
Collapse
|
38
|
A Diverse Virome of Leafroll-Infected Grapevine Unveiled by dsRNA Sequencing. Viruses 2020; 12:v12101142. [PMID: 33050079 PMCID: PMC7599845 DOI: 10.3390/v12101142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Quebec is the third-largest wine grape producing province in Canada, and the industry is constantly expanding. Traditionally, 90% of the grapevine cultivars grown in Quebec were winter hardy and largely dominated by interspecific hybrid Vitis sp. cultivars. Over the years, the winter protection techniques adopted by growers and climate changes have offered an opportunity to establish V. vinifera L. cultivars (e.g., Pinot noir). We characterized the virome of leafroll-infected interspecific hybrid cultivar and compared it to the virome of V. vinifera cultivar to support and facilitate the transition of the industry. A dsRNA sequencing method was used to sequence symptomatic and asymptomatic grapevine leaves of different cultivars. The results suggested a complex virome in terms of composition, abundance, richness, and phylogenetic diversity. Three viruses, grapevine Rupestris stem pitting-associated virus, grapevine leafroll-associated virus (GLRaV) 3 and 2 and hop stunt viroid (HSVd) largely dominated the virome. However, their presence and abundance varied among grapevine cultivars. The symptomless grapevine cultivar Vidal was frequently infected by multiple virus and viroid species and different strains of the same virus, including GLRaV-3 and 2. Our data show that viruses and viroids associated with the highest number of grapevines expressing symptoms included HSVd, GLRaV-3 and GLRaV-2, in gradient order. However, co-occurrence analysis revealed that the presence of GLRaV species was randomly associated with the development of virus-like symptoms. These findings and their implications for grapevine leafroll disease management are discussed.
Collapse
|
39
|
Eichmeier A, Peňázová E, Čechová J, Berraf-Tebbal A. Survey and Diversity of Grapevine Pinot gris virus in Algeria and Comprehensive High-Throughput Small RNA Sequencing Analysis of Two Isolates from Vitis vinifera cv. Sabel Revealing High Viral Diversity. Genes (Basel) 2020; 11:genes11091110. [PMID: 32971929 PMCID: PMC7563602 DOI: 10.3390/genes11091110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 01/24/2023] Open
Abstract
Grapevine Pinot gris virus (GPGV) is a putative causal agent of grapevine leaf mottling and deformation disease that has been reported worldwide throughout the grapevine-growing regions. Fifty-four grapevines collected from five Algerian grapevine-growing regions were tested for the presence of GPGV in phloem tissues. Eight of the tested grapevines were infected by GPGV. Viromes of two selected Vitis vinifera cv. Sabel grapevines infected by GPGV and showing virus-like symptoms were analyzed by small RNA sequencing. Phylogenetic analyses of the partial coding sequence (cds) of the RNA-dependent RNA polymerase (RdRp) domain showed that all Algerian GPGV isolates were grouped with some already-described asymptomatic isolates. This study provides the first survey of the occurrence of GPGV in Algeria. Moreover, Grapevine fleck virus, Grapevine rupestris stem pitting-associated virus, Grapevine virus B, Grapevine rupestris vein feathering virus, Hop stunt viroid and Grapevine yellow speckle viroid 1 were detected in Algeria for the first time.
Collapse
|
40
|
Adkar-Purushothama CR, Perreault JP. Impact of Nucleic Acid Sequencing on Viroid Biology. Int J Mol Sci 2020; 21:ijms21155532. [PMID: 32752288 PMCID: PMC7432327 DOI: 10.3390/ijms21155532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
The early 1970s marked two breakthroughs in the field of biology: (i) The development of nucleotide sequencing technology; and, (ii) the discovery of the viroids. The first DNA sequences were obtained by two-dimensional chromatography which was later replaced by sequencing using electrophoresis technique. The subsequent development of fluorescence-based sequencing method which made DNA sequencing not only easier, but many orders of magnitude faster. The knowledge of DNA sequences has become an indispensable tool for both basic and applied research. It has shed light biology of viroids, the highly structured, circular, single-stranded non-coding RNA molecules that infect numerous economically important plants. Our understanding of viroid molecular biology and biochemistry has been intimately associated with the evolution of nucleic acid sequencing technologies. With the development of the next-generation sequence method, viroid research exponentially progressed, notably in the areas of the molecular mechanisms of viroids and viroid diseases, viroid pathogenesis, viroid quasi-species, viroid adaptability, and viroid–host interactions, to name a few examples. In this review, the progress in the understanding of viroid biology in conjunction with the improvements in nucleotide sequencing technology is summarized. The future of viroid research with respect to the use of third-generation sequencing technology is also briefly envisaged.
Collapse
|
41
|
Buoso S, Pagliari L, Musetti R, Fornasier F, Martini M, Loschi A, Fontanella MC, Ermacora P. With or Without You: Altered Plant Response to Boron-Deficiency in Hydroponically Grown Grapevines Infected by Grapevine Pinot Gris Virus Suggests a Relation Between Grapevine Leaf Mottling and Deformation Symptom Occurrence and Boron Plant Availability. FRONTIERS IN PLANT SCIENCE 2020; 11:226. [PMID: 32194603 PMCID: PMC7062799 DOI: 10.3389/fpls.2020.00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Despite the increasing spread of Grapevine Leaf Mottling and Deformation (GLMD) worldwide, little is known about its etiology. After identification of grapevine Pinot gris virus (GPGV) as the presumptive causal agent of the disease in 2015, various publications have evaluated GPGV involvement in GLMD. Nevertheless, there are only partial clues to explain the presence of GPGV in both symptomatic and asymptomatic grapevines and the mechanisms that trigger symptom development, and so a consideration of new factors is required. Given the similarities between GLMD and boron (B)-deficiency symptoms in grapevine plants, we posited that GPGV interferes in B homeostasis. By using a hydroponic system to control B availability, we investigated the effects of different B supplies on grapevine phenotype and those of GPGV infection on B acquisition and translocation machinery, by means of microscopy, ionomic and gene expression analyses in both roots and leaves. The transcription of the genes regulating B homeostasis was unaffected by the presence of GPGV alone, but was severely altered in plants exposed to both GPGV infection and B-deficiency, allowing us to speculate that the capricious and patchy occurrence of GLMD symptoms in the field may not be related solely to GPGV, but to GPGV interference in plant responses to different B availabilities. This hypothesis found preliminary positive confirmations in analyses on field-grown plants.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Laura Pagliari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Flavio Fornasier
- CREA Research Centre for Viticulture and Enology, Gorizia, Italy
| | - Marta Martini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Alberto Loschi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Maria Chiara Fontanella
- Department for Sustainable Process, Agricultural Faculty, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Ermacora
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
42
|
Complete genome sequence of Aphid lethal paralysis virus from metagenomic analysis of Cestrum elegans small RNAs. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
43
|
Discovery and molecular characterization of a novel trichovirus infecting sweet cherry. Virus Genes 2020; 56:380-385. [PMID: 32065328 DOI: 10.1007/s11262-020-01743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
Contigs with the highest sequence similarity (73%) to Apricot pseudo-chlorotic leaf spot virus (genus Trichovirus, family Betaflexiviridae) were identified by high-throughput sequencing from a symptomless sweet cherry accession. The complete genome sequence of this new virus is 7460 nucleotides, excluding the 3' poly(A) tail. Its genome organization is very similar to several trichoviruses infecting fruit trees, with three open reading frames encoding putative replicase, movement protein and coat protein (CP). The virus shares amino acid sequence identities of 60-73% at replicase and 53-76% at CP with other trichoviruses. Phylogenetic analyses group it and other trichoviruses in a cluster. These results support that this virus, which is tentatively named cherry latent virus 1, should be considered a new member in the genus Trichovirus.
Collapse
|
44
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, der Werf WV, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Winter S, Chiumenti M, Di Serio F, Kaluski T, Minafra A, Rubino L. List of non-EU viruses and viroids of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J 2019; 17:e05501. [PMID: 32626418 PMCID: PMC7009187 DOI: 10.2903/j.efsa.2019.5501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Panel on Plant Health performed a listing of non-EU viruses and viroids (reported hereinafter as viruses) of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. A systematic literature review identified 197 viruses infecting one or more of the host genera under consideration. Viruses were allocated into three categories (i) 86 non-EU viruses, known to occur only outside the EU or having only limited presence in the EU (i.e. reported in only one or few Member States (MSs), known to have restricted distribution, outbreaks), (ii) 97 viruses excluded at this stage from further categorisation efforts because they have significant presence in the EU (i.e. only reported so far from the EU or known to occur or be widespread in some MSs or frequently reported in the EU), (iii) 14 viruses with undetermined standing for which available information did not readily allow to allocate to one or the other of the two above groups. Comments provided by MSs during consultation phases were integrated in the opinion. The main knowledge gaps and uncertainties of this listing concern (i) the geographic distribution and prevalence of the viruses analysed, in particular when they were recently described; (ii) the taxonomy and biological status of a number of poorly characterised viruses; (iii) the host status of particular plant genera in relation to some viruses. The viruses considered as non-EU and those with undetermined standing will be categorised in the next steps to answer a specific mandate from the Commission to develop pest categorisations for non-EU viruses. This list does not imply a prejudice on future needs for a pest categorisation for other viruses which are excluded from the current categorisation efforts.
Collapse
|
45
|
Xiao H, Li C, Al Rwahnih M, Dolja V, Meng B. Metagenomic Analysis of Riesling Grapevine Reveals a Complex Virome Including Two New and Divergent Variants of Grapevine leafroll-associated virus 3. PLANT DISEASE 2019; 103:1275-1285. [PMID: 30932733 DOI: 10.1094/pdis-09-18-1503-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The virome of a major white wine grape of cultivar Riesling showing decline and leafroll disease symptoms was analyzed through high-throughput sequencing (HTS) using total RNAs as templates and the Illumina HiSeq 2500 platform. Analysis of HTS data revealed the presence of five viruses and three viroids in the infected vine. These viruses are Grapevine leafroll-associated virus 1 (GLRaV-1) and GLRaV-3 (genus Ampelovirus, family Closteroviridae) and three viruses of the family Betaflexiviridae (namely, Grapevine virus A [GVA], Grapevine virus B, and Grapevine rupestris stem pitting-associated virus [GRSPaV]). We also show that multiple distinct strains of three viruses (GLRaV-3, GVA, and GRSPaV) were present in this diseased grapevine. The complete genomes of two novel and highly divergent isolates of GLRaV-3 were determined using the draft genomes derived from HTS data and two independent rapid amplification of cDNA ends (RACE) strategies to obtain sequences at both the 5' and the 3' termini of the viral genomes. Questionable genome regions of both isolates were also verified through cloning of reverse transcription polymerase chain reaction products and Sanger sequencing. These two isolates are vastly divergent from all other isolates of GLRaV-3 whose genome sequences are available in GenBank. Isolate ON8415A has up to 76% nucleotide sequence identities to other isolates representing existing variant groups. We also revealed high degrees of variation in both length and sequence in the terminal untranslated regions (UTRs) of GLRaV-3 variants. The 5'-UTR of most GLRaV-3 isolates whose complete genomes have been sequenced contain tandem repeats of 65 nucleotides, a highly unusual feature rarely observed in (+)single-stranded RNA viruses. Mechanisms for the biogenesis of these tandem repeats and their function in virus replication and pathogenesis require investigation. Findings of this research add to the genetic diversity, evolutionary biology, and diagnostics of GLRaV-3 that afflicts the global grape wine industry.
Collapse
Affiliation(s)
- Huogen Xiao
- 1 Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Caihong Li
- 1 Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Maher Al Rwahnih
- 2 Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A.; and
| | - Valerian Dolja
- 3 Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Baozhong Meng
- 1 Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
46
|
Villamor DEV, Ho T, Al Rwahnih M, Martin RR, Tzanetakis IE. High Throughput Sequencing For Plant Virus Detection and Discovery. PHYTOPATHOLOGY 2019; 109:716-725. [PMID: 30801236 DOI: 10.1094/phyto-07-18-0257-rvw] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Over the last decade, virologists have discovered an unprecedented number of viruses using high throughput sequencing (HTS), which led to the advancement of our knowledge on the diversity of viruses in nature, particularly unraveling the virome of many agricultural crops. However, these new virus discoveries have often widened the gaps in our understanding of virus biology; the forefront of which is the actual role of a new virus in disease, if any. Yet, when used critically in etiological studies, HTS is a powerful tool to establish disease causality between the virus and its host. Conversely, with globalization, movement of plant material is increasingly more common and often a point of dispute between countries. HTS could potentially resolve these issues given its capacity to detect and discover. Although many pipelines are available for plant virus discovery, all share a common backbone. A description of the process of plant virus detection and discovery from HTS data are presented, providing a summary of the different pipelines available for scientists' utility in their research.
Collapse
Affiliation(s)
- D E V Villamor
- 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - T Ho
- 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - M Al Rwahnih
- 2 Department of Plant Pathology, University of California, Davis 95616; and
| | - R R Martin
- 3 Horticulture Crops Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| | - I E Tzanetakis
- 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
47
|
Analysis of new grapevine Pinot gris virus (GPGV) isolates from Northeast Italy provides clues to track the evolution of a newly emerging clade. Arch Virol 2019; 164:1655-1660. [PMID: 30941585 DOI: 10.1007/s00705-019-04241-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 03/07/2019] [Indexed: 01/07/2023]
Abstract
Grapevine Pinot gris disease (GPGD) has been associated with a trichovirus, namely grapevine Pinot gris virus (GPGV), although the virus has been reported in both symptomatic and asymptomatic plants. Despite the puzzling aetiology of the disease and potentially important role of GPGV, the number of fully sequenced isolates is still rather limited. With the aim of increasing the knowledge on intraspecific diversity and evolution, nine GPGV isolates were collected from different vineyards in the Friuli Venezia Giulia region (Northeast Italy), cloned, sequenced, and subjected to robust phylogenetic and other analyses. The results provided hints on the evolutionary history of the virus, the occurrence of recombination, and the presence of clade-specific SNPs in sites of putative protein modifications with potential impact on the interaction with the host.
Collapse
|
48
|
Tarquini G, Zaina G, Ermacora P, De Amicis F, Franco-Orozco B, Loi N, Martini M, Bianchi GL, Pagliari L, Firrao G, de Paoli E, Musetti R. Agroinoculation of Grapevine Pinot Gris Virus in tobacco and grapevine provides insights on viral pathogenesis. PLoS One 2019; 14:e0214010. [PMID: 30889228 PMCID: PMC6424481 DOI: 10.1371/journal.pone.0214010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/05/2019] [Indexed: 12/27/2022] Open
Abstract
The Grapevine Pinot Gris disease (GPG-d) is a novel disease characterized by symptoms such as leaf mottling and deformation, which has been recently reported in grapevines, and mostly in Pinot gris. Plants show obvious symptoms at the beginning of the growing season, while during summer symptom recovery frequently occurs, manifesting as symptomless leaves. A new Trichovirus, named Grapevine Pinot gris virus (GPGV), which belongs to the family Betaflexiviridae was found in association with infected plants. The detection of the virus in asymptomatic grapevines raised doubts about disease aetiology. Therefore, the primary target of this work was to set up a reliable system for the study of the disease in controlled conditions, avoiding interfering factor(s) that could affect symptom development. To this end, two clones of the virus, pRI::GPGV-vir and pRI::GPGV-lat, were generated from total RNA collected from one symptomatic and one asymptomatic Pinot gris grapevine, respectively. The clones, which encompassed the entire genome of the virus, were used in Agrobacterium-mediated inoculation of Vitis vinifera and Nicotiana benthamiana plants. All inoculated plants developed symptoms regardless of their inoculum source, demonstrating a correlation between the presence of GPGV and symptomatic manifestations. Four months post inoculum, the grapevines inoculated with the pRI::GPGV-lat clone developed asymptomatic leaves that were still positive to GPGV detection. Three to four weeks later (i.e. ca. 5 months post inoculum), the same phenomenon was observed in the grapevines inoculated with pRI::GPGV-vir. This observation perfectly matches symptom progression in infected field-grown grapevines, suggesting a possible role for plant antiviral mechanisms, such as RNA silencing, in the recovery process.
Collapse
Affiliation(s)
- Giulia Tarquini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Giusi Zaina
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Paolo Ermacora
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | | | - Barbara Franco-Orozco
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Nazia Loi
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Marta Martini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | | | - Laura Pagliari
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Giuseppe Firrao
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Emanuele de Paoli
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Rita Musetti
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
49
|
Eichmeier A, Kominkova M, Pecenka J, Kominek P. High-throughput small RNA sequencing for evaluation of grapevine sanitation efficacy. J Virol Methods 2019; 267:66-70. [PMID: 30851291 DOI: 10.1016/j.jviromet.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/21/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022]
Abstract
This study describes the application of high-throughput sequencing of small RNA analysis of the efficacy of using Ribavirin to eliminate Grapevine leafroll-associated virus 1, Grapevine fleck virus and Grapevine rupestris stem pitting-associated virus from Vitis vinifera cv. Riesling. The original plant used for sanitation by Ribavirin treatment was one naturally infected with all the viruses mentioned above as confirmed by RT-PCR. A tissue cultures of the plant were established and plantlets obtained were sanitized using Ribavirin. Three years after sanitation, a small RNA sequencing method for virus detection, targeting 21, 22 and 24 nt-long viral small RNAs (vsRNAs), was used to analyze both the mother plant and the sanitized plants. The results showed that the mother plant was infected by the three mentioned viruses and additionally by two viroids - Hop stunt viroid and Grapevine yellow speckle viroid 1. After Ribavirin treatment, the plants contained only the two viroids, with the complete elimination of all the viruses previously present.
Collapse
Affiliation(s)
- Ales Eichmeier
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 691 44, Czech Republic.
| | - Marcela Kominkova
- Crop Research Institute, Drnovska 507, Praha 6, Ruzyne, 161 06, Czech Republic
| | - Jakub Pecenka
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 691 44, Czech Republic
| | - Petr Kominek
- Crop Research Institute, Drnovska 507, Praha 6, Ruzyne, 161 06, Czech Republic
| |
Collapse
|
50
|
Shannon Entropy to Evaluate Substitution Rate Variation Among Viral Nucleotide Positions in Datasets of Viral siRNAs. Methods Mol Biol 2019; 1746:187-195. [PMID: 29492896 DOI: 10.1007/978-1-4939-7683-6_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Next-generation sequencing has opened the door to the reconstruction of viral populations and examination of the composition of mutant spectra in infected cells, tissues, and host organisms. In this chapter we present details on the use of the Shannon entropy method to estimate the site-specific nucleotide relative variability of turnip crinkle virus, a positive (+) stranded RNA plant virus, in a large dataset of short RNAs of Cicer arietinum L., a natural reservoir of the virus. We propose this method as a viral metagenomics tool to provide a more detailed description of the viral quasispecies in infected plant tissue. Viral replicative fitness relates to an optimal composition of variants that provide the molecular basis of virus behavior in the complex environment of natural infections. A complete description of viral quasispecies may have implications in determining fitness landscapes for host-virus coexistence and help to design specific diagnostic protocols and antiviral strategies.
Collapse
|