1
|
Jia LS, Liu Z, Zhu SH, Zhao QP, Han HY, Zhao HZ, Yu Y, Dong H. Quantitative phosphoproteomic analysis of chicken DF-1 cells infected with Eimeria tenella, using tandem mass tag (TMT) and parallel reaction monitoring (PRM) mass spectrometry. Parasite 2024; 31:23. [PMID: 38759153 PMCID: PMC11101204 DOI: 10.1051/parasite/2024027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Eimeria tenella is an obligate intracellular parasite which causes great harm to the poultry breeding industry. Protein phosphorylation plays a vital role in host cell-E. tenella interactions. However, no comprehensive phosphoproteomic analyses of host cells at various phases of E. tenella infection have been published. In this study, quantitative phosphoproteomic analysis of chicken embryo DF-1 fibroblasts that were uninfected (UI) or infected with E. tenella for 6 h (PI6, the early invasion phase) or 36 h (PI36, the trophozoite development phase) was conducted. A total of 10,122 phosphopeptides matched to 3,398 host cell phosphoproteins were identified and 13,437 phosphorylation sites were identified. Of these, 491, 1,253, and 275 differentially expressed phosphorylated proteins were identified in the PI6/UI, PI36/UI, and PI36/PI6 comparisons, respectively. KEGG pathway enrichment analysis showed that E. tenella modulated host cell processes through phosphorylation, including focal adhesion, regulation of the actin cytoskeleton, and FoxO signaling to support its early invasion phase, and modulating adherens junctions and the ErbB signaling pathway to favor its trophozoite development. These results enrich the data on the interaction between E. tenella and host cells and facilitate a better understanding of the molecular mechanisms underlying host-parasite relationships.
Collapse
Affiliation(s)
- Liu-Shu Jia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Zhan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Shun-Hai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Qi-Ping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Hong-Yu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Huan-Zhi Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Yu Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| |
Collapse
|
2
|
Qian Z, Cong C, Li Y, Bi Y, He Q, Li T, Xia Y, Xu L, Mickael HK, Yu W, Liu J, Wei D, Huang F. Quantification of host proteomic responses to genotype 4 hepatitis E virus replication facilitated by pregnancy serum. Virol J 2023; 20:111. [PMID: 37264422 PMCID: PMC10233519 DOI: 10.1186/s12985-023-02080-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) infection is a common cause of acute hepatitis worldwide and causes approximately 30% case fatality rate among pregnant women. Pregnancy serum (PS), which contains a high concentration of estradiol, facilitates HEV replication in vitro through the suppression of the PI3K-AKT-mTOR and cAMPK-PKA-CREB signaling pathways. However, the proteomics of the complex host responses to HEV infection, especially how PS facilitates viral replication, remains unclear. METHODS In this study, the differences in the proteomics of HEV-infected HepG2 cells supplemented with fetal bovine serum (FBS) from those of HEV-infected HepG2 cells supplemented with serum from women in their third trimester of pregnancy were quantified by using isobaric tags for relative and absolute quantification technology. RESULTS A total of 1511 proteins were identified, among which 548 were defined as differentially expressed proteins (DEPs). HEV-infected cells supplemented with PS exhibited the most significant changes at the protein level. A total of 328 DEPs, including 66 up-regulated and 262 down-regulated proteins, were identified in HEV-infected cells supplemented with FBS, whereas 264 DEPs, including 201 up-regulated and 63 down-regulated proteins, were found in HEV-infected cells supplemented with PS. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that in HEV-infected cells, PS supplementation adjusted more host genes and signaling pathways than FBS supplementation. The DEPs involved in virus-host interaction participated in complex interactions, especially a large number of immune-related protein emerged in HEV-infected cells supplemented with PS. Three significant or interesting proteins, including filamin-A, thioredoxin, and cytochrome c, in HEV-infected cells were functionally verified. CONCLUSIONS The results of this study provide new and comprehensive insight for exploring virus-host interactions and will benefit future studies on the pathogenesis of HEV in pregnant women.
Collapse
Affiliation(s)
- Zhongyao Qian
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Chao Cong
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yi Li
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yanhong Bi
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Qiuxia He
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Tengyuan Li
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yueping Xia
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Liangheng Xu
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Houfack K Mickael
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.
| | - Jiankun Liu
- 920th Hospital of Joint Logistics Support Force of PLA, Kunming, People's Republic of China.
| | - Daqiao Wei
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China.
| | - Fen Huang
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China.
| |
Collapse
|
3
|
Treffers EE, Tas A, Scholte FEM, de Ru AH, Snijder EJ, van Veelen PA, van Hemert MJ. The alphavirus nonstructural protein 2 NTPase induces a host translational shut-off through phosphorylation of eEF2 via cAMP-PKA-eEF2K signaling. PLoS Pathog 2023; 19:e1011179. [PMID: 36848386 PMCID: PMC9997916 DOI: 10.1371/journal.ppat.1011179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/09/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging alphavirus. Since 2005, it has infected millions of people during outbreaks in Africa, Asia, and South/Central America. CHIKV replication depends on host cell factors at many levels and is expected to have a profound effect on cellular physiology. To obtain more insight into host responses to infection, stable isotope labeling with amino acids in cell culture and liquid chromatography-tandem mass spectrometry were used to assess temporal changes in the cellular phosphoproteome during CHIKV infection. Among the ~3,000 unique phosphorylation sites analyzed, the largest change in phosphorylation status was measured on residue T56 of eukaryotic elongation factor 2 (eEF2), which showed a >50-fold increase at 8 and 12 h p.i. Infection with other alphaviruses (Semliki Forest, Sindbis and Venezuelan equine encephalitis virus (VEEV)) triggered a similarly strong eEF2 phosphorylation. Expression of a truncated form of CHIKV or VEEV nsP2, containing only the N-terminal and NTPase/helicase domains (nsP2-NTD-Hel), sufficed to induce eEF2 phosphorylation, which could be prevented by mutating key residues in the Walker A and B motifs of the NTPase domain. Alphavirus infection or expression of nsP2-NTD-Hel resulted in decreased cellular ATP levels and increased cAMP levels. This did not occur when catalytically inactive NTPase mutants were expressed. The wild-type nsP2-NTD-Hel inhibited cellular translation independent of the C-terminal nsP2 domain, which was previously implicated in directing the virus-induced host shut-off for Old World alphaviruses. We hypothesize that the alphavirus NTPase activates a cellular adenylyl cyclase resulting in increased cAMP levels, thus activating PKA and subsequently eukaryotic elongation factor 2 kinase. This in turn triggers eEF2 phosphorylation and translational inhibition. We conclude that the nsP2-driven increase of cAMP levels contributes to the alphavirus-induced shut-off of cellular protein synthesis that is shared between Old and New World alphaviruses. MS Data are available via ProteomeXchange with identifier PXD009381.
Collapse
Affiliation(s)
- Emmely E. Treffers
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ali Tas
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Florine E. M. Scholte
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J. Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A. van Veelen
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J. van Hemert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Feng H, Yi R, Wu S, Wang G, Sun R, Lin L, Zhu S, Nie Z, He Y, Wang S, Wang P, Shu J, Wu L. KAP1 Positively Modulates Influenza A Virus Replication by Interacting with PB2 and NS1 Proteins in Human Lung Epithelial Cells. Viruses 2022; 14:v14040689. [PMID: 35458419 PMCID: PMC9025026 DOI: 10.3390/v14040689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza virus only encodes a dozen of viral proteins, which need to use host machinery to complete the viral life cycle. Previously, KAP1 was identified as one host protein that potentially interacts with influenza viral proteins in HEK 293 cells. However, the role of KAP1 in influenza virus replication in human lung alveolar epithelial cells and the underlying mechanism remains unclear. In this study, we first generated KAP1 KO A549 cells by CRISPR/Cas9 gene editing. KAP1 deletion had no significant effect on the cell viability and lack of KAP1 expression significantly reduced the influenza A virus replication. Moreover, we demonstrated that KAP1 is involved in the influenza virus entry, transcription/replication of viral genome, and viral protein synthesis in human lung epithelial cells and confirmed that KAP1 interacted with PB2 and NS1 viral proteins during the virus infection. Further study showed that KAP1 inhibited the production of type I IFN and overexpression of KAP1 significantly reduced the IFN-β production. In addition, influenza virus infection induces the deSUMOylation and enhanced phosphorylation of KAP1. Our results suggested that KAP1 is required for the replication of influenza A virus and mediates the replication of influenza A virus by facilitating viral infectivity and synthesis of viral proteins, enhancing viral polymerase activity, and inhibiting the type I IFN production.
Collapse
Affiliation(s)
- Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
- Correspondence: (H.F.); (J.S.); (L.W.)
| | - Ruonan Yi
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Shixiang Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Genzhu Wang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Ruolin Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Liming Lin
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Siquan Wang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Pei Wang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
- Correspondence: (H.F.); (J.S.); (L.W.)
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Correspondence: (H.F.); (J.S.); (L.W.)
| |
Collapse
|
5
|
Li J, Zhang Z, Lv J, Ma Z, Pan L, Zhang Y. Global Phosphoproteomics Analysis of IBRS-2 Cells Infected With Senecavirus A. Front Microbiol 2022; 13:832275. [PMID: 35154063 PMCID: PMC8826396 DOI: 10.3389/fmicb.2022.832275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Phosphorylation is a widespread posttranslational modification that regulates numerous biological processes. Viruses can alter the physiological activities of host cells to promote virus particle replication, and manipulating phosphorylation is one of the mechanisms. Senecavirus A (SVA) is the causative agent of porcine idiopathic vesicular disease. Although numerous studies on SVA have been performed, comprehensive phosphoproteomics analysis of SVA infection is lacking. The present study performed a quantitative mass spectrometry-based phosphoproteomics survey of SVA infection in Instituto Biologico-Rim Suino-2 (IBRS-2) cells. Three parallel experiments were performed, and 4,520 phosphosites were quantified on 2,084 proteins. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many phosphorylated proteins were involved in apoptosis and spliceosome pathways, and subcellular structure localization analysis revealed that more than half were located in the nucleus. Motif analysis of proteins with differentially regulated phosphosites showed that proline, aspartic acid, and glutamic acid were the most abundant residues in the serine motif, while proline and arginine were the most abundant in the threonine motif. Forty phosphosites on 27 proteins were validated by parallel reaction monitoring (PRM) phosphoproteomics, and 30 phosphosites in 21 proteins were verified. Nine proteins with significantly altered phosphosites were further discussed, and eight [SRRM2, CDK13, DDX20, DDX21, BAD, ELAVL1, PDZ-binding kinase (PBK), and STAT3] may play a role in SVA infection. Finally, kinase activity prediction showed 10 kinases’ activity was reversed following SVA infection. It is the first phosphoproteomics analysis of SVA infection of IBRS-2 cells, and the results greatly expand our knowledge of SVA infection. The findings provide a basis for studying the interactions of other picornaviruses and their mammalian host cells.
Collapse
Affiliation(s)
- Jieyi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhongwang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- *Correspondence: Zhongwang Zhang,
| | - Jianliang Lv
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Zhongyuan Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li Pan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Li Pan,
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Host factors involved in influenza virus infection. Emerg Top Life Sci 2020; 4:389-398. [PMID: 33210707 DOI: 10.1042/etls20200232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Influenza virus causes an acute febrile respiratory disease in humans that is commonly known as 'flu'. Influenza virus has been around for centuries and is one of the most successful, and consequently most studied human viruses. This has generated tremendous amount of data and information, thus it is pertinent to summarise these for, particularly interdisciplinary readers. Viruses are acellular organisms and exist at the interface of living and non-living. Due to this unique characteristic, viruses require another organism, i.e. host to survive. Viruses multiply inside the host cell and are obligate intracellular pathogens, because their relationship with the host is almost always harmful to host. In mammalian cells, the life cycle of a virus, including influenza is divided into five main steps: attachment, entry, synthesis, assembly and release. To complete these steps, some viruses, e.g. influenza utilise all three parts - plasma membrane, cytoplasm and nucleus, of the cell; whereas others, e.g. SARS-CoV-2 utilise only plasma membrane and cytoplasm. Hence, viruses interact with numerous host factors to complete their life cycle, and these interactions are either exploitative or antagonistic in nature. The host factors involved in the life cycle of a virus could be divided in two broad categories - proviral and antiviral. This perspective has endeavoured to assimilate the information about the host factors which promote and suppress influenza virus infection. Furthermore, an insight into host factors that play a dual role during infection or contribute to influenza virus-host adaptation and disease severity has also been provided.
Collapse
|
7
|
Zhang J, Peng Q, Zhao W, Sun W, Yang J, Liu N. Proteomics in Influenza Research: The Emerging Role of Posttranslational Modifications. J Proteome Res 2020; 20:110-121. [PMID: 33348980 DOI: 10.1021/acs.jproteome.0c00778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Influenza viruses continue evolving and have the ability to cause a global pandemic, so it is very important to elucidate its pathogenesis and find new treatment methods. In recent years, proteomics has made important contributions to describing the dynamic interaction between influenza viruses and their hosts, especially in posttranslational regulation of a variety of key biological processes. Protein posttranslational modifications (PTMs) increase the diversity of functionality of the organismal proteome and affect almost all aspects of pathogen biology, primarily by regulating the structure, function, and localization of the modified proteins. Considerable technical achievements in mass spectrometry-based proteomics have been made in a large number of proteome-wide surveys of PTMs in many different organisms. Herein we specifically focus on the proteomic studies regarding a variety of PTMs that occur in both the influenza viruses, mainly influenza A viruses (IAVs), and their hosts, including phosphorylation, ubiquitination and ubiquitin-like modification, glycosylation, methylation, acetylation, and some types of acylation. Integration of these data sets provides a unique scenery of the global regulation and interplay of different PTMs during the interaction between IAVs and their hosts. Various techniques used to globally profiling these PTMs, mostly MS-based approaches, are discussed regarding their increasing roles in mechanical regulation of interaction between influenza viruses and their hosts.
Collapse
Affiliation(s)
- Jinming Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Qisheng Peng
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Weizheng Zhao
- Clinical Medical College, Jilin University, Changchun 130021, PR China
| | - Wanchun Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Jingbo Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Ning Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| |
Collapse
|
8
|
Thompson MG, Dittmar M, Mallory MJ, Bhat P, Ferretti MB, Fontoura BM, Cherry S, Lynch KW. Viral-induced alternative splicing of host genes promotes influenza replication. eLife 2020; 9:55500. [PMID: 33269701 PMCID: PMC7735754 DOI: 10.7554/elife.55500] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Viral infection induces the expression of numerous host genes that impact the outcome of infection. Here, we show that infection of human lung epithelial cells with influenza A virus (IAV) also induces a broad program of alternative splicing of host genes. Although these splicing-regulated genes are not enriched for canonical regulators of viral infection, we find that many of these genes do impact replication of IAV. Moreover, in several cases, specific inhibition of the IAV-induced splicing pattern also attenuates viral infection. We further show that approximately a quarter of the IAV-induced splicing events are regulated by hnRNP K, a host protein required for efficient splicing of the IAV M transcript in nuclear speckles. Finally, we find an increase in hnRNP K in nuclear speckles upon IAV infection, which may alter accessibility of hnRNP K for host transcripts thereby leading to a program of host splicing changes that promote IAV replication.
Collapse
Affiliation(s)
- Matthew G Thompson
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
| | - Mark Dittmar
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Michael J Mallory
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
| | - Prasanna Bhat
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, United States
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Beatriz Ma Fontoura
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, United States
| | - Sara Cherry
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Kristen W Lynch
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
9
|
Characterization of Host and Bacterial Contributions to Lung Barrier Dysfunction Following Co-infection with 2009 Pandemic Influenza and Methicillin Resistant Staphylococcus aureus. Viruses 2019; 11:v11020116. [PMID: 30699912 PMCID: PMC6409999 DOI: 10.3390/v11020116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/26/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses are a threat to global public health resulting in ~500,000 deaths each year. Despite an intensive vaccination program, influenza infections remain a recurrent, yet unsolved public health problem. Secondary bacterial infections frequently complicate influenza infections during seasonal outbreaks and pandemics, resulting in increased morbidity and mortality. Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is frequently associated with these co-infections, including the 2009 influenza pandemic. Damage to alveolar epithelium is a major contributor to severe influenza-bacterial co-infections and can result in gas exchange abnormalities, fluid leakage, and respiratory insufficiency. These deleterious manifestations likely involve both pathogen- and host-mediated mechanisms. However, there is a paucity of information regarding the mechanisms (pathogen- and/or host-mediated) underlying influenza-bacterial co-infection pathogenesis. To address this, we characterized the contributions of viral-, bacterial-, and host-mediated factors to the altered structure and function of alveolar epithelial cells during co-infection with a focus on the 2009 pandemic influenza (pdm2009) and MRSA. Here, we characterized pdm2009 and MRSA replication kinetics, temporal host kinome responses, modulation of MRSA virulence factors, and disruption of alveolar barrier integrity in response to pdm2009-MRSA co-infection. Our results suggest that alveolar barrier disruption during co-infection is mediated primarily through host response dysregulation, resulting in loss of alveolar barrier integrity.
Collapse
|
10
|
Feng Wang H, Xuan He H. Regulation of Yamanaka factors during H5N1 virus infection in A549 cells and HEK293T cells. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1541760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Hai Feng Wang
- School of Environmental Engineering, Central Plains Specialty Food Engineering & Technology Research Center, Yellow River Conservancy Technical Institute, Kaifeng, PR China
| | - Hong Xuan He
- National Research Center for Wildlife-Borne Diseases, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
11
|
Ranadheera C, Coombs KM, Kobasa D. Comprehending a Killer: The Akt/mTOR Signaling Pathways Are Temporally High-Jacked by the Highly Pathogenic 1918 Influenza Virus. EBioMedicine 2018; 32:142-163. [PMID: 29866590 PMCID: PMC6021456 DOI: 10.1016/j.ebiom.2018.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Previous transcriptomic analyses suggested that the 1918 influenza A virus (IAV1918), one of the most devastating pandemic viruses of the 20th century, induces a dysfunctional cytokine storm and affects other innate immune response patterns. Because all viruses are obligate parasites that require host cells for replication, we globally assessed how IAV1918 induces host protein dysregulation. We performed quantitative mass spectrometry of IAV1918-infected cells to measure host protein dysregulation. Selected proteins were validated by immunoblotting and phosphorylation levels of members of the PI3K/AKT/mTOR pathway were assessed. Compared to mock-infected controls, >170 proteins in the IAV1918-infected cells were dysregulated. Proteins mapped to amino sugar metabolism, purine metabolism, steroid biosynthesis, transmembrane receptors, phosphatases and transcription regulation. Immunoblotting demonstrated that IAV1918 induced a slight up-regulation of the lamin B receptor whereas all other tested virus strains induced a significant down-regulation. IAV1918 also strongly induced Rab5b expression whereas all other tested viruses induced minor up-regulation or down-regulation. IAV1918 showed early reduced phosphorylation of PI3K/AKT/mTOR pathway members and was especially sensitive to rapamycin. These results suggest the 1918 strain requires mTORC1 activity in early replication events, and may explain the unique pathogenicity of this virus. Proteomic analyses of influenza 1918 virus-infected cells identified >170 dysregulated host proteins. Dysregulated proteins mapped to numerous important cellular pathways. 1918 virus infection showed prominent early reduced phosphorylation of PI3K/Akt/mTOR.
The 1918 influenza pandemic was one of the most devastating infectious disease events of the 20th century, resulting in 20–100 million deaths. Gene-based assays showed severe dysregulation of the host's cytokine responses, but little was known about global protein responses to virus infection. This work identifies unique and temporal alterations in phosphorylation of the PI3K/AKT/mTOR signaling pathway, which is important in determining cell death. This work paves the way for further research on how this pathway influences host mechanisms responsible for aiding virus replication and in determining levels and severity of influenza virus-induced patho
Collapse
Affiliation(s)
- Charlene Ranadheera
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J6, Canada; Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Kevin M Coombs
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J6, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada; Manitoba Institute of Child Health, John Buhler Research Centre, Room 513, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada.
| | - Darwyn Kobasa
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J6, Canada; Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.
| |
Collapse
|
12
|
Russell AB, Trapnell C, Bloom JD. Extreme heterogeneity of influenza virus infection in single cells. eLife 2018; 7:e32303. [PMID: 29451492 PMCID: PMC5826275 DOI: 10.7554/elife.32303] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022] Open
Abstract
Viral infection can dramatically alter a cell's transcriptome. However, these changes have mostly been studied by bulk measurements on many cells. Here we use single-cell mRNA sequencing to examine the transcriptional consequences of influenza virus infection. We find extremely wide cell-to-cell variation in the productivity of viral transcription - viral transcripts comprise less than a percent of total mRNA in many infected cells, but a few cells derive over half their mRNA from virus. Some infected cells fail to express at least one viral gene, but this gene absence only partially explains variation in viral transcriptional load. Despite variation in viral load, the relative abundances of viral mRNAs are fairly consistent across infected cells. Activation of innate immune pathways is rare, but some cellular genes co-vary in abundance with the amount of viral mRNA. Overall, our results highlight the complexity of viral infection at the level of single cells.
Collapse
Affiliation(s)
- Alistair B Russell
- Basic Sciences Division and Computational Biology ProgramFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Cole Trapnell
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology ProgramFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| |
Collapse
|
13
|
Long XY, Zhang ZJ, Li JY, Sheng D, Lian HZ. Controllable Preparation of CuFeMnO4 Nanospheres as a Novel Multifunctional Affinity Probe for Efficient Adsorption and Selective Enrichment of Low-Abundance Peptides and Phosphopeptides. Anal Chem 2017; 89:10446-10453. [DOI: 10.1021/acs.analchem.7b02476] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xing-Yu Long
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
- Editorial
Department of Journal, Guizhou Normal University, Guiyang 550001, China
| | - Zi-Jin Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Jia-Yuan Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Dong Sheng
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Abstract
At every step of their replication cycle influenza viruses depend heavily on their host cells. The multifaceted interactions that occur between the virus and its host cell determine the outcome of the infection, including efficiency of progeny virus production, tropism, and pathogenicity. In order to understand viral disease and develop therapies for influenza it is therefore pertinent to study the intricate interplay between influenza viruses and their required host factors. Here, we review the current knowledge on host cell factors required by influenza virus at the different stages of the viral replication cycle. We also discuss the roles of host factors in zoonotic transmission of influenza viruses and their potential for developing novel antivirals.
Collapse
|
15
|
Hu J, Gao Z, Wang X, Gu M, Liang Y, Liu X, Hu S, Liu H, Liu W, Chen S, Peng D, Liu X. iTRAQ-based quantitative proteomics reveals important host factors involved in the high pathogenicity of the H5N1 avian influenza virus in mice. Med Microbiol Immunol 2016; 206:125-147. [PMID: 28000052 DOI: 10.1007/s00430-016-0489-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023]
Abstract
We previously reported a pair of H5N1 avian influenza viruses which are genetically similar but differ greatly in their virulence in mice. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly lethal to mice, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is avirulent. In this study, to investigate the host factors that account for their virulence discrepancy, we compared the pathology and host proteome of the CK10- or GS10-infected mouse lung. Moderate lung injury was observed from CK10-infected animals as early as the first day of infection, and the pathology steadily progressed at later time point. However, only mild lesions were observed in GS10-infected mouse lung at the late infection stage. Using the quantitative iTRAQ coupled LC-MS/MS method, we first found that more significantly differentially expressed (DE) proteins were stimulated by GS10 compared with CK10. However, bio-function analysis of the DE proteins suggested that CK10 induced much stronger inflammatory response-related functions than GS10. Canonical pathway analysis also demonstrated that CK10 highly activated the "Acute Phase Response Signaling," which results in a wide range of biological activities in response to viral infection, including many inflammatory processes. Further in-depth analysis showed that CK10 exacerbated acute lung injury-associated responses, including inflammatory response, cell death, reactive oxygen species production and complement response. In addition, some of these identified proteins that associated with the lung injury were further confirmed to be regulated in vitro. Therefore, our findings suggest that the early increased lung injury-associated host response induced by CK10 may contribute to the lung pathology and the high virulence of this virus in mice.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China. .,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
16
|
Li Z, Chen F, Ye S, Guo X, Muhanmmad Memon A, Wu M, He Q. Comparative Proteome Analysis of Porcine Jejunum Tissues in Response to a Virulent Strain of Porcine Epidemic Diarrhea Virus and Its Attenuated Strain. Viruses 2016; 8:v8120323. [PMID: 27916855 PMCID: PMC5192384 DOI: 10.3390/v8120323] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a predominant cause of acute enteric infection, leads to severe dehydrating diarrhea and mortality in piglets all over the world. A virulent PEDV YN13 strain, isolated in our laboratory, was attenuated to yield an attenuated PEDV strain YN144. To better understand the pathogenesis mechanism and the virus-host interaction during infection with both PEDV YN13 and YN144 strains, a comparative proteomic analysis was carried out to investigate the proteomic changes produced in the primary target organ, using isobaric tags for relative and absolute quantitation (iTRAQ) labeling, followed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). A total of 269 and 301 differently expressed proteins (DEPs) were identified in the jejunum tissues of the piglets inoculated with YN13 and YN144, respectively. Bioinformatics analysis revealed that these proteins were involved in stress responses, signal transduction, and the immune system. All of these involved interferon-stimulated genes (ISGs) which were up-regulated in jejunums by both of the PEDV-infected groups. Based on the comparative analysis, we proposed that different changes induced by YN13 and YN144 in heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), eukaryotic initiation factor 4G1 (eIF4G1), and some members in the heat shock protein (HSP) family, may be responsible for differences in their pathogenicity.
Collapse
Affiliation(s)
- Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Atta Muhanmmad Memon
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meizhou Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Oxford KL, Wendler JP, McDermott JE, White III RA, Powell JD, Jacobs JM, Adkins JN, Waters KM. The landscape of viral proteomics and its potential to impact human health. Expert Rev Proteomics 2016; 13:579-91. [DOI: 10.1080/14789450.2016.1184091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Dapat C, Oshitani H. Novel insights into human respiratory syncytial virus-host factor interactions through integrated proteomics and transcriptomics analysis. Expert Rev Anti Infect Ther 2016; 14:285-97. [PMID: 26760927 PMCID: PMC4819838 DOI: 10.1586/14787210.2016.1141676] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The lack of vaccine and limited antiviral options against respiratory syncytial virus (RSV) highlights the need for novel therapeutic strategies. One alternative is to develop drugs that target host factors required for viral replication. Several microarray and proteomics studies had been published to identify possible host factors that are affected during RSV replication. In order to obtain a comprehensive understanding of RSV-host interaction, we integrated available proteome and transcriptome datasets and used it to construct a virus-host interaction network. Then, we interrogated the network to identify host factors that are targeted by the virus and we searched for drugs from the DrugBank database that interact with these host factors, which may have potential applications in repositioning for future treatment options of RSV infection.
Collapse
Affiliation(s)
- Clyde Dapat
- a Department of Virology , Tohoku University Graduate School of Medicine , Sendai , Miyagi Prefecture , Japan
| | - Hitoshi Oshitani
- a Department of Virology , Tohoku University Graduate School of Medicine , Sendai , Miyagi Prefecture , Japan
| |
Collapse
|
19
|
Simon PF, McCorrister S, Hu P, Chong P, Silaghi A, Westmacott G, Coombs KM, Kobasa D. Highly Pathogenic H5N1 and Novel H7N9 Influenza A Viruses Induce More Profound Proteomic Host Responses than Seasonal and Pandemic H1N1 Strains. J Proteome Res 2015; 14:4511-23. [PMID: 26381135 DOI: 10.1021/acs.jproteome.5b00196] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Influenza A viruses (IAV) are important human and animal pathogens with potential for causing pandemics. IAVs exhibit a wide spectrum of clinical illness in humans, from relatively mild infections by seasonal strains to acute respiratory distress syndrome during infections with some highly pathogenic avian influenza (HPAI) viruses. In the present study, we infected A549 human cells with seasonal H1N1 (sH1N1), 2009 pandemic H1N1 (pdmH1N1), or novel H7N9 and HPAI H5N1 strains. We used multiplexed isobaric tags for relative and absolute quantification to measure proteomic host responses to these different strains at 1, 3, and 6 h post-infection. Our analyses revealed that both H7N9 and H5N1 strains induced more profound changes to the A549 global proteome compared to those with low-pathogenicity H1N1 virus infection, which correlates with the higher pathogenicity these strains exhibit at the organismal level. Bioinformatics analysis revealed important modulation of the nuclear factor erythroid 2-related factor 2 (NRF2) oxidative stress response in infection. Cellular fractionation and Western blotting suggested that the phosphorylated form of NRF2 is not imported to the nucleus in H5N1 and H7N9 virus infections. Fibronectin was also strongly inhibited in infection with H5N1 and H7N9 strains. This is the first known comparative proteomic study of the host response to H7N9, H5N1, and H1N1 viruses and the first time NRF2 is shown to be implicated in infection with highly pathogenic strains of influenza.
Collapse
Affiliation(s)
- Philippe François Simon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba , Winnipeg, Manitoba, R3E 0J9 Canada
| | | | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba , Winnipeg, Manitoba, R3T 2N2 Canada
| | | | - Alex Silaghi
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba , Winnipeg, Manitoba, R3E 0J9 Canada
| | | | - Kevin M Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba , Winnipeg, Manitoba, R3E 0J9 Canada.,Manitoba Center for Proteomics and Systems Biology, University of Manitoba , Winnipeg, Manitoba, R3E 3P4 Canada
| | - Darwyn Kobasa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba , Winnipeg, Manitoba, R3E 0J9 Canada
| |
Collapse
|
20
|
Phosphoproteomic analysis of the highly-metastatic hepatocellular carcinoma cell line, MHCC97-H. Int J Mol Sci 2015; 16:4209-25. [PMID: 25690035 PMCID: PMC4346953 DOI: 10.3390/ijms16024209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 11/29/2022] Open
Abstract
Invasion and metastasis of hepatocellular carcinoma (HCC) is a major cause for lethal liver cancer. Signaling pathways associated with cancer progression are frequently reconfigured by aberrant phosphorylation of key proteins. To capture the key phosphorylation events in HCC metastasis, we established a methodology by an off-line high-pH HPLC separation strategy combined with multi-step IMAC and LC–MS/MS to study the phosphoproteome of a metastatic HCC cell line, MHCC97-H (high metastasis). In total, 6593 phosphopeptides with 6420 phosphorylation sites (p-sites) of 2930 phosphoproteins were identified. Statistical analysis of gene ontology (GO) categories for the identified phosphoproteins showed that several of the biological processes, such as transcriptional regulation, mRNA processing and RNA splicing, were over-represented. Further analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations demonstrated that phosphoproteins in multiple pathways, such as spliceosome, the insulin signaling pathway and the cell cycle, were significantly enriched. In particular, we compared our dataset with a previously published phosphoproteome in a normal liver sample, and the results revealed that a number of proteins in the spliceosome pathway, such as U2 small nuclear RNA Auxiliary Factor 2 (U2AF2), Eukaryotic Initiation Factor 4A-III (EIF4A3), Cell Division Cycle 5-Like (CDC5L) and Survival Motor Neuron Domain Containing 1 (SMNDC1), were exclusively identified as phosphoproteins only in the MHCC97-H cell line. These results indicated that the phosphorylation of spliceosome proteins may participate in the metastasis of HCC by regulating mRNA processing and RNA splicing.
Collapse
|