1
|
Hammami NEH, Mérindol N, Plourde MB, Maisonnet T, Lebel S, Berthoux L. SUMO-3 promotes the ubiquitin-dependent turnover of TRIM55. Biochem Cell Biol 2024; 102:73-84. [PMID: 37703582 DOI: 10.1139/bcb-2023-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Human muscle-specific RING fingers (MURFs) are members of the tripartite motif (TRIM) family of proteins characterized by their C-terminal subgroup one signature domain. MURFs play a role in sarcomere formation and microtubule dynamics. It was previously established that some TRIMs undergo post-translational modification by small ubiquitin-like modifier (SUMO). In this study, we explored the putative SUMOylation of MURF proteins as well as their interactions with SUMO. MURF proteins (TRIM54, TRIM55, and TRIM63) were not found to be SUMOylated. However, TRIM55 turnover by proteasomal and lysosomal degradation was higher upon overexpression of SUMO-3 but not of SUMO-1. Furthermore, it is predicted that TRIM55 contains two potential SUMO-interacting motifs (SIMs). We found that SIM1- and SIM2-mutated TRIM55 were more stable than the wild-type (WT) protein partly due to decreased degradation. Consistently, SIM-mutated TRIM55 was less polyubiquitinated than the WT protein, despite similar monoubiquitination levels. Using IF microscopy, we observed that SIM motifs influenced TRIM55 subcellular localization. In conclusion, our results suggest that SUMO-3 or SUMO-3-modified proteins modulate the localization, stability, and RING ubiquitin ligase activity of TRIM55.
Collapse
Affiliation(s)
- Nour-El-Houda Hammami
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natacha Mérindol
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mélodie B Plourde
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Tara Maisonnet
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Sophie Lebel
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Lionel Berthoux
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
2
|
Elfayres G, Paswan RR, Sika L, Girard MP, Khalfi S, Letanneur C, Milette K, Singh A, Kobinger G, Berthoux L. Mammalian cells-based platforms for the generation of SARS-CoV-2 virus-like particles. J Virol Methods 2023; 322:114835. [PMID: 37871706 DOI: 10.1016/j.jviromet.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. Though many COVID-19 vaccines have been developed, most of them are delivered via intramuscular injection and thus confer relatively weak mucosal immunity against the natural infection. Virus-Like Particles (VLPs) are self-assembled nanostructures composed of key viral structural proteins, that mimic the wild-type virus structure but are non-infectious and non-replicating due to the lack of viral genetic material. In this study, we efficiently generated SARS-CoV-2 VLPs by co-expressing the four SARS-CoV-2 structural proteins, specifically the membrane (M), small envelope (E), spike (S) and nucleocapsid (N) proteins. We show that these proteins are essential and sufficient for the efficient formation and release of SARS-CoV-2 VLPs. Moreover, we used lentiviral vectors to generate human cell lines that stably produce VLPs. Because VLPs can bind to the virus natural receptors, hence leading to entry into cells and viral antigen presentation, this platform could be used to develop novel vaccine candidates that are delivered intranasally.
Collapse
Affiliation(s)
- Ghada Elfayres
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Ricky Raj Paswan
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Laura Sika
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Marie-Pierre Girard
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Soumia Khalfi
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Claire Letanneur
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada; Department of Biochemistry, Chemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Kéziah Milette
- Institute of Innovations in Eco-materials, Eco-products and Eco-energies, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Amita Singh
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Gary Kobinger
- University Hospital Research Center and Department of Microbiology and Infectiology, Université Laval, Québec, Canada
| | - Lionel Berthoux
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.
| |
Collapse
|
3
|
Regulation of Viral Restriction by Post-Translational Modifications. Viruses 2021; 13:v13112197. [PMID: 34835003 PMCID: PMC8618861 DOI: 10.3390/v13112197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
Intrinsic immunity is orchestrated by a wide range of host cellular proteins called restriction factors. They have the capacity to interfere with viral replication, and most of them are tightly regulated by interferons (IFNs). In addition, their regulation through post-translational modifications (PTMs) constitutes a major mechanism to shape their action positively or negatively. Following viral infection, restriction factor modification can be decisive. Palmitoylation of IFITM3, SUMOylation of MxA, SAMHD1 and TRIM5α or glycosylation of BST2 are some of those PTMs required for their antiviral activity. Nonetheless, for their benefit and by manipulating the PTMs machinery, viruses have evolved sophisticated mechanisms to counteract restriction factors. Indeed, many viral proteins evade restriction activity by inducing their ubiquitination and subsequent degradation. Studies on PTMs and their substrates are essential for the understanding of the antiviral defense mechanisms and provide a global vision of all possible regulations of the immune response at a given time and under specific infection conditions. Our aim was to provide an overview of current knowledge regarding the role of PTMs on restriction factors with an emphasis on their impact on viral replication.
Collapse
|
4
|
Désaulniers K, Ortiz L, Dufour C, Claudel A, Plourde MB, Merindol N, Berthoux L. Editing of the TRIM5 Gene Decreases the Permissiveness of Human T Lymphocytic Cells to HIV-1. Viruses 2020; 13:E24. [PMID: 33375604 PMCID: PMC7824555 DOI: 10.3390/v13010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Tripartite-motif-containing protein 5 isoform α (TRIM5α) is a cytoplasmic antiretroviral effector upregulated by type I interferons (IFN-I). We previously showed that two points mutations, R332G/R335G, in the retroviral capsid-binding region confer human TRIM5α the capacity to target and strongly restrict HIV-1 upon overexpression of the mutated protein. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated homology-directed repair (HDR) to introduce these two mutations in the endogenous human TRIM5 gene. We found 6 out of 47 isolated cell clones containing at least one HDR-edited allele. One clone (clone 6) had both alleles containing R332G, but only one of the two alleles containing R335G. Upon challenge with an HIV-1 vector, clone 6 was significantly less permissive compared to unmodified cells, whereas the cell clones with monoallelic modifications were only slightly less permissive. Following interferon (IFN)-β treatment, inhibition of HIV-1 infection in clone 6 was significantly enhanced (~40-fold inhibition). TRIM5α knockdown confirmed that HIV-1 was inhibited by the edited TRIM5 gene products. Quantification of HIV-1 reverse transcription products showed that inhibition occurred through the expected mechanism. In conclusion, we demonstrate the feasibility of potently inhibiting a viral infection through the editing of innate effector genes. Our results also emphasize the importance of biallelic modification in order to reach significant levels of inhibition by TRIM5α.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lionel Berthoux
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada; (K.D.); (L.O.); (C.D.); (A.C.); (M.B.P.); (N.M.)
| |
Collapse
|
5
|
Colomer-Lluch M, Castro-Gonzalez S, Serra-Moreno R. Ubiquitination and SUMOylation in HIV Infection: Friends and Foes. Curr Issues Mol Biol 2019; 35:159-194. [PMID: 31422939 DOI: 10.21775/cimb.035.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As intracellular parasites, viruses hijack the cellular machinery to facilitate their replication and spread. This includes favouring the expression of their viral genes over host genes, appropriation of cellular molecules, and manipulation of signalling pathways, including the post-translational machinery. HIV, the causative agent of AIDS, is notorious for using post-translational modifications to generate infectious particles. Here, we discuss the mechanisms by which HIV usurps the ubiquitin and SUMO pathways to modify both viral and host factors to achieve a productive infection, and also how the host innate sensing system uses these post-translational modifications to hinder HIV replication.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
6
|
Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells 2019; 8:cells8080922. [PMID: 31426525 PMCID: PMC6721663 DOI: 10.3390/cells8080922] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are antiviral components of intrinsic immunity which constitute a first line of defense by blocking different steps of the human immunodeficiency virus (HIV) replication cycle. In immune cells, HIV infection is also sensed by several pattern recognition receptors (PRRs), leading to type I interferon (IFN-I) and inflammatory cytokines production that upregulate antiviral interferon-stimulated genes (ISGs). Several studies suggest a link between these two types of immunity. Indeed, restriction factors, that are generally interferon-inducible, are able to modulate immune responses. This review highlights recent knowledge of the interplay between restriction factors and immunity inducing antiviral defenses. Counteraction of this intrinsic and innate immunity by HIV viral proteins will also be discussed.
Collapse
|
7
|
D Urbano V, De Crignis E, Re MC. Host Restriction Factors and Human Immunodeficiency Virus (HIV-1): A Dynamic Interplay Involving All Phases of the Viral Life Cycle. Curr HIV Res 2019; 16:184-207. [PMID: 30117396 DOI: 10.2174/1570162x16666180817115830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.
Collapse
Affiliation(s)
- Vanessa D Urbano
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Elisa De Crignis
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
8
|
HIV-1 capsids from B27/B57+ elite controllers escape Mx2 but are targeted by TRIM5α, leading to the induction of an antiviral state. PLoS Pathog 2018; 14:e1007398. [PMID: 30419009 PMCID: PMC6258467 DOI: 10.1371/journal.ppat.1007398] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 11/26/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Elite controllers (ECs) are a rare subset of HIV-1 slow progressors characterized by prolonged viremia suppression. HLA alleles B27 and B57 promote the cytotoxic T lymphocyte (CTL)-mediated depletion of infected cells in ECs, leading to the emergence of escape mutations in the viral capsid (CA). Whether those mutations modulate CA detection by innate sensors and effectors is poorly known. Here, we investigated the targeting of CA from B27/B57+ individuals by cytosolic antiviral factors Mx2 and TRIM5α. Toward that aim, we constructed chimeric HIV-1 vectors using CA isolated from B27/B57+ or control subjects. HIV-1 vectors containing B27/B57+-specific CA had increased sensitivity to TRIM5α but not to Mx2. Following exposure to those vectors, cells showed increased resistance against both TRIM5α-sensitive and -insensitive HIV-1 strains. Induction of the antiviral state did not require productive infection by the TRIM5α-sensitive virus, as shown using chemically inactivated virions. Depletion experiments revealed that TAK1 and Ubc13 were essential to the TRIM5α-dependent antiviral state. Accordingly, induction of the antiviral state was accompanied by the activation of NF-κB and AP-1 in THP-1 cells. Secretion of IFN-I was involved in the antiviral state in THP-1 cells, as shown using a receptor blocking antibody. This work identifies innate activation pathways that are likely to play a role in the natural resistance to HIV-1 progression in ECs. Some HIV-1-infected individuals show a natural capacity to control viral propagation. In individuals that have the HLA B27 or B57 allele, HIV-1 control is associated with mutations in viral proteins that arise as a result of immune pressure from cytotoxic T lymphocytes. HIV-1 capsid protein mutations found in these subjects render HIV-1 more sensitive to detection by TRIM5α, a cytoplasmic innate effector that targets retroviral capsids. We show here that HIV-1 bearing such mutations is restricted by TRIM5α but not by Mx2, another capsid-targeting innate effector. As a result, cells have decreased permissiveness to subsequent HIV-1 infections, a phenomenon that could contribute to the inefficient disease progression observed in these individuals. This knowledge might find applications in the development of immune interventions to increase human cells resistance to HIV-1.
Collapse
|
9
|
Wang CM, Yang WH, Liu R, Wang L, Yang WH. FOXP3 Activates SUMO-Conjugating UBC9 Gene in MCF7 Breast Cancer Cells. Int J Mol Sci 2018; 19:ijms19072036. [PMID: 30011797 PMCID: PMC6073147 DOI: 10.3390/ijms19072036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
Forkhead Box Protein P3 (FOXP3), a transcription factor of the FOX protein family, is essentially involved in the development of regulatory T (Treg) cells, and functions as a tumor suppressor. Although FOXP3 has been widely studied in immune system and cancer development, its function in the regulation of the UBC9 gene (for the sole E2 enzyme of SUMOylation) is unknown. Herein, we find that the overexpression of FOXP3 in human MCF7 breast cancer cells increases the level of UBC9 mRNA. Moreover, the level of UBC9 protein dose-dependently increases in the FOXP3-Tet-off MCF7 cells. Notably, the promoter activity of the UBC9 is activated by FOXP3 in a dose-dependent manner in both the MCF7 and HEK293 cells. Next, by mapping the UBC9 promoter as well as the site-directed mutagenesis and ChIP analysis, we show that the FOXP3 response element at the −310 bp region, but not the −2182 bp region, is mainly required for UBC9 activation by FOXP3. Finally, we demonstrate that the removal of phosphorylation (S418A and Y342F) and the removal of acetylation/ubiquitination (K263R and K263RK268R) of the FOXP3 result in attenuated transcriptional activity of UBC9. Taken together, FOXP3 acts as a novel transcriptional activator of the human UBC9 gene, suggesting that FOXP3 may have physiological functions as a novel player in global SUMOylation, as well as other post-translational modification systems.
Collapse
Affiliation(s)
- Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - William H Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Runhua Liu
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Lizhong Wang
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| |
Collapse
|
10
|
Dufour C, Claudel A, Joubarne N, Merindol N, Maisonnet T, Masroori N, Plourde MB, Berthoux L. Editing of the human TRIM5 gene to introduce mutations with the potential to inhibit HIV-1. PLoS One 2018; 13:e0191709. [PMID: 29373607 PMCID: PMC5786314 DOI: 10.1371/journal.pone.0191709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/10/2018] [Indexed: 11/21/2022] Open
Abstract
The type I interferon (IFN-I)-inducible human restriction factor TRIM5α inhibits the infection of human cells by specific nonhuman retroviruses, such as N-MLV and EIAV, but does not generally target HIV-1. However, the introduction of two aminoacid substitutions, R332G and R355G, in the human TRIM5α (huTRIM5α) domain responsible for retroviral capsid recognition leads to efficient HIV-1 restriction upon stable over-expression. CRISPR-Cas-based approaches to precisely edit DNA could be employed to modify TRIM5 in human cells. Toward this aim, we used a DNA transfection-based CRISPR-Cas9 genome editing protocol to successfully mutate TRIM5 to its potentially HIV-1-restrictive version by homology-directed repair (HDR) in HEK293T cells. Nine clones bearing at least one HDR-edited TRIM5 allele containing both mutations were isolated (5.6% overall efficiency), whereas another one contained only the R332G mutation. Of concern, several of these HDR-edited clones contained on-target undesired mutations, and none had all the alleles corrected. Our study demonstrates the feasibility of editing the TRIM5 gene in human cells and identifies the main challenges to be addressed in order to use this approach to confer protection from HIV-1.
Collapse
Affiliation(s)
- Caroline Dufour
- Laboratory of Antiviral Immunity, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Alix Claudel
- Laboratory of Antiviral Immunity, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Nicolas Joubarne
- Laboratory of Antiviral Immunity, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Natacha Merindol
- Laboratory of Antiviral Immunity, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Tara Maisonnet
- Laboratory of Antiviral Immunity, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Nasser Masroori
- Laboratory of Antiviral Immunity, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Mélodie B. Plourde
- Laboratory of Antiviral Immunity, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Lionel Berthoux
- Laboratory of Antiviral Immunity, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- * E-mail:
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW HIV-1 infection is of global importance, and still incurs substantial morbidity and mortality. Although major pharmacologic advances over the past two decades have resulted in remarkable HIV-1 control, a cure is still forthcoming. One approach to a cure is to exploit natural mechanisms by which the host restricts HIV-1. Herein, we review past and recent discoveries of HIV-1 restriction factors, a diverse set of host proteins that limit HIV-1 replication at multiple levels, including entry, reverse transcription, integration, translation of viral proteins, and packaging and release of virions. RECENT FINDINGS Recent studies of intracellular HIV-1 restriction have offered unique molecular insights into HIV-1 replication and biology. Studies have revealed insights of how restriction factors drive HIV-1 evolution. Although HIV-1 restriction factors only partially control the virus, their importance is underscored by their effect on HIV-1 evolution and adaptation. The list of host restriction factors that control HIV-1 infection is likely to expand with future discoveries. A deeper understanding of the molecular mechanisms of regulation by these factors will uncover new targets for therapeutic control of HIV-1 infection.
Collapse
Affiliation(s)
- Mary Soliman
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Geetha Srikrishna
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ashwin Balagopal
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Wang CM, Wang RX, Liu R, Yang WH. Jun Dimerization Protein 2 Activates Mc2r Transcriptional Activity: Role of Phosphorylation and SUMOylation. Int J Mol Sci 2017; 18:ijms18020304. [PMID: 28146118 PMCID: PMC5343840 DOI: 10.3390/ijms18020304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Jun dimerization protein 2 (JDP2), a basic leucine zipper transcription factor, is involved in numerous biological and cellular processes such as cancer development and regulation, cell-cycle regulation, skeletal muscle and osteoclast differentiation, progesterone receptor signaling, and antibacterial immunity. Though JDP2 is widely expressed in mammalian tissues, its function in gonads and adrenals (such as regulation of steroidogenesis and adrenal development) is largely unknown. Herein, we find that JDP2 mRNA and proteins are expressed in mouse adrenal gland tissues. Moreover, overexpression of JDP2 in Y1 mouse adrenocortical cancer cells increases the level of melanocortin 2 receptor (MC2R) protein. Notably, Mc2r promoter activity is activated by JDP2 in a dose-dependent manner. Next, by mapping the Mc2r promoter, we show that cAMP response elements (between −1320 and −720-bp) are mainly required for Mc2r activation by JDP2 and demonstrate that −830-bp is the major JDP2 binding site by real-time chromatin immunoprecipitation (ChIP) analysis. Mutations of cAMP response elements on Mc2r promoter disrupts JDP2 effect. Furthermore, we demonstrate that removal of phosphorylation of JDP2 results in attenuated transcriptional activity of Mc2r. Finally, we show that JDP2 is a candidate for SUMOylation and SUMOylation affects JDP2-mediated Mc2r transcriptional activity. Taken together, JDP2 acts as a novel transcriptional activator of the mouse Mc2r gene, suggesting that JDP2 may have physiological functions as a novel player in MC2R-mediated steroidogenesis as well as cell signaling in adrenal glands.
Collapse
Affiliation(s)
- Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Raymond X Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Runhua Liu
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| |
Collapse
|
13
|
Nepveu-Traversy MÉ, Demogines A, Fricke T, Plourde MB, Riopel K, Veillette M, Diaz-Griffero F, Sawyer SL, Berthoux L. A putative SUMO interacting motif in the B30.2/SPRY domain of rhesus macaque TRIM5α important for NF-κB/AP-1 signaling and HIV-1 restriction. Heliyon 2016; 2:e00056. [PMID: 27441239 PMCID: PMC4945854 DOI: 10.1016/j.heliyon.2015.e00056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/26/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022] Open
Abstract
TRIM5α from the rhesus macaque (TRIM5αRh) is a restriction factor that shows strong activity against HIV-1. TRIM5αRh binds specifically to HIV-1 capsid (CA) through its B30.2/PRYSPRY domain shortly after entry of the virus into the cytoplasm. Recently, three putative SUMO interacting motifs (SIMs) have been identified in the PRYSPRY domain of human and macaque TRIM5α. However, structural modeling of this domain suggested that two of them were buried in the hydrophobic core of the protein, implying that interaction with SUMO was implausible, while the third one was not relevant to restriction. In light of these results, we re-analyzed the TRIM5αRh PRYSPRY sequence and identified an additional putative SIM ((435)VIIC(438)) which we named SIM4. This motif is exposed at the surface of the PRYSPRY domain, allowing potential interactions with SUMO or SUMOylated proteins. Introducing a double mutation in SIM4 (V435K, I436K) did not alter stability, unlike mutations in SIM1. SIM4-mutated TRIM5αRh failed to bind HIV-1CA and lost the ability to restrict this virus. Accordingly, SIM4 undergoes significant variation among primates and substituting this motif with naturally occurring SIM4 variants affected HIV-1 restriction by TRIM5αRh, suggesting a direct role in capsid recognition. Interestingly, SIM4-mutated TRIM5αRh also failed to activate NF-κB and AP-1-mediated transcription. Although there is no direct evidence that SIM4 is involved in direct interaction with SUMO or a SUMOylated protein, mutating this motif strongly reduced co-localization of TRIM5αRh with SUMO-1 and with PML, a SUMOylated nuclear protein. In conclusion, this new putative SIM is crucial for both direct interaction with incoming capsids and for NF-κB/AP-1 signaling. We speculate that the latter function is mediated by interactions of SIM4 with a SUMOylated protein involved in the NF-κB/AP-1 signaling pathways.
Collapse
Affiliation(s)
- Marie-Édith Nepveu-Traversy
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières. 3351 Boulevard des Forges, CP500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Ann Demogines
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas Fricke
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mélodie B. Plourde
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières. 3351 Boulevard des Forges, CP500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Kathleen Riopel
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières. 3351 Boulevard des Forges, CP500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Maxime Veillette
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières. 3351 Boulevard des Forges, CP500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sara L. Sawyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular, Cellular, and Developmental Biology and the BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Lionel Berthoux
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières. 3351 Boulevard des Forges, CP500, Trois-Rivières, QC, G9A 5H7, Canada
| |
Collapse
|
14
|
Portilho DM, Fernandez J, Ringeard M, Machado AK, Boulay A, Mayer M, Müller-Trutwin M, Beignon AS, Kirchhoff F, Nisole S, Arhel NJ. Endogenous TRIM5α Function Is Regulated by SUMOylation and Nuclear Sequestration for Efficient Innate Sensing in Dendritic Cells. Cell Rep 2015; 14:355-69. [PMID: 26748714 PMCID: PMC4713866 DOI: 10.1016/j.celrep.2015.12.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/20/2015] [Accepted: 12/06/2015] [Indexed: 01/03/2023] Open
Abstract
During retroviral infection, viral capsids are subject to restriction by the cellular factor TRIM5α. Here, we show that dendritic cells (DCs) derived from human and non-human primate species lack efficient TRIM5α-mediated retroviral restriction. In DCs, endogenous TRIM5α accumulates in nuclear bodies (NB) that partly co-localize with Cajal bodies in a SUMOylation-dependent manner. Nuclear sequestration of TRIM5α allowed potent induction of type I interferon (IFN) responses during infection, mediated by sensing of reverse transcribed DNA by cGAS. Overexpression of TRIM5α or treatment with the SUMOylation inhibitor ginkgolic acid (GA) resulted in enforced cytoplasmic TRIM5α expression and restored efficient viral restriction but abrogated type I IFN production following infection. Our results suggest that there is an evolutionary trade-off specific to DCs in which restriction is minimized to maximize sensing. TRIM5α regulation via SUMOylation-dependent nuclear sequestration adds to our understanding of how restriction factors are regulated. Primate dendritic cells (DCs) lack efficient TRIM5α-mediated retroviral restriction In DCs TRIM5α is sequestered in the nucleus in a SUMOylation-dependent manner TRIM5α nuclear sequestration allows DC sensing of retroviral DNA by cGAS
Collapse
Affiliation(s)
- Débora M Portilho
- INSERM U941, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Juliette Fernandez
- INSERM U941, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | | | - Anthony K Machado
- INSERM U941, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Aude Boulay
- INSERM U941, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Martha Mayer
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Anne-Sophie Beignon
- CEA-iMETI/Division of Immuno-Virology, Université Paris Sud, INSERM U1184, 92260 Fontenay-aux-Roses, France
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sébastien Nisole
- INSERM UMR-S 1124, Université Paris Descartes, 75006 Paris, France
| | - Nathalie J Arhel
- INSERM U941, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France.
| |
Collapse
|
15
|
Jung U, Urak K, Veillette M, Nepveu-Traversy MÉ, Pham QT, Hamel S, Rossi JJ, Berthoux L. Preclinical Assessment of Mutant Human TRIM5α as an Anti-HIV-1 Transgene. Hum Gene Ther 2015; 26:664-79. [PMID: 26076730 DOI: 10.1089/hum.2015.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Current HIV-1 gene therapy approaches aim at stopping the viral life cycle at its earliest steps, such as entry or immediate postentry events. Among the most widely adopted strategies are CCR5 downregulation/knockout and the use of broadly neutralizing antibodies. However, the long-term efficacy and side effects are still unclear. TRIM5α is an interferon-stimulated restriction factor that can intercept incoming retroviruses within one hour of cytosolic entry and potently inhibit the infectivity of restriction-sensitive viruses. The human TRIM5α (TRIM5αhu) generally does not efficiently target HIV-1, but point mutations in its capsid-binding domain can confer anti-HIV-1 activity. Although the mechanisms by which TRIM5αhu mutants inhibit HIV-1 are relatively well understood, their characterization as potential transgenes for gene therapy is lacking. Additionally, previous reports of general immune activation by overexpression of TRIM5α have hindered its broad adoption as a potential transgene. Here we demonstrate the ability of the R332G-R335G TRIM5αhu mutant to efficiently restrict highly divergent HIV-1 strains, including Group O, as well as clinical isolates bearing cytotoxic T lymphocyte escape mutations. R332G-R335G TRIM5αhu efficiently protected human lymphocytes against HIV-1 infection, even when expressed at relatively low levels following lentiviral transduction. Most importantly, under these conditions Rhesus macaque TRIM5α (TRIM5αRh) and TRIM5αhu (wild-type or mutated) had no major effects on the NF-κB pathway. Transgenic TRIM5α did not modulate the kinetics of IκBα, JunB, and TNFAIP3 expression following TNF-α treatment. Finally, we show that human lymphocytes expressing R332G-R335G TRIM5αhu have clear survival advantages over unmodified parental cells in the presence of pathogenic, replication-competent HIV-1. These results support the relevance of R332G-R335G and other mutants of TRIM5αhu as candidate effectors for HIV-1 gene therapy.
Collapse
Affiliation(s)
- Ulrike Jung
- 1 Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope , Duarte, California
| | - Kevin Urak
- 1 Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope , Duarte, California
| | - Maxime Veillette
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| | | | - Quang Toan Pham
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| | - Sophie Hamel
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| | - John J Rossi
- 1 Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope , Duarte, California.,3 Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, California
| | - Lionel Berthoux
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| |
Collapse
|
16
|
The innate immune roles of host factors TRIM5α and Cyclophilin A on HIV-1 replication. Med Microbiol Immunol 2015; 204:557-65. [PMID: 25894765 DOI: 10.1007/s00430-015-0417-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/04/2015] [Indexed: 10/23/2022]
Abstract
During the long-term evolutionary history, the interaction between virus and host has driven the first-line barrier, innate immunity, to invading pathogens. Innate immune factor TRIM5α and host peptidyl-prolyl cis-trans isomerase Cyclophilin A are two key players in the interaction between HIV-1 and host. Interestingly, Cyclophilin A is retrotransposed into the critical host gene, TRIM5, locus via LINE-1 element in some primate species including New World monkeys and Old World monkeys. This review aims to comprehensively discuss the sensing and immune activation procedures of TRIM5α innate signaling pathway through Cyclophilin A. It will then present the production of TRIMCyp chimeric gene and the different fusion patterns in primates. Finally, it will summarize the distinct restriction activity of TRIMCyp from different primates and explain the current understanding on the innate immune mechanisms involved in the early phase of the viral life cycle during HIV-1 replication.
Collapse
|
17
|
Wang CM, Liu R, Wang L, Nascimento L, Brennan VC, Yang WH. SUMOylation of FOXM1B alters its transcriptional activity on regulation of MiR-200 family and JNK1 in MCF7 human breast cancer cells. Int J Mol Sci 2014; 15:10233-51. [PMID: 24918286 PMCID: PMC4100150 DOI: 10.3390/ijms150610233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 01/04/2023] Open
Abstract
Transcription factor Forkhead Box Protein M1 (FOXM1) is a well-known master regulator in controlling cell-cycle pathways essential for DNA replication and mitosis, as well as cell proliferation. Among the three major isoforms of FOXM1, FOXM1B is highly associated with tumor growth and metastasis. The activities of FOXM1B are modulated by post-translational modifications (PTMs), such as phosphorylation, but whether it is modified by small ubiquitin-related modifier (SUMO) remains unknown. The aim of the current study was to determine whether FOXM1B is post-translationally modified by SUMO proteins and also to identify SUMOylation of FOXM1B on its target gene transcription activity. Here we report that FOXM1B is clearly defined as a SUMO target protein at the cellular levels. Moreover, a SUMOylation protease, SENP2, significantly decreased SUMOylation of FOXM1B. Notably, FOXM1B is selectively SUMOylated at lysine residue 463. While SUMOylation of FOXM1B is required for full repression of its target genes MiR-200b/c and p21, SUMOylation of FOXM1B is essential for full activation of JNK1 gene. Overall, we provide evidence that FOXM1B is post-translationally modified by SUMO and SUMOylation of FOXM1B plays a functional role in regulation of its target gene activities.
Collapse
Affiliation(s)
- Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Runhua Liu
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Lizhong Wang
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Leticia Nascimento
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Victoria C Brennan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| |
Collapse
|