1
|
Anjume H, Hossain KA, Hossain A, Hossain MA, Sultana M. Complete genome characterization of foot-and-mouth disease virus My-466 belonging to the novel lineage O/ME-SA/SA-2018. Heliyon 2024; 10:e26716. [PMID: 39790372 PMCID: PMC11713259 DOI: 10.1016/j.heliyon.2024.e26716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 01/12/2025] Open
Abstract
Foot-and-mouth disease virus (FMDV), the causative agent of the foot-and-mouth disease of cattle population possesses a rapid evolutionary rate. In Bangladesh, the first circulation of the O/ME-SA/SA-2018 lineage as a novel sublineage, MYMBD21 was reported from our laboratory. The first whole genome sequence of an isolate, BAN/MY/My-466/2021 (shortly named My-466) of the SA-2018 lineage is characterized and represented in this study. The genome is 8216 nucleotides long with 6996 nucleotides open reading frame flanked by 5ꞌ UTR (1-1100) and 3ꞌ UTR (8097-8216). VP1 was found to be highly variable among the structural proteins with crucial mutations in the major antigenic region, G-H loop. Structural variations of the VP1 against both field and proposed local vaccine strains were evidenced by the G-H loop displacement in a superimposed 3D model. The complete genome information of the isolate would be valuable for undertaking proper control measures needed to limit the spread of the newly emerged FMDV strain.
Collapse
Affiliation(s)
| | | | - Anamica Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
2
|
Jackson T, Belsham GJ. Picornaviruses: A View from 3A. Viruses 2021; 13:v13030456. [PMID: 33799649 PMCID: PMC7999760 DOI: 10.3390/v13030456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.
Collapse
Affiliation(s)
- Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
3
|
Cellular Vimentin Interacts with Foot-and-Mouth Disease Virus Nonstructural Protein 3A and Negatively Modulates Viral Replication. J Virol 2020; 94:JVI.00273-20. [PMID: 32493819 DOI: 10.1128/jvi.00273-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023] Open
Abstract
Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids that is in most FMDVs examined to date, and it plays important roles in virus replication, virulence, and host range. To better understand the role of 3A during FMDV infection, we used coimmunoprecipitation followed by mass spectrometry to identify host proteins that interact with 3A in FMDV-infected cells. Here, we report that cellular vimentin is a host binding partner for 3A. The 3A-vimentin interaction was further confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pull down, and immunofluorescence assays. Alanine-scanning mutagenesis indicated that amino acid residues 15 to 21 at the N-terminal region of the FMDV 3A are responsible for the interaction between 3A and vimentin. Using reverse genetics, we demonstrate that mutations in 3A that disrupt the interaction between 3A and vimentin are also critical for virus growth. Overexpression of vimentin significantly suppressed the replication of FMDV, whereas knockdown of vimentin significantly enhanced FMDV replication. However, chemical disruption of the vimentin network by acrylamide resulted in a significant decrease in viral yield, suggesting that an intact vimentin network is needed for FMDV replication. These results indicate that vimentin interacts with FMDV 3A and negatively regulates FMDV replication and that the vimentin-3A interaction is essential for FMDV replication. This study provides information that should be helpful for understanding the molecular mechanism of FMDV replication.IMPORTANCE Foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays important roles in virus replication, host range, and virulence. To further understand the role of 3A during FMDV infection, identification of host cell factors that interact with FMDV 3A is needed. Here, we found that vimentin is a direct binding partner of FMDV 3A, and manipulation of vimentin has a negative effect on virus replication. We also demonstrated that amino acid residues 15 to 21 at the N-terminal region of the FMDV 3A are responsible for the interaction between 3A and vimentin and that the 3A-vimentin interaction is critical for viral replication since the full-length cDNA clone harboring mutations in 3A, which were disrupt 3A-vimentin reactivity, could not produce viable virus progeny. This study provides information that not only provides us a better understanding of the mechanism of FMDV replication but also helps in the development of novel antiviral strategies in the future.
Collapse
|
4
|
Al Amin M, Ali MR, Alam ASMRU, Siddique MA, Rahaman MM, Sultana M, Hossain MA. Complete genome sequence of a potential foot-and-mouth disease virus serotype O vaccine strain from Bangladesh. Arch Virol 2020; 165:2119-2122. [PMID: 32591914 DOI: 10.1007/s00705-020-04711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/21/2020] [Indexed: 11/26/2022]
Abstract
One of the six sublineages of the dominant O/ME-SA/Ind2001 lineage of foot-and-mouth disease virus (FMDV), Ind2001BD1 has already spread throughout 14 countries, including Bangladesh. Here, we report the complete genome sequence of the potential serotype O vaccine strain BAN/TA/Dh-301/2016, which has been shown to provide protection against all the circulating serotype O viruses in Bangladesh. The viral genome is 8,211 nucleotide (nt) long with an open reading frame (ORF) of 6999 nt. The ORF is flanked by a 1098-nt-long 5'-UTR and a 114-nt-long 3'-UTR. Compared to the Indian FMDV serotype O vaccine strain O/India/R2/75 (AF204276), ten mutations were identified in the major antigenic sites of BAN/TA/Dh-301/2016 (MK088170.1).
Collapse
Affiliation(s)
- Md Al Amin
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Quality Control Laboratory, Department of Livestock Services, Savar, Dhaka, Bangladesh
| | - Md Rahmat Ali
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Ministry of Foreign Affairs, Dhaka, Bangladesh
| | - A S M Rubayet Ul Alam
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mohammad Anwar Siddique
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Md Mizanur Rahaman
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
5
|
Complete Genome Sequence of Pig-Originated Foot-and-Mouth Disease Virus Serotype O from Bangladesh. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01150-16. [PMID: 27789636 PMCID: PMC5084860 DOI: 10.1128/genomea.01150-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this article, we document the first pig-isolated complete genome sequence of foot-and-mouth disease virus type O in Bangladesh. The complete viral genome revealed a potential serotypic recombination at the 5′ untranslated region (UTR). Conventional amino acid deletion was lacking in 3A region, and antigenic heterogeneity to circulatory type O existed within the VP1 region.
Collapse
|
6
|
Ma X, Li P, Sun P, Lu Z, Bao H, Bai X, Fu Y, Cao Y, Li D, Chen Y, Qiao Z, Liu Z. Genome sequence of foot-and-mouth disease virus outside the 3A region is also responsible for virus replication in bovine cells. Virus Res 2016; 220:64-9. [DOI: 10.1016/j.virusres.2016.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
7
|
Gao Y, Sun SQ, Guo HC. Biological function of Foot-and-mouth disease virus non-structural proteins and non-coding elements. Virol J 2016; 13:107. [PMID: 27334704 PMCID: PMC4917953 DOI: 10.1186/s12985-016-0561-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/13/2016] [Indexed: 02/08/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) represses host translation machinery, blocks protein secretion, and cleaves cellular proteins associated with signal transduction and the innate immune response to infection. Non-structural proteins (NSPs) and non-coding elements (NCEs) of FMDV play a critical role in these biological processes. The FMDV virion consists of capsid and nucleic acid. The virus genome is a positive single stranded RNA and encodes a single long open reading frame (ORF) flanked by a long structured 5ʹ-untranslated region (5ʹ-UTR) and a short 3ʹ-UTR. The ORF is translated into a polypeptide chain and processed into four structural proteins (VP1, VP2, VP3, and VP4), 10 NSPs (Lpro, 2A, 2B, 2C, 3A, 3B1–3, 3Cpro, and 3Dpol), and some cleavage intermediates. In the past decade, an increasing number of studies have begun to focus on the molecular pathogenesis of FMDV NSPs and NCEs. This review collected recent research progress on the biological functions of these NSPs and NCEs on the replication and host cellular regulation of FMDV to understand the molecular mechanism of host–FMDV interactions and provide perspectives for antiviral strategy and development of novel vaccines.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Shi-Qi Sun
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| |
Collapse
|
8
|
Zhang W, Lian K, Yang F, Yang Y, Zhu Z, Zhu Z, Cao W, Mao R, Jin Y, He J, Guo J, Liu X, Zheng H. Establishment and evaluation of a murine ανβ3-integrin-expressing cell line with increased susceptibility to Foot-and-mouth disease virus. J Vet Sci 2015; 16:265-72. [PMID: 25643796 PMCID: PMC4588011 DOI: 10.4142/jvs.2015.16.3.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/29/2015] [Indexed: 11/20/2022] Open
Abstract
Integrin ανβ3 plays a major role in various signaling pathways, cell apoptosis, and tumor angiogenesis. To examine the functions and roles of ανβ3 integrin, a stable CHO-677 cell line expressing the murine ανβ3 heterodimer (designated as "CHO-677-mανβ3" cells) was established using a highly efficient lentiviral-mediated gene transfer technique. Integrin subunits αν and β3 were detected at the gene and protein levels by polymerase chain reaction (PCR) and indirect immunofluorescent assay (IFA), respectively, in the CHO-677-mανβ3 cell line at the 20th passage, implying that these genes were successfully introduced into the CHO-677 cells and expressed stably. A plaque-forming assay, 50% tissue culture infective dose (TCID50), real-time quantitative reverse transcription-PCR, and IFA were used to detect the replication levels of Foot-and-mouth disease virus (FMDV) in the CHO-677-mανβ3 cell line. After infection with FMDV/O/ZK/93, the cell line showed a significant increase in viral RNA and protein compared with CHO-677 cells. These findings suggest that we successfully established a stable ανβ3-receptor-expressing cell line with increased susceptibility to FMDV. This cell line will be very useful for further investigation of ανβ3 integrin, and as a cell model for FMDV research.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ma X, Li P, Sun P, Bai X, Bao H, Lu Z, Fu Y, Cao Y, Li D, Chen Y, Qiao Z, Liu Z. Construction and characterization of 3A-epitope-tagged foot-and-mouth disease virus. INFECTION GENETICS AND EVOLUTION 2015; 31:17-24. [PMID: 25584768 DOI: 10.1016/j.meegid.2015.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/03/2014] [Accepted: 01/02/2015] [Indexed: 11/18/2022]
Abstract
Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids (aa) in most FMDVs examined to date. Specific deletion in the FMDV 3A protein has been associated with the inability of FMDV to grow in primary bovine cells and cause disease in cattle. However, the aa residues playing key roles in these processes are poorly understood. In this study, we constructed epitope-tagged FMDVs containing an 8 aa FLAG epitope, a 9 aa haemagglutinin (HA) epitope, and a 10 aa c-Myc epitope to substitute residues 94-101, 93-101, and 93-102 of 3A protein, respectively, using a recently developed O/SEA/Mya-98 FMDV infectious cDNA clone. Immunofluorescence assay (IFA), Western blot and sequence analysis showed that the epitope-tagged viruses stably maintained and expressed the foreign epitopes even after 10 serial passages in BHK-21 cells. The epitope-tagged viruses displayed growth properties and plaque phenotypes similar to those of the parental virus in BHK-21 cells. However, the epitope-tagged viruses exhibited lower growth rates and smaller plaque size phenotypes than those of the parental virus in primary fetal bovine kidney (FBK) cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the decreased ability of FMDV to replicate in primary bovine cells was not associated with the length of 3A, and the genetic determinant thought to play key role in decreased ability to replicate in primary bovine cells could be reduced from 93-102 residues to 8 aa residues at positions 94-101 in 3A protein.
Collapse
Affiliation(s)
- Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Zilin Qiao
- Animal Cell Engineering & Technology Research Center of Gansu, Northwest University for Nationalities, No. 1 Xibeixincun, Lanzhou 730030, China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China.
| |
Collapse
|