1
|
Sun X, Li L, Pan L, Wang Z, Chen H, Shao C, Yu J, Ren Y, Wang X, Huang X, Zhang R, Li G. Infectious bronchitis virus: Identification of Gallus gallus APN high-affinity ligands with antiviral effects. Antiviral Res 2020; 186:104998. [PMID: 33340637 DOI: 10.1016/j.antiviral.2020.104998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Infectious bronchitis virus (IBV) is a coronavirus, causes infectious bronchitis (IB) with high morbidity and mortality, and gives rise to huge economic losses for the poultry industry. Aminopeptidase N (APN) may be one of the IBV functional receptors. In this study, Gallus gallus APN (gAPN) protein was screened by phage-displayed 12-mer peptide library. Two high-affinity peptides H (HDYLYYTFTGNP) and T (TKFSPPSFWYLH) to gAPN protein were selected for in depth characterization of their anti-IBV effects. In vitro, indirect ELISA showed that these two high-affinity ligands could bind IBV S1 antibodies. Quantitative real-time PCR (qRT-PCR) assay, virus yield reduction assay and indirect immunofluorescence assay results revealed 3.125-50 μg/ml of peptide H and 6.25-50 μg/ml of peptide T reduced IBV proliferation in chicken embryo kidney cells (CEKs). In vivo, high-affinity phage-vaccinated chickens were able to induce specific IBV S1 antibodies and IBV neutralizing antibodies. QRT-PCR results confirmed that high-affinity phages reduced virus proliferation in chicken tracheas, lungs and kidneys, and alleviated IBV-induced lesions. By multiple sequence alignment, motif 'YxYY' and 'FxPPxxWxLH' of high-affinity peptides were identified in IBV S1-NTD, while another motif 'YxFxGN' located in S2. These results indicated that high affinity peptides of gAPN could present an alternative approach to IB prevention or treatment.
Collapse
Affiliation(s)
- Xiaoqi Sun
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lanlan Li
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Long Pan
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zheng Wang
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huijie Chen
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Changhao Shao
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jia Yu
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yudong Ren
- College of Electrical and Information Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, 150069, China
| | - Xiaodan Huang
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ruili Zhang
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Guangxing Li
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Upfold N, Ross C, Tastan Bishop Ö, Knox C. The In Silico Prediction of Hotspot Residues that Contribute to the Structural Stability of Subunit Interfaces of a Picornavirus Capsid. Viruses 2020; 12:v12040387. [PMID: 32244486 PMCID: PMC7232237 DOI: 10.3390/v12040387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 11/16/2022] Open
Abstract
The assembly of picornavirus capsids proceeds through the stepwise oligomerization of capsid protein subunits and depends on interactions between critical residues known as hotspots. Few studies have described the identification of hotspot residues at the protein subunit interfaces of the picornavirus capsid, some of which could represent novel drug targets. Using a combination of accessible web servers for hotspot prediction, we performed a comprehensive bioinformatic analysis of the hotspot residues at the intraprotomer, interprotomer and interpentamer interfaces of the Theiler’s murine encephalomyelitis virus (TMEV) capsid. Significantly, many of the predicted hotspot residues were found to be conserved in representative viruses from different genera, suggesting that the molecular determinants of capsid assembly are conserved across the family. The analysis presented here can be applied to any icosahedral structure and provides a platform for in vitro mutagenesis studies to further investigate the significance of these hotspots in critical stages of the virus life cycle with a view to identify potential targets for antiviral drug design.
Collapse
Affiliation(s)
- Nicole Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
- Correspondence:
| | - Caroline Ross
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (C.R.); (Ö.T.B.)
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (C.R.); (Ö.T.B.)
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| |
Collapse
|
3
|
Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses 2019; 11:v11070596. [PMID: 31266258 PMCID: PMC6669472 DOI: 10.3390/v11070596] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, developmental processes, and cell homeostasis. HSPG are highly sulfated and broadly used by a range of pathogens, especially viruses, to attach to the cell surface.
Collapse
Affiliation(s)
- Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland.
| | - Eirini D Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| | - Samuel T Jones
- School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| |
Collapse
|
4
|
Gerhauser I, Hansmann F, Ciurkiewicz M, Löscher W, Beineke A. Facets of Theiler's Murine Encephalomyelitis Virus-Induced Diseases: An Update. Int J Mol Sci 2019; 20:ijms20020448. [PMID: 30669615 PMCID: PMC6358740 DOI: 10.3390/ijms20020448] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
Theiler’s murine encephalomyelitis virus (TMEV), a naturally occurring, enteric pathogen of mice is a Cardiovirus of the Picornaviridae family. Low neurovirulent TMEV strains such as BeAn cause a severe demyelinating disease in susceptible SJL mice following intracerebral infection. Furthermore, TMEV infections of C57BL/6 mice cause acute polioencephalitis initiating a process of epileptogenesis that results in spontaneous recurrent epileptic seizures in approximately 50% of affected mice. Moreover, C3H mice develop cardiac lesions after an intraperitoneal high-dose application of TMEV. Consequently, TMEV-induced diseases are widely used as animal models for multiple sclerosis, epilepsy, and myocarditis. The present review summarizes morphological lesions and pathogenic mechanisms triggered by TMEV with a special focus on the development of hippocampal degeneration and seizures in C57BL/6 mice as well as demyelination in the spinal cord in SJL mice. Furthermore, a detailed description of innate and adaptive immune responses is given. TMEV studies provide novel insights into the complexity of organ- and mouse strain-specific immunopathology and help to identify factors critical for virus persistence.
Collapse
Affiliation(s)
- Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
- Center for System Neuroscience, 30559 Hannover, Germany.
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
- Center for System Neuroscience, 30559 Hannover, Germany.
| | - Wolfgang Löscher
- Center for System Neuroscience, 30559 Hannover, Germany.
- Department of Pharmacology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
- Center for System Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|