1
|
Gaitán M, Zaldivar Y, Hernandez M, Góndola J, Chavarría O, Moreno B, Franco D, DeAntonio R, Mirazo S, Cancela F, Barnett ME, Martinez AA, Pascale JM, López-Vergès S. Cryptic transmission of a SARS-CoV-2 variant detected by wastewater surveillance in Panama. Front Cell Infect Microbiol 2025; 14:1467484. [PMID: 39944081 PMCID: PMC11813908 DOI: 10.3389/fcimb.2024.1467484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/30/2024] [Indexed: 05/09/2025] Open
Abstract
The COVID-19 pandemic highlighted the critical role of viral genomic surveillance, prompting numerous countries to enhance their monitoring systems for acute respiratory infections (ARIs), especially influenza-like illnesses (ILIs). Given the significance of asymptomatic cases in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, cases often undetected by the ILI surveillance, a more comprehensive approach was essential to track the circulation of SARS-CoV-2 variants in the population. In response, many countries swiftly adopted wastewater surveillance, which allowed the early detection of SARS-CoV-2 variants before they were identified through molecular characterization from confirmed clinical cases. In this report, we detail the implementation of SARS-CoV-2 wastewater genomic surveillance in Panama during the first half of 2024. Wastewater samples were collected monthly in duplicate at two collection points from three districts of Panama city metropolitan area for testing by SARS-CoV-2 RT-qPCR, and positive samples were analyzed by next-generation sequencing to identify sublineages. A total of 36 wastewater samples and 822 samples obtained through the clinical surveillance were analyzed for molecular detection and sequencing. Sublineages detected by wastewater surveillance were compared to those detected by clinical surveillance for the same period of time. Wastewater surveillance allowed the identification of the Omicron sublineage JN.1.16.1 in the capital city and its surroundings, which was not detected by the clinical surveillance in the country, despite its global circulation. This highlights the critical need to sustain both genomic surveillance programs beyond the pandemic in countries like Panama that serve as pivotal exchange hubs.
Collapse
Affiliation(s)
- Melissa Gaitán
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Yamitzel Zaldivar
- Department of Research and Surveillance of Biologic Risk 3, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Michelle Hernandez
- Department of Research and Surveillance of Biologic Risk 3, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Jessica Góndola
- Department of Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Oris Chavarría
- Department of Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Brechla Moreno
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Danilo Franco
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | | | - Santiago Mirazo
- Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Cancela
- Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Maria Eugenia Barnett
- Clinical Research Unit, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Alexander A. Martinez
- Department of Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Juan Miguel Pascale
- Clinical Research Unit, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Sandra López-Vergès
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| |
Collapse
|
2
|
Lubinski B, Whittaker GR. Host Cell Proteases Involved in Human Respiratory Viral Infections and Their Inhibitors: A Review. Viruses 2024; 16:984. [PMID: 38932275 PMCID: PMC11209347 DOI: 10.3390/v16060984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Viral tropism is most commonly linked to receptor use, but host cell protease use can be a notable factor in susceptibility to infection. Here we review the use of host cell proteases by human viruses, focusing on those with primarily respiratory tropism, particularly SARS-CoV-2. We first describe the various classes of proteases present in the respiratory tract, as well as elsewhere in the body, and incorporate the targeting of these proteases as therapeutic drugs for use in humans. Host cell proteases are also linked to the systemic spread of viruses and play important roles outside of the respiratory tract; therefore, we address how proteases affect viruses across the spectrum of infections that can occur in humans, intending to understand the extrapulmonary spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Bailey Lubinski
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Public & Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
3
|
Abay Z, Sadikaliyeva S, Nurpeisova A, Jekebekov K, Shorayeva K, Yespembetov B, Nurabayev S, Kerimbayev A, Khairullin B, Yoo H, Kutumbetov L, Kassenov M, Zakarya K. Breaking the Barrier: SARS-CoV-2 Infections in Wild and Companion Animals and Their Implications for Public Health. Viruses 2024; 16:956. [PMID: 38932248 PMCID: PMC11209598 DOI: 10.3390/v16060956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of the novel coronavirus SARS-CoV-2 has led to significant interest in its potential transmission between animals and humans, especially pets. This review article summarises the literature on coronavirus infections in domestic animals, emphasising epidemiology, transmission dynamics, clinical manifestations, and public health implications. This article highlights current understandings of the relationship between infections in companion animals and humans, identifies research gaps, and suggests directions for future research. Cases of disease in cats, dogs, and other domestic animals, often occurring through close contact with infected owners, are reviewed, raising concerns about possible zoonotic and reverse zoonotic transmission. Precautions and recommendations for pet owners and healthcare workers are also discussed. The scientific evidence presented in the article highlights the need for a One Health approach that considers the health of people, animals, and the environment to combat future pandemics.
Collapse
Affiliation(s)
- Zhandos Abay
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | | | - Ainur Nurpeisova
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kuanysh Jekebekov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kamshat Shorayeva
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Bolat Yespembetov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Sergazy Nurabayev
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Aslan Kerimbayev
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Berik Khairullin
- MVA Group Scientific-Research Production Center Ltd., Almaty 050046, Kazakhstan
| | - Hansang Yoo
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Lespek Kutumbetov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Markhabat Kassenov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kunsulu Zakarya
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| |
Collapse
|
4
|
Larska M, Tomana J, Krzysiak MK, Pomorska-Mól M, Socha W. Prevalence of coronaviruses in European bison (Bison bonasus) in Poland. Sci Rep 2024; 14:12928. [PMID: 38839918 PMCID: PMC11153543 DOI: 10.1038/s41598-024-63717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Coronaviruses have been confirmed to infect a variety of species, but only one case of associated winter dysentery of European bison has been described. The study aimed to analyze the prevalence, and define the impact on the species conservation, the source of coronavirus infection, and the role of the European bison in the transmission of the pathogen in Poland. Molecular and serological screening was performed on 409 European bison from 6 free-ranging and 14 captive herds over the period of 6 years (2017-2023). Presence of coronavirus was confirmed in one nasal swab by pancoronavirus RT-PCR and in 3 nasal swab samples by bovine coronavirus (BCoV) specific real time RT-PCR. The detected virus showed high (> 98%) homology in both RdRp and Spike genes to BCoV strains characterised recently in Polish cattle and strains isolated from wild cervids in Italy. Antibodies specific to BCoV were found in 6.4% of tested samples, all originating from free-ranging animals. Seroprevalence was higher in adult animals over 5 years of age (p = 0.0015) and in females (p = 0.09). Our results suggest that European bison play only a limited role as reservoirs of bovine-like coronaviruses. Although the most probable source of infections in the European bison population in Poland is cattle, other wild ruminants could also be involved. In addition, the zoonotic potential of bovine coronaviruses is quite low.
Collapse
Affiliation(s)
- Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | | | - Michał K Krzysiak
- Sub-Department of Parasitology and Invasive Diseases, Veterinary Faculty, University of Life Sciences, Lublin, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, Poznan, Poland
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, Puławy, Poland.
| |
Collapse
|
5
|
Zhuang J, Yan Z, Zhou T, Li Y, Wang H. The role of receptors in the cross-species spread of coronaviruses infecting humans and pigs. Arch Virol 2024; 169:35. [PMID: 38265497 DOI: 10.1007/s00705-023-05956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/19/2023] [Indexed: 01/25/2024]
Abstract
The pandemic caused by SARS-CoV-2, which has proven capable of infecting over 30 animal species, highlights the critical need for understanding the mechanisms of cross-species transmission and the emergence of novel coronavirus strains. The recent discovery of CCoV-HuPn-2018, a recombinant alphacoronavirus from canines and felines that can infect humans, along with evidence of SARS-CoV-2 infection in pig cells, underscores the potential for coronaviruses to overcome species barriers. This review investigates the origins and cross-species transmission of both human and porcine coronaviruses, with a specific emphasis on the instrumental role receptors play in this process.
Collapse
Affiliation(s)
- Jie Zhuang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhiwei Yan
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Tiezhong Zhou
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Yonggang Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Huinuan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
6
|
Khalil AM, Martinez-Sobrido L, Mostafa A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol 2024; 13:1232772. [PMID: 38249300 PMCID: PMC10796657 DOI: 10.3389/fcimb.2023.1232772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|