1
|
Hu Y, Grodzki LM, Bartsch U. Survival and Axonal Regeneration of Retinal Ganglion Cells in a Mouse Optic Nerve Crush Model After a Cell-Based Intravitreal Co-Administration of Ciliary Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor at Different Post-Lesion Time Points. Cells 2025; 14:643. [PMID: 40358167 PMCID: PMC12071274 DOI: 10.3390/cells14090643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
We recently showed, in a mouse optic nerve crush model, that a sustained cell-based intravitreal administration of ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF) synergistically slowed the lesion-induced degeneration of retinal ganglion cells (RGCs), resulting in the presence of approximately 35% viable RGCs eight months after the lesion. However, the combinatorial neuroprotective treatment was initiated shortly after the lesion. To mimic a more clinically relevant situation, we co-administered both factors either three or five days after an intraorbital nerve crush when approximately 35% or 57% of the RGCs were degenerated, respectively. Analyses of the retinas at different time points after the lesion consistently revealed the presence of significantly more surviving RGCs in retinas co-treated with CNTF and GDNF than in retinas treated with either factor alone. For example, when the neurotrophic factors were administered five days after the nerve crush and the animals were analyzed two months after the lesion, retinas co-treated with CNTF and GDNF contained approximately 40% of the RGCs present at the start of treatment. In comparison, monotherapy with either CNTF or GDNF protected only about 15% or 10% of the RGCs present at baseline, respectively. The number of regenerating axons in the distal nerve stumps was similar in CNTF- and CNTF/GDNF-treated animals, despite the significantly higher number of rescued RGCs in the latter group. These findings have potential implications for studies aimed at developing neuroprotective treatments for optic neuropathies such as glaucoma.
Collapse
Affiliation(s)
| | | | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (Y.H.); (L.M.G.)
| |
Collapse
|
2
|
Gallego-Ortega A, Galindo-Romero C, Vidal-Villegas B, Bernal-Garro JM, de la Villa P, Avilés-Trigueros M, Vidal-Sanz M. The action of 7,8-dihydroxyflavone preserves retinal ganglion cell survival and visual function via the TrkB pathway in NMDA-induced retinal excitotoxicity. Biomed Pharmacother 2025; 185:117944. [PMID: 40056826 DOI: 10.1016/j.biopha.2025.117944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025] Open
Abstract
PURPOSE To analyze the response of different retinal ganglion cell (RGC) populations to NMDA-induced retinal excitotoxicity and the effect of an intraperitoneal treatment with 7,8-Dihydroxyflavone (DHF), a potent selective TrkB agonist. METHODS Adult albino rats were treated the day prior to NMDA injection and the three following days with intraperitoneal vehicle (1 %DMSO in 0.09 %NaCl) or DHF (5 mg/kg in vehicle) injections. DHF-afforded protection was studied in the population of Brn3a+RGCs, OPN+RGCs (α-RGCs), OPN+ Tbr2+RGCs (αONs-RGCs), OPN+ Tbr2-Brn3a-RGCs (αONt-RGCs) and OPN+Brn3a+RGCs (αOFF-RGCs) at 3,7,14, or 21 days. The functional response was analyzed longitudinally with full-field electroretinograms. The mechanisms underlying DHF-afforded neuroprotection were assessed by western blot (WB) analysis of the levels of phosphorylated and total TrkB, phosphatidylinositol 3 kinase (PIK3/AKT) and mitogen-activated protein kinase (MAPK). RESULTS NMDA intravitreal injection resulted in a significant diminution of the mean amplitudes of the pSTR and b-waves, as well as in severe depletion of all RGCs studied except αONt-RGCs. DHF treatment resulted in rescued mean amplitudes of the pSTR and b-waves up to 21 days after NMDA. WB analysis revealed an increase in p-TrkB which correlates to the increase of TRKB protein and an increase in normalized pAKT/AKT. pMAPK/MAPK was upregulated earlier and significantly higher in DHF-treated retinas. DHF afforded survival of up to 49 % of the Brn3a+RGCs versus 25 % of the vehicle group at 21 days after NMDA, and improved survival of the α-RGC and αONs-RGCs but did not rescue the αOFF-RGCs. CONCLUSION Different RGC types exhibit variable susceptibilities to NMDA injury, and DHF-mediated activation of TrkB affords neuroprotection.
Collapse
Affiliation(s)
- Alejandro Gallego-Ortega
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain; Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, USA.
| | - Caridad Galindo-Romero
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain.
| | - Beatriz Vidal-Villegas
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain; Moorfields Eye Hospital, London, United Kingdom
| | - José Manuel Bernal-Garro
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Pedro de la Villa
- Department of Systems Biology, Laboratory of Visual Neurophysiology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Marcelino Avilés-Trigueros
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| |
Collapse
|
3
|
Pang Y, Hu H, Xu K, Cao T, Wang Z, Nie J, Zheng H, Luo H, Wang F, Xiong C, Deng KY, Xin HB, Zhang X. CD38 Deficiency Protects Mouse Retinal Ganglion Cells Through Activating the NAD+/Sirt1 Pathway in Ischemia-Reperfusion and Optic Nerve Crush Models. Invest Ophthalmol Vis Sci 2024; 65:36. [PMID: 38776115 PMCID: PMC11127494 DOI: 10.1167/iovs.65.5.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/05/2024] [Indexed: 05/27/2024] Open
Abstract
Purpose The purpose of this study was to investigate the protective effect of CD38 deletion on retinal ganglion cells (RGCs) in a mouse retinal ischemia/reperfusion (I/R) model and an optic nerve crush (ONC) model, and to elucidate the underlying molecular mechanisms. Methods Retinal I/R and ONC models were constructed in mice. PCR was used to identify the deletion of CD38 gene in mice, hematoxylin and eosin (H&E) staining was used to evaluate the changes in retinal morphology, and electroretinogram (ERG) was used to evaluate the changes in retinal function. The survival of RGCs and activation of retinal macroglia were evaluated by immunofluorescence staining. The expression of Sirt1, CD38, Ac-p65, Ac-p53, TNF-α, IL-1β, and Caspase3 proteins in the retina was further evaluated by protein imprinting. Results In retinal I/R and ONC models, CD38 deficiency reduced the loss of RGCs and activation of macroglia and protected the retinal function. CD38 deficiency increased the concentration of NAD+, reduced the degree of acetylation of NF-κB p65 and p53, and reduced expression of the downstream inflammatory cytokines TNFα, IL-1β, and apoptotic protein Caspase3 in the retina in the ONC model. Intraperitoneal injection of the Sirt1 inhibitor EX-527 partially counteracted the effects of CD38 deficiency, suggesting that CD38 deficiency acts at least in part through the NAD+/Sirt1 pathway. Conclusions CD38 plays an important role in the pathogenesis of retinal I/R and ONC injury. CD38 deletion protects RGCs by attenuating inflammatory responses and apoptosis through the NAD+/Sirt1 pathway.
Collapse
Affiliation(s)
- Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ke Xu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ting Cao
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
- Department of Orthopaedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhiruo Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiahe Nie
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Haina Zheng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Hongdou Luo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Chan Xiong
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ke-Yu Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| |
Collapse
|
4
|
Matynia A, Recio BS, Myers Z, Parikh S, Goit RK, Brecha NC, Pérez de Sevilla Müller L. Preservation of Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) in Late Adult Mice: Implications as a Potential Biomarker for Early Onset Ocular Degenerative Diseases. Invest Ophthalmol Vis Sci 2024; 65:28. [PMID: 38224335 PMCID: PMC10793389 DOI: 10.1167/iovs.65.1.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose Intrinsically photosensitive retinal ganglion cells (ipRGCs) play a crucial role in non-image-forming visual functions. Given their significant loss observed in various ocular degenerative diseases at early stages, this study aimed to assess changes in both the morphology and associated behavioral functions of ipRGCs in mice between 6 (mature) and 12 (late adult) months old. The findings contribute to understanding the preservation of ipRGCs in late adults and their potential as a biomarker for early ocular degenerative diseases. Methods Female and male C57BL/6J mice were used to assess the behavioral consequences of aging to mature and old adults, including pupillary light reflex, light aversion, visual acuity, and contrast sensitivity. Immunohistochemistry on retinal wholemounts from these mice was then conducted to evaluate ipRGC dendritic morphology in the ganglion cell layer (GCL) and inner nuclear layer (INL). Results Morphological analysis showed that ipRGC dendritic field complexity was remarkably stable through 12 months old of age. Similarly, the pupillary light reflex, visual acuity, and contrast sensitivity were stable in mature and old adults. Although alterations were observed in ipRGC-independent light aversion distinct from the pupillary light reflex, aged wild-type mice continuously showed enhanced light aversion with dilation. No effect of sex was observed in any tests. Conclusions The preservation of both ipRGC morphology and function highlights the potential of ipRGC-mediated function as a valuable biomarker for ocular diseases characterized by early ipRGC loss. The consistent stability of ipRGCs in mature and old adult mice suggests that detected changes in ipRGC-mediated functions could serve as early indicators or diagnostic tools for early-onset conditions such as Alzheimer's disease, Parkinson's disease, and diabetes, where ipRGC loss has been documented.
Collapse
Affiliation(s)
- Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, United States
| | - Brandy S. Recio
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Zachary Myers
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Sachin Parikh
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, United States
| | - Rajesh Kumar Goit
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, United States
| | - Nicholas C. Brecha
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, United States
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| |
Collapse
|
5
|
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW, Wohlschlegel J, Baranov P, Di Polo A, Fortune B, Gokoffski KK, Goldberg JL, Guido W, Kolodkin AL, Mason CA, Ou Y, Reh TA, Ross AG, Samuels BC, Welsbie D, Zack DJ, Johnson TV. Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023; 18:64. [PMID: 37735444 PMCID: PMC10514988 DOI: 10.1186/s13024-023-00655-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Erika A Aguzzi
- The Institute of Ophthalmology, University College London, London, England, UK
| | - Julie Cho
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael James Gilhooley
- The Institute of Ophthalmology, University College London, London, England, UK
- Moorfields Eye Hospital, London, England, UK
| | - Casey Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Meher A Saleem
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Petr Baranov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Alex L Kolodkin
- The Solomon H Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ahmara G Ross
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, Callahan Eye Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek Welsbie
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, CA, USA
| | - Donald J Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas V Johnson
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA.
| |
Collapse
|
6
|
Wu S, Mo X. Optic Nerve Regeneration in Diabetic Retinopathy: Potentials and Challenges Ahead. Int J Mol Sci 2023; 24:ijms24021447. [PMID: 36674963 PMCID: PMC9865663 DOI: 10.3390/ijms24021447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular compilation of diabetes, is the leading cause of vision loss and blindness worldwide. Recent studies indicate that retinal neuron impairment occurs before any noticeable vascular changes in DR, and retinal ganglion cell (RGC) degeneration is one of the earliest signs. Axons of RGCs have little capacity to regenerate after injury, clinically leading the visual functional defects to become irreversible. In the past two decades, tremendous progress has been achieved to enable RGC axon regeneration in animal models of optic nerve injury, which holds promise for neural repair and visual restoration in DR. This review summarizes these advances and discusses the potential and challenges for developing optic nerve regeneration strategies treating DR.
Collapse
Affiliation(s)
| | - Xiaofen Mo
- Correspondence: ; Tel.: +86-021-64377134
| |
Collapse
|
7
|
Hunyara JL, Foshe S, Varadarajan SG, Gribble KD, Huberman AD, Kolodkin AL. Characterization of non-alpha retinal ganglion cell injury responses reveals a possible block to restoring ipRGC function. Exp Neurol 2022; 357:114176. [PMID: 35870522 PMCID: PMC9549754 DOI: 10.1016/j.expneurol.2022.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 11/04/2022]
Abstract
Visual impairment caused by retinal ganglion cell (RGC) axon damage or degeneration affects millions of individuals throughout the world. While some progress has been made in promoting long-distance RGC axon regrowth following injury, it remains unclear whether RGC axons can properly reconnect with their central targets to restore visual function. Additionally, the regenerative capacity of many RGC subtypes remains unknown in part due to a lack of available genetic tools. Here, we use a new mouse line, Sema6ACreERT2, that labels On direction-selective RGCs (oDSGCs) and characterize the survival and regenerative potential of these cells following optic nerve crush (ONC). In parallel, we use a previously characterized mouse line, Opn4CreERT2, to answer these same questions for M1 intrinsically photosensitive RGCs (ipRGCs). We find that both M1 ipRGCs and oDSGCs are resilient to injury but do not display long-distance axon regrowth following Lin28a overexpression. Unexpectedly, we found that M1 ipRGC, but not oDSGC, intraretinal axons exhibit ectopic branching and are misaligned near the optic disc between one- and three-weeks following injury. Additionally, we observe that numerous ectopic presynaptic specializations associate with misguided ipRGC intraretinal axons. Taken together, these results reveal insights into the injury response of M1 ipRGCs and oDSGCs, providing a foundation for future efforts seeking to restore visual system function following injury.
Collapse
Affiliation(s)
- John L Hunyara
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sierra Foshe
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Katherine D Gribble
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Au NPB, Kumar G, Asthana P, Gao F, Kawaguchi R, Chang RCC, So KF, Hu Y, Geschwind DH, Coppola G, Ma CHE. Clinically relevant small-molecule promotes nerve repair and visual function recovery. NPJ Regen Med 2022; 7:50. [PMID: 36182946 PMCID: PMC9526721 DOI: 10.1038/s41536-022-00233-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/01/2022] [Indexed: 12/01/2022] Open
Abstract
Adult mammalian injured axons regenerate over short-distance in the peripheral nervous system (PNS) while the axons in the central nervous system (CNS) are unable to regrow after injury. Here, we demonstrated that Lycium barbarum polysaccharides (LBP), purified from Wolfberry, accelerated long-distance axon regeneration after severe peripheral nerve injury (PNI) and optic nerve crush (ONC). LBP not only promoted intrinsic growth capacity of injured neurons and function recovery after severe PNI, but also induced robust retinal ganglion cell (RGC) survival and axon regeneration after ONC. By using LBP gene expression profile signatures to query a Connectivity map database, we identified a Food and Drug Administration (FDA)-approved small-molecule glycopyrrolate, which promoted PNS axon regeneration, RGC survival and sustained CNS axon regeneration, increased neural firing in the superior colliculus, and enhanced visual target re-innervations by regenerating RGC axons leading to a partial restoration of visual function after ONC. Our study provides insights into repurposing of FDA-approved small molecule for nerve repair and function recovery.
Collapse
Affiliation(s)
- Ngan Pan Bennett Au
- grid.35030.350000 0004 1792 6846Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Gajendra Kumar
- grid.35030.350000 0004 1792 6846Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Pallavi Asthana
- grid.35030.350000 0004 1792 6846Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Fuying Gao
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Riki Kawaguchi
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Raymond Chuen Chung Chang
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Kwok Fai So
- grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR ,grid.194645.b0000000121742757Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong ,grid.258164.c0000 0004 1790 3548Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yang Hu
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, USA
| | - Daniel H. Geschwind
- grid.19006.3e0000 0000 9632 6718Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Giovanni Coppola
- grid.19006.3e0000 0000 9632 6718Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR.
| |
Collapse
|
9
|
Gao J, Provencio I, Liu X. Intrinsically photosensitive retinal ganglion cells in glaucoma. Front Cell Neurosci 2022; 16:992747. [PMID: 36212698 PMCID: PMC9537624 DOI: 10.3389/fncel.2022.992747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Glaucoma is a group of eye diseases afflicting more than 70 million people worldwide. It is characterized by damage to retinal ganglion cells (RGCs) that ultimately leads to the death of the cells and vision loss. The diversity of RGC types has been appreciated for decades, and studies, including ours, have shown that RGCs degenerate and die in a type-specific manner in rodent models of glaucoma. The type-specific loss of RGCs results in differential damage to visual and non-visual functions. One type of RGC, the intrinsically photosensitive retinal ganglion cell (ipRGC), expressing the photopigment melanopsin, serves a broad array of non-visual responses to light. Since its discovery, six subtypes of ipRGC have been described, each contributing to various image-forming and non-image-forming functions such as circadian photoentrainment, the pupillary light reflex, the photic control of mood and sleep, and visual contrast sensitivity. We recently demonstrated a link between type-specific ipRGC survival and behavioral deficits in a mouse model of chronic ocular hypertension. This review focuses on the type-specific ipRGC degeneration and associated behavioral changes in animal models and glaucoma patients. A better understanding of how glaucomatous insult impacts the ipRGC-based circuits will have broad impacts on improving the treatment of glaucoma-associated non-visual disorders.
Collapse
Affiliation(s)
- Jingyi Gao
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
10
|
Claes M, Moons L. Retinal Ganglion Cells: Global Number, Density and Vulnerability to Glaucomatous Injury in Common Laboratory Mice. Cells 2022; 11:2689. [PMID: 36078097 PMCID: PMC9454702 DOI: 10.3390/cells11172689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
How many RBPMS+ retinal ganglion cells (RGCs) does a standard C57BL/6 laboratory mouse have on average and is this number substrain- or sex-dependent? Do RGCs of (European) C57BL/6J and -N mice show a different intrinsic vulnerability upon glaucomatous injury? Global RGC numbers and densities of common laboratory mice were previously determined via axon counts, retrograde tracing or BRN3A immunohistochemistry. Here, we report the global RGC number and density by exploiting the freely available tool RGCode to automatically count RGC numbers and densities on entire retinal wholemounts immunostained for the pan-RGC marker RBPMS. The intrinsic vulnerability of RGCs from different substrains to glaucomatous injury was evaluated upon introduction of the microbead occlusion model, followed by RBPMS counts, retrograde tracing and electroretinography five weeks post-injury. We demonstrate that the global RGC number and density varies between substrains, yet is not sex-dependent. C57BL/6J mice have on average 46K ± 2K RBPMS+ RGCs per retina, representing a global RGC density of 3268 ± 177 RGCs/mm2. C57BL/6N mice, on the other hand, have on average less RBPMS+ RGCs (41K ± 3K RGCs) and a lower density (3018 ± 189 RGCs/mm2). The vulnerability of the RGC population of the two C57BL/6 substrains to glaucomatous injury did, however, not differ in any of the interrogated parameters.
Collapse
Affiliation(s)
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| |
Collapse
|
11
|
Tapia ML, Nascimento-Dos-Santos G, Park KK. Subtype-specific survival and regeneration of retinal ganglion cells in response to injury. Front Cell Dev Biol 2022; 10:956279. [PMID: 36035999 PMCID: PMC9411869 DOI: 10.3389/fcell.2022.956279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Mary L Tapia
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
12
|
Abed S, Reilly A, Arnold SJ, Feldheim DA. Adult Expression of Tbr2 Is Required for the Maintenance but Not Survival of Intrinsically Photosensitive Retinal Ganglion Cells. Front Cell Neurosci 2022; 16:826590. [PMID: 35401124 PMCID: PMC8983909 DOI: 10.3389/fncel.2022.826590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs). ipRGCs regulate subconscious non-image-forming behaviors such as circadian rhythms, pupil dilation, and light-mediated mood. Previously, we and others showed that the transcription factor Tbr2 (EOMES) is required during retinal development for the formation of ipRGCs. Tbr2 is also expressed in the adult retina leading to the hypothesis that it plays a role in adult ipRGC function. To test this, we removed Tbr2 in adult mice. We found that this results in the loss of melanopsin expression in ipRGCs but does not lead to cell death or morphological changes to their dendritic or axonal termination patterns. Additionally, we found ectopic expression of Tbr2 in conventional RGCs does not induce melanopsin expression but can increase melanopsin expression in existing ipRGCs. An interesting feature of ipRGCs is their superior survival relative to conventional RGCs after an optic nerve injury. We find that loss of Tbr2 decreases the survival rate of ipRGCs after optic nerve damage suggesting that Tbr2 plays a role in ipRGC survival after injury. Lastly, we show that the GABAergic amacrine cell marker Meis2, is expressed in the majority of Tbr2-expressing displaced amacrine cells as well as in a subset of Tbr2-expressing RGCs. These findings demonstrate that Tbr2 is necessary but not sufficient for melanopsin expression, that Tbr2 is involved in ipRGC survival after optic nerve injury, and identify a marker for Tbr2-expressing displaced amacrine cells.
Collapse
Affiliation(s)
- Sadaf Abed
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andreea Reilly
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Sebastian J. Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David A. Feldheim
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
- *Correspondence: David A. Feldheim,
| |
Collapse
|
13
|
7,8-Dihydroxiflavone Maintains Retinal Functionality and Protects Various Types of RGCs in Adult Rats with Optic Nerve Transection. Int J Mol Sci 2021; 22:ijms222111815. [PMID: 34769247 PMCID: PMC8584116 DOI: 10.3390/ijms222111815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
To analyze the neuroprotective effects of 7,8-Dihydroxyflavone (DHF) in vivo and ex vivo, adult albino Sprague-Dawley rats were given a left intraorbital optic nerve transection (IONT) and were divided in two groups: One was treated daily with intraperitoneal (ip) DHF (5 mg/kg) (n = 24) and the other (n = 18) received ip vehicle (1% DMSO in 0.9% NaCl) from one day before IONT until processing. At 5, 7, 10, 12, 14, and 21 days (d) after IONT, full field electroretinograms (ERG) were recorded from both experimental and one additional naïve-control group (n = 6). Treated rats were analyzed 7 (n = 14), 14 (n = 14) or 21 d (n = 14) after IONT, and the retinas immune stained against Brn3a, Osteopontin (OPN) and the T-box transcription factor T-brain 2 (Tbr2) to identify surviving retinal ganglion cells (RGCs) (Brn3a+), α-like (OPN+), α-OFF like (OPN+Brn3a+) or M4-like/α-ON sustained RGCs (OPN+Tbr+). Naïve and right treated retinas showed normal ERG recordings. Left vehicle-treated retinas showed decreased amplitudes of the scotopic threshold response (pSTR) (as early as 5 d), the rod b-wave, the mixed response and the cone response (as early as 10 d), which did not recover with time. In these retinas, by day 7 the total numbers of Brn3a+RGCs, OPN+RGCs and OPN+Tbr2+RGCs decreased to less than one half and OPN+Brn3a+RGCs decreased to approximately 0.5%, and Brn3a+RGCs showed a progressive loss with time, while OPN+RGCs and OPN+Tbr2+RGCs did not diminish after seven days. Compared to vehicle-treated, the left DHF-treated retinas showed significantly greater amplitudes of the pSTR, normal b-wave values and significantly greater numbers of OPN+RGCs and OPN+Tbr2+RGCs for up to 14 d and of Brn3a+RGCs for up to 21 days. DHF affords significant rescue of Brn3a+RGCs, OPN+RGCs and OPN+Tbr2+RGCs, but not OPN+Brn3a+RGCs, and preserves functional ERG responses after IONT.
Collapse
|
14
|
[Intrinsically photosensitive retinal ganglion cells]. Ophthalmologe 2021; 119:358-366. [PMID: 34350494 PMCID: PMC9005408 DOI: 10.1007/s00347-021-01476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/04/2022]
Abstract
Hintergrund Melanopsin exprimierende, intrinsisch-photosensitive retinale Ganglienzellen (ipRGCs) bilden neben Stäbchen und Zapfen die dritte Klasse von retinalen Photorezeptoren. Diese kleine, heterogene Zellfamilie vermittelt ein weites Spektrum an Aufgaben überwiegend des nicht-bildformenden Sehens. Fragestellung Diese Arbeit soll einen Einblick in das aktuelle Verständnis der Funktion und der funktionellen Diversität der ipRGCs geben sowie klinisch und translational relevante Aspekte beleuchten. Material und Methoden Narrative Übersichtsarbeit. Ergebnisse ipRGCs machen etwa 1–2 % aller retinalen Ganglienzellen aus und bilden dabei 6 spezialisierte Subtypen. Mit ihrem Photopigment Melanopsin sind sie in der Lage, unabhängig von synaptischem Input Lichtinformationen an das Gehirn weiterzuleiten oder lichtabhängig zu modifizieren. Je nach Subtyp vermitteln sie so nichtvisuelle Aufgaben wie die Synchronisation der inneren Uhr oder den Pupillenreflex, greifen aber auch in das bildformende System ein. ipRGCs weisen eine differenzielle Widerstandskraft gegenüber Optikusschädigung auf, was sie zu einem attraktiven Studienobjekt für die Entwicklung neuroprotektiver Therapieansätze macht. Melanopsin rückt zudem als optogenetisches Werkzeug, etwa in der prosthetischen Gentherapie, in den Fokus. Schlussfolgerungen Häufige klinische Beobachtungen lassen sich nur mit Kenntnis des ipRGC-Systems verstehen. Ihre neuronale Vernetzung und die intrazelluläre Signalverarbeitung sind Gegenstand aktiver Forschung, die neue translationale Ansätze hervorbringt.
Collapse
|
15
|
Abstract
The damage or loss of retinal ganglion cells (RGCs) and their axons accounts for the visual functional defects observed after traumatic injury, in degenerative diseases such as glaucoma, or in compressive optic neuropathies such as from optic glioma. By using optic nerve crush injury models, recent studies have revealed the cellular and molecular logic behind the regenerative failure of injured RGC axons in adult mammals and suggested several strategies with translational potential. This review summarizes these findings and discusses challenges for developing clinically applicable neural repair strategies.
Collapse
Affiliation(s)
- Philip R Williams
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94303, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
16
|
Vidal-Villegas B, Di Pierdomenico J, Gallego-Ortega A, Galindo-Romero C, Martínez-de-la-Casa JM, García-Feijoo J, Villegas-Pérez MP, Vidal-Sanz M. Systemic treatment with 7,8-Dihydroxiflavone activates TtkB and affords protection of two different retinal ganglion cell populations against axotomy in adult rats. Exp Eye Res 2021; 210:108694. [PMID: 34245756 DOI: 10.1016/j.exer.2021.108694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/26/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To analyze responses of different RGC populations to left intraorbital optic nerve transection (IONT) and intraperitoneal (i.p.) treatment with 7,8-Dihydroxyflavone (DHF), a potent selective TrkB agonist. METHODS Adult albino Sprague-Dawley rats received, following IONT, daily i.p. injections of vehicle (1%DMSO in 0.9%NaCl) or DHF. Group-1 (n = 58) assessed at 7days (d) the optimal DHF amount (1-25 mg/kg). Group-2, using freshly dissected naïve or treated retinas (n = 28), investigated if DHF treatment was associated with TrkB activation using Western-blotting at 1, 3 or 7d. Group-3 (n = 98) explored persistence of protection and was analyzed at survival intervals from 7 to 60d after IONT. Groups 2-3 received daily i.p. vehicle or DHF (5 mg/kg). Retinal wholemounts were immunolabelled for Brn3a and melanopsin to identify Brn3a+RGCs and m+RGCs, respectively. RESULTS Optimal neuroprotection was achieved with 5 mg/kg DHF and resulted in TrkB phosphorylation. The percentage of surviving Brn3a+RGCs in vehicle treated rats was 60, 28, 18, 13, 12 or 8% of the original value at 7, 10, 14, 21, 30 or 60d, respectively, while in DHF treated retinas was 94, 70, 64, 17, 10 or 9% at the same time intervals. The percentages of m+RGCs diminished by 7d-13%, and recovered by 14d-38% in vehicle-treated and to 48% in DHF-treated retinas, without further variations. CONCLUSIONS DHF neuroprotects Brn3a + RGCs and m + RGCs; its protective effects for Brn3a+RGCs are maximal at 7 days but still significant at 21d, whereas for m+RGCs neuroprotection was significant at 14d and permanent.
Collapse
Affiliation(s)
- Beatriz Vidal-Villegas
- Servicio de Oftalmología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - Jose M Martínez-de-la-Casa
- Servicio de Oftalmología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Julian García-Feijoo
- Servicio de Oftalmología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María P Villegas-Pérez
- Servicio de Oftalmología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain.
| |
Collapse
|
17
|
Wang J, Struebing FL, Geisert EE. Commonalities of optic nerve injury and glaucoma-induced neurodegeneration: Insights from transcriptome-wide studies. Exp Eye Res 2021; 207:108571. [PMID: 33844961 PMCID: PMC9890784 DOI: 10.1016/j.exer.2021.108571] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/03/2023]
Abstract
Glaucoma is a collection of diseases that lead to an irreversible vision loss due to damage of retinal ganglion cells (RGCs). Although the underlying events leading to RGC death are not fully understood, recent research efforts are beginning to define the genetic changes that play a critical role in the initiation and progression of glaucomatous injury and RGC death. Several genetic and experimental animal models have been developed to mimic glaucomatous neurodegeneration. These models differ in many respects but all result in the loss of RGCs. Assessing transcriptional changes across different models could provide a more complete perspective on the molecular drivers of RGC degeneration. For the past several decades, changes in the retinal transcriptome during neurodegeneration process were defined using microarray methods, RNA sequencing and now single cell RNA sequencing. It is understood that these methods have strengths and weaknesses due to technical differences and variations in the analytical tools used. In this review, we focus on the use of transcriptome-wide expression profiling of the changes occurring as RGCs are lost across different glaucoma models. Commonalities of optic nerve crush and glaucoma-induced neurodegeneration are identified and discussed.
Collapse
Affiliation(s)
- Jiaxing Wang
- Emory Eye Center, Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Felix L. Struebing
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Germany,Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Eldon E. Geisert
- Emory Eye Center, Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA,Corresponding author: (E.E. Geisert)
| |
Collapse
|
18
|
Chronobiotic effect of melatonin in experimental optic neuritis. Neuropharmacology 2020; 182:108401. [PMID: 33197466 DOI: 10.1016/j.neuropharm.2020.108401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022]
Abstract
Optic neuritis (ON) is an inflammatory condition of the optic nerve, which leads to retinal ganglion cell (RGC) loss. A subset of RGCs expressing the photopigment melanopsin regulates non-image-forming visual system (NIFVS) functions such as pupillary light reflex (PLR) and circadian rhythms. Melatonin is a chronobiotic agent able to regulate the circadian system. We analyzed the effect of ON on the NIFVS, and the effect of melatonin on the NIFVS alterations induced by ON. For this purpose, optic nerves from male Wistar rats received vehicle or bacterial lipopolysaccharide (LPS), and one group of animals received a subcutaneous pellet of melatonin or a sham procedure. The NIFVS was analyzed in terms of: i) blue light-evoked PLR, ii) the communication between the retina and the suprachiasmatic nuclei (by anterograde transport, and ex vivo magnetic resonance images), iii) locomotor activity rhythm, and iv) Brn3a(+) and melanopsin(+) RGC number (by immunohistochemistry). Experimental ON significantly decreased the blue light-evoked PLR, induced a misconnection between the retina and the suprachiasmatic nuclei, decreased Brn3a(+) RGCs, but not melanopsin(+) RGC number. A bilateral injection of LPS significantly increased the light (but not dark) phase locomotor activity, rhythm periodicity, and time of offset activity. Melatonin prevented the decrease in blue light-evoked PLR, and locomotor activity rhythm alterations induced by ON. These results support that ON provoked alterations of the circadian physiology, and that melatonin could restore the circadian system misalignment.
Collapse
|
19
|
Wang AY, Lee PY, Bui BV, Jobling AI, Greferath U, Brandli A, Dixon MA, Findlay Q, Fletcher EL, Vessey KA. Potential mechanisms of retinal ganglion cell type-specific vulnerability in glaucoma. Clin Exp Optom 2019; 103:562-571. [PMID: 31838755 DOI: 10.1111/cxo.13031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/17/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022] Open
Abstract
Glaucoma is a neurodegenerative disease characterised by progressive damage to the retinal ganglion cells (RGCs), the output neurons of the retina. RGCs are a heterogenous class of retinal neurons which can be classified into multiple types based on morphological, functional and genetic characteristics. This review examines the body of evidence supporting type-specific vulnerability of RGCs in glaucoma and explores potential mechanisms by which this might come about. Studies of donor tissue from glaucoma patients have generally noted greater vulnerability of larger RGC types. Models of glaucoma induced in primates, cats and mice also show selective effects on RGC types - particularly OFF RGCs. Several mechanisms may contribute to type-specific vulnerability, including differences in the expression of calcium-permeable receptors (for example pannexin-1, P2X7, AMPA and transient receptor potential vanilloid receptors), the relative proximity of RGCs and their dendrites to blood supply in the inner plexiform layer, as well as differing metabolic requirements of RGC types. Such differences may make certain RGCs more sensitive to intraocular pressure elevation and its associated biomechanical and vascular stress. A greater understanding of selective RGC vulnerability and its underlying causes will likely reveal a rich area of investigation for potential treatment targets.
Collapse
Affiliation(s)
- Anna Ym Wang
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Pei Ying Lee
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Andrew I Jobling
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Alice Brandli
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Michael A Dixon
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Quan Findlay
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Alarautalahti V, Ragauskas S, Hakkarainen JJ, Uusitalo-Järvinen H, Uusitalo H, Hyttinen J, Kalesnykas G, Nymark S. Viability of Mouse Retinal Explant Cultures Assessed by Preservation of Functionality and Morphology. Invest Ophthalmol Vis Sci 2019; 60:1914-1927. [PMID: 31042799 DOI: 10.1167/iovs.18-25156] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal explant cultures provide simplified systems where the functions of the retina and the effects of ocular therapies can be studied in an isolated environment. The purpose of this study was to provide insight into long-term preservation of retinal tissue in culture conditions, enable a deeper understanding of the interdependence of retinal morphology and function, and ensure the reliability of the explant technique for prolonged experiments. Methods Retinal explants from adult mice were cultured as organotypic culture at the air-medium interface for 14 days in vitro (DIV). Retinal functionality was assessed by multielectrode array technique and morphology by immunohistochemical methods at several time points during culture. Results Retinal explants retained viability for 14 DIV, although with diminishing neuronal activity, progressing neuronal loss, and increasing reactive gliosis. We recorded spontaneous retinal ganglion cell (RGC) activity up to 14 DIV with temporally changing distribution of RGC firing rates. Light responsiveness was measurable from RGCs for 7 DIV and from photoreceptors for 2 DIV. Apoptotic cells were detected beginning at 3 DIV with their density peaking at 7 DIV. The number of RGCs gradually decreased by 70% during 14 DIV. The change was accompanied by the loss of RGC functionality, resulting in 84% loss of electrically active RGCs. Conclusions Retinal explants provide a valuable tool for studies of retinal functions and development of ocular therapies. However, critical for long-term use, retinal functionality was lost before structural loss, emphasizing a need for both functional and morphologic readouts to determine the overall state of the cultured retina.
Collapse
Affiliation(s)
- Virpi Alarautalahti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | | | - Hannele Uusitalo-Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tays Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tays Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Soile Nymark
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
21
|
Berry M, Ahmed Z, Logan A. Return of function after CNS axon regeneration: Lessons from injury-responsive intrinsically photosensitive and alpha retinal ganglion cells. Prog Retin Eye Res 2019; 71:57-67. [DOI: 10.1016/j.preteyeres.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
|
22
|
Lax P, Ortuño-Lizarán I, Maneu V, Vidal-Sanz M, Cuenca N. Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int J Mol Sci 2019; 20:E3164. [PMID: 31261700 PMCID: PMC6651433 DOI: 10.3390/ijms20133164] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022] Open
Abstract
Melanopsin-containing retinal ganglion cells (mRGCs) represent a third class of retinal photoreceptors involved in regulating the pupillary light reflex and circadian photoentrainment, among other things. The functional integrity of the circadian system and melanopsin cells is an essential component of well-being and health, being both impaired in aging and disease. Here we review evidence of melanopsin-expressing cell alterations in aging and neurodegenerative diseases and their correlation with the development of circadian rhythm disorders. In healthy humans, the average density of melanopsin-positive cells falls after age 70, accompanied by age-dependent atrophy of dendritic arborization. In addition to aging, inner and outer retinal diseases also involve progressive deterioration and loss of mRGCs that positively correlates with progressive alterations in circadian rhythms. Among others, mRGC number and plexus complexity are impaired in Parkinson's disease patients; changes that may explain sleep and circadian rhythm disorders in this pathology. The key role of mRGCs in circadian photoentrainment and their loss in age and disease endorse the importance of eye care, even if vision is lost, to preserve melanopsin ganglion cells and their essential functions in the maintenance of an adequate quality of life.
Collapse
Affiliation(s)
- Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, University of Murcia, 30120 Murcia, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
- Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, 03690 Alicante, Spain.
| |
Collapse
|
23
|
Bray ER, Yungher BJ, Levay K, Ribeiro M, Dvoryanchikov G, Ayupe AC, Thakor K, Marks V, Randolph M, Danzi MC, Schmidt TM, Chaudhari N, Lemmon VP, Hattar S, Park KK. Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells. Neuron 2019; 103:642-657.e7. [PMID: 31255486 DOI: 10.1016/j.neuron.2019.05.044] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/11/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Neuronal subtypes show diverse injury responses, but the molecular underpinnings remain elusive. Using transgenic mice that allow reliable visualization of axonal fate, we demonstrate that intrinsically photosensitive retinal ganglion cells (ipRGCs) are both resilient to cell death and highly regenerative. Using RNA sequencing (RNA-seq), we show genes that are differentially expressed in ipRGCs and that associate with their survival and axon regeneration. Strikingly, thrombospondin-1 (Thbs1) ranked as the most differentially expressed gene, along with the well-documented injury-response genes Atf3 and Jun. THBS1 knockdown in RGCs eliminated axon regeneration. Conversely, RGC overexpression of THBS1 enhanced regeneration in both ipRGCs and non-ipRGCs, an effect that was dependent on syndecan-1, a known THBS1-binding protein. All structural domains of the THBS1 were not equally effective; the trimerization and C-terminal domains promoted regeneration, while the THBS type-1 repeats were dispensable. Our results identify cell-type-specific induction of Thbs1 as a novel gene conferring high regenerative capacity.
Collapse
Affiliation(s)
- Eric R Bray
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Benjamin J Yungher
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Konstantin Levay
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcio Ribeiro
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gennady Dvoryanchikov
- Department of Physiology & Biophysics, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ana C Ayupe
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kinjal Thakor
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Victoria Marks
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael Randolph
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matt C Danzi
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Nirupa Chaudhari
- Department of Physiology & Biophysics, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vance P Lemmon
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kevin K Park
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
24
|
Melanopsin +RGCs Are fully Resistant to NMDA-Induced Excitotoxicity. Int J Mol Sci 2019; 20:ijms20123012. [PMID: 31226772 PMCID: PMC6627747 DOI: 10.3390/ijms20123012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
We studied short- and long-term effects of intravitreal injection of N-methyl-d-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using Spectral Domain-Optical Coherence Tomography (SD-OCT). Ex vivo analyses were done at 3, 7, or 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for brain-specific homeobox/POU domain protein 3A (Brn3a) and melanopsin (m), the total number of Brn3a+RGCs and m+RGCs were quantified, and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903 ± 3572 and 2358 ± 144 (mean ± SD; n = 10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 49%, 28%, 24%, and 19%, at 3, 7, 14 days, and 15 months, respectively. There was no further loss between 7 days and 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3 and 7 days, and were back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induced within a week a rapid loss of 72% of Brn3a+RGCs, a transient downregulation of melanopsin expression (but not m+RGC death), and a thinning of the inner retinal layers.
Collapse
|
25
|
Fogo GM, Shuboni-Mulligan DD, Gall AJ. Melanopsin-Containing ipRGCs Are Resistant to Excitotoxic Injury and Maintain Functional Non-Image Forming Behaviors After Insult in a Diurnal Rodent Model. Neuroscience 2019; 412:105-115. [PMID: 31176702 DOI: 10.1016/j.neuroscience.2019.05.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical for the light signaling properties of non-image forming vision. Melanopsin-expressing ipRGCs project to retinorecipient brain regions involved in modulating circadian rhythms. Melanopsin has been shown to play an important role in how animals respond to light, including photoentrainment, masking (i.e., acute behavioral responses to light), and the pupillary light reflex (PLR). Importantly, ipRGCs are resistant to various forms of damage, including ocular hypertension, optic nerve crush, and excitotoxicity via N-methyl-D-aspartic acid (NMDA) administration. Although these cells are resistant to various forms of injury, the question still remains whether or not these cells remain functional following injury. Here we tested the hypothesis that ipRGCs would be resistant to excitotoxic damage in a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus). In addition, we hypothesized that following insult, grass rats would maintain normal circadian entrainment and masking to light. In order to test these hypotheses, we injected NMDA intraocularly and examined its effect on the survivability of ipRGCs and RGCs, along with testing behavioral and functional consequences. Similar to findings in nocturnal rodents, ipRGCs were spared from significant damage but RGCs were not. Importantly, whereas image-forming vision was significantly impaired, non-image forming vision (i.e, photoentrainment, masking, and PLR) remained functional. The present study aims to characterize the resistance of ipRGCs to excitotoxicity in a diurnal rodent model.
Collapse
Affiliation(s)
- Garrett M Fogo
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Andrew J Gall
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, USA.
| |
Collapse
|
26
|
Sánchez-Migallón MC, Valiente-Soriano FJ, Nadal-Nicolás FM, Di Pierdomenico J, Vidal-Sanz M, Agudo-Barriuso M. Survival of melanopsin expressing retinal ganglion cells long term after optic nerve trauma in mice. Exp Eye Res 2018; 174:93-97. [PMID: 29856984 DOI: 10.1016/j.exer.2018.05.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 01/27/2023]
Abstract
In this study we have compared the response to optic nerve crush (ONC) and to optic nerve transection (ONT) of the general population of retinal ganglion cells in charge of the image-forming visual functions that express Brn3a (Brn3a+RGCs) with that of the sub-population of non-image forming RGCs that express melanopsin (m+RGCs). Intact animals were used as control. ONT and ONC were performed at 0.5 mm from the optic disk, and retinas dissected 3, 5, 7, 14, 30, 45 or 90 days later (n = 5/injury/time point). In all the retinas, Brn3a+RGCs and m+RGCs were identified and their survival analyzed quantitatively and topographically. There were no differences in the course of RGC loss between lesions. The decrease of RGCs was significant at short time points (3 or 5 days for Brn3a+ or m+ RGCs, respectively) and, up to 14 days, the course of loss of both RGC populations was similar, surviving at this time point between 20 and 22% of their original population. However, while the loss of Brn3a+RGCs continues steadily up to 90 days when only 5-6% of them still remain, the loss of m+RGCs stops at 14 days, and the proportion of surviving m+RGCs remains constant up to 90 days (26-30%). In conclusion, m+RGC do not respond to axotomy in the same way than the rest of RGCs, and so whilst image-forming RGCs die in two exponential phases a quick one and a slow protracted one, non-image forming RGCs die only during the first quick phase.
Collapse
Affiliation(s)
- M C Sánchez-Migallón
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - F J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| | - F M Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - J Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - M Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - M Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
27
|
Abstract
Optic neuropathies such as glaucoma are characterized by the degeneration of retinal ganglion cells (RGCs) and the irreversible loss of vision. In these diseases, focal axon injury triggers a propagating axon degeneration and, eventually, cell death. Previous work by us and others identified dual leucine zipper kinase (DLK) and JUN N-terminal kinase (JNK) as key mediators of somal cell death signaling in RGCs following axonal injury. Moreover, others have shown that activation of the DLK/JNK pathway contributes to distal axonal degeneration in some neuronal subtypes and that this activation is dependent on the adaptor protein, sterile alpha and TIR motif containing 1 (SARM1). Given that SARM1 acts upstream of DLK/JNK signaling in axon degeneration, we tested whether SARM1 plays a similar role in RGC somal apoptosis in response to optic nerve injury. Using the mouse optic nerve crush (ONC) model, our results show that SARM1 is critical for RGC axonal degeneration and that axons rescued by SARM1 deficiency are electrophysiologically active. Genetic deletion of SARM1 did not, however, prevent DLK/JNK pathway activation in RGC somas nor did it prevent or delay RGC cell death. These results highlight the importance of SARM1 in RGC axon degeneration and suggest that somal activation of the DLK/JNK pathway is activated by an as-yet-unidentified SARM1-independent signal.
Collapse
|
28
|
Wang S, Gu D, Zhang P, Chen J, Li Y, Xiao H, Zhou G. Melanopsin-expressing retinal ganglion cells are relatively resistant to excitotoxicity induced by N-methyl-d-aspartate. Neurosci Lett 2018; 662:368-373. [DOI: 10.1016/j.neulet.2017.10.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/18/2017] [Accepted: 10/27/2017] [Indexed: 01/19/2023]
|
29
|
Ba-Ali S, Christensen SK, Sander B, Rosenberg T, Larsen M, Lund-Andersen H. Choroideremia: melanopsin-mediated postillumination pupil relaxation is abnormally slow. Acta Ophthalmol 2017; 95:809-814. [PMID: 28271634 DOI: 10.1111/aos.13394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate the rod-cone and melanopsin pupillary light response (PLR) pathways in choroideremia. METHODS Eight patients with choroideremia and 18 healthy age-matched controls underwent chromatic pupillometry by applying blue (463 nm) and red light (643 nm) at 100 lux intensity to the right eye while recording pupil diameters. Absolute baseline pupil size (mm), normalized maximal pupil constriction and the early and late postillumination pupillary dilation, from 0 to 10 seconds and 10 to 30 seconds after the end of illumination, respectively, were determined. Postillumination responses to blue light were considered to be primarily driven by melanopsin activation of the intrinsic photosensitive retinal ganglion cells. RESULTS Baseline pupil diameters were comparable in patients with choroideremia and control subjects (p = 0.48). The maximum pupil constriction in patients with choroideremia was severely weakened in red light but only mildly weakened in blue light (p < 0.05). Postillumination dilation of the pupil was normal after red illumination but extremely protracted after blue illumination. Also, in contrast to healthy subjects, no abrupt change in the dilation curve was seen in the patients after the end of blue illumination, the early-phase dilation being completely abolished (p < 0.01). CONCLUSION Rod-cone-driven pupil responses were decreased as expected in an outer retinal degeneration, and near-normal pupil constriction in blue light supports that the melanopsin system is normal. In contrast, the lack of brisk early-phase dilation after blue illumination in choroideremia is remarkable and may be interpreted to mean that the absence of photoreceptor inhibition promotes a tonic contraction of the pupil.
Collapse
Affiliation(s)
- Shakoor Ba-Ali
- Department of Ophthalmology; Rigshospitalet; Glostrup Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | | | - Birgit Sander
- Department of Ophthalmology; Rigshospitalet; Glostrup Denmark
| | | | - Michael Larsen
- Department of Ophthalmology; Rigshospitalet; Glostrup Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Henrik Lund-Andersen
- Department of Ophthalmology; Rigshospitalet; Glostrup Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
30
|
Ba-Ali S, Lund-Andersen H. Pupillometric evaluation of the melanopsin containing retinal ganglion cells in mitochondrial and non-mitochondrial optic neuropathies. Mitochondrion 2017; 36:124-129. [PMID: 28716667 DOI: 10.1016/j.mito.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/29/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
In recent years, chromatic pupillometry is used in humans to evaluate the activity of melanopsin expressing intrinsic photosensitive retinal ganglion cells (ipRGCs). Blue light is used to stimulate the ipRGCs and red light activates the rod/cone photoreceptors. The late re-dilation phase of pupillary light reflex is primarily driven by the ipRGCs. Optic neuropathies i.e. Leber hereditary optic neuropathy (LHON), autosomal dominant optic atrophy (ADOA), nonarteritic anterior ischemic optic neuropathy (NAION), glaucoma, optic neuritis and idiopathic intracranial hypertension (IIH) are among the diseases, which have been subject to pupillometric studies. The ipRGCs are differentially affected in these various optic neuropathies. In mitochondrial optic neuropathies, the ipRGCs are protected against degeneration, whereas in glaucoma, NAION, optic neuritis and IIH the ipRGCs are damaged. Here, we will review the results of pupillometric, histopathological and animal studies evaluating the ipRGCs in mitochondrial and non-mitochondrial optic neuropathies.
Collapse
Affiliation(s)
- Shakoor Ba-Ali
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Henrik Lund-Andersen
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Yungher BJ, Ribeiro M, Park KK. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice. Invest Ophthalmol Vis Sci 2017; 58:1743-1750. [PMID: 28324115 PMCID: PMC5361588 DOI: 10.1167/iovs.16-19873] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Enhanced regeneration of retinal ganglion cell (RGC) axons can be achieved by modification of numerous neuronal-intrinsic factors. However, axon growth initiation and the pathfinding behavior of these axons after traumatic injury remain poorly understood outside of acute injury paradigms, despite the clinical relevance of more chronic settings. We therefore examined RGC axon regeneration following therapeutic delivery that is postponed until 2 months after optic nerve crush injury. Methods Optic nerve regeneration was induced by virally mediated (adeno-associated virus) ciliary neurotrophic factor (AAV-CNTF) administered either immediately or 56 days after optic nerve crush in wild-type or Bax knockout (KO) mice. Retinal ganglion nerve axon regeneration was assessed 21 and 56 days after viral injection. Immunohistochemical analysis of RGC injury signals and extrinsic factors in the optic nerve were also examined at 5 and 56 days post crush. Results In addition to sustained expression of injury response proteins in surviving RGCs, we observe axon regrowth in wild-type and apoptosis-deficient Bax KO mice following AAV-CNTF treatment. Fewer instances of aberrant axon growth are seen, at least in the area near the lesion site, in animals given treatment 56 days after crush injury compared to the animals given treatment immediately after injury. We also find evidence of long distance growth into a visual target in Bax KO mice despite postponed initiation of this regenerative program. Conclusions These studies provide evidence against an intrinsic critical period for RGC axon regeneration or degradation of injury signals. Regeneration results from Bax KO mice imply highly sustained regenerative capacity in RGCs, highlighting the importance of long-lasting neuroprotective strategies as well as of RGC axon guidance research in chronically injured animals.
Collapse
Affiliation(s)
- Benjamin J Yungher
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Márcio Ribeiro
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Kevin K Park
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
32
|
Georg B, Ghelli A, Giordano C, Ross-Cisneros FN, Sadun AA, Carelli V, Hannibal J, La Morgia C. Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but not always. Mitochondrion 2017; 36:77-84. [PMID: 28412540 DOI: 10.1016/j.mito.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/14/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs deputed to non-image forming functions of the eye such as synchronization of circadian rhythms to light-dark cycle. These cells are characterized by unique electrophysiological, anatomical and biochemical properties and are usually more resistant than conventional RGCs to different insults, such as axotomy and different paradigms of stress. We also demonstrated that these cells are relatively spared compared to conventional RGCs in mitochondrial optic neuropathies (Leber's hereditary optic neuropathy and Dominant Optic Atrophy). However, these cells are affected in other neurodegenerative conditions, such as glaucoma and Alzheimer's disease. We here review the current evidences that may underlie this dichotomy. We also present our unpublished data on cell experiments demonstrating that melanopsin itself does not explain the robustness of these cells and some preliminary data on immunohistochemical assessment of mitochondria in mRGCs.
Collapse
Affiliation(s)
- Birgitte Georg
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty Health Sciences, University of Copenhagen, Denmark
| | - Anna Ghelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | | | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty Health Sciences, University of Copenhagen, Denmark.
| | - Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
33
|
Esquiva G, Lax P, Pérez-Santonja JJ, García-Fernández JM, Cuenca N. Loss of Melanopsin-Expressing Ganglion Cell Subtypes and Dendritic Degeneration in the Aging Human Retina. Front Aging Neurosci 2017; 9:79. [PMID: 28420980 PMCID: PMC5378720 DOI: 10.3389/fnagi.2017.00079] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/14/2017] [Indexed: 01/07/2023] Open
Abstract
In mammals, melanopsin-expressing retinal ganglion cells (mRGCs) are, among other things, involved in several non-image-forming visual functions, including light entrainment of circadian rhythms. Considering the profound impact of aging on visual function and ophthalmic diseases, here we evaluate changes in mRGCs throughout the life span in humans. In 24 post-mortem retinas from anonymous human donors aged 10–81 years, we assessed the distribution, number and morphology of mRGCs by immunostaining vertical retinal sections and whole-mount retinas with antibodies against melanopsin. Human retinas showed melanopsin immunoreactivity in the cell body, axon and dendrites of a subset of ganglion cells at all ages tested. Nearly half of the mRGCs (51%) were located within the ganglion cell layer (GCL), and stratified in the outer (M1, 12%) or inner (M2, 16%) margin of the inner plexiform layer (IPL) or in both plexuses (M3, 23%). M1 and M2 cells conformed fairly irregular mosaics, while M3 cell distribution was slightly more regular. The rest of the mRGCs were more regularly arranged in the inner nuclear layer (INL) and stratified in the outer margin of the IPL (M1d, 49%). The quantity of each cell type decrease after age 70, when the total number of mRGCs was 31% lower than in donors aged 30–50 years. Moreover, in retinas with an age greater than 50 years, mRGCs evidenced a decrease in the dendritic area that was both progressive and age-dependent, as well as fewer branch points and terminal neurite tips per cell and a smaller Sholl area. After 70 years of age, the distribution profile of the mRGCs was closer to a random pattern than was observed in younger retinas. We conclude that advanced age is associated with a loss in density and dendritic arborization of the mRGCs in human retinas, possibly accounting for the more frequent occurrence of circadian rhythm disorders in elderly persons.
Collapse
Affiliation(s)
- Gema Esquiva
- Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain.,Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation)Alicante, Spain
| | - Juan J Pérez-Santonja
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation)Alicante, Spain.,Department of Ophthalmology, Alicante University General HospitalAlicante, Spain
| | - José M García-Fernández
- Department of Morphology and Cellular Biology, Institute of Neuroscience Principado de Asturias (INEUROPA), University of OviedoOviedo, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain.,Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation)Alicante, Spain.,Institute Ramón Margalef, University of AlicanteAlicante, Spain
| |
Collapse
|
34
|
Loss of Ikbkap Causes Slow, Progressive Retinal Degeneration in a Mouse Model of Familial Dysautonomia. eNeuro 2016; 3:eN-NWR-0143-16. [PMID: 27699209 PMCID: PMC5037323 DOI: 10.1523/eneuro.0143-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 01/30/2023] Open
Abstract
Familial dysautonomia (FD) is an autosomal recessive congenital neuropathy that is caused by a mutation in the gene for inhibitor of kappa B kinase complex-associated protein (IKBKAP). Although FD patients suffer from multiple neuropathies, a major debilitation that affects their quality of life is progressive blindness. To determine the requirement for Ikbkap in the developing and adult retina, we generated Ikbkap conditional knockout (CKO) mice using a TUBA1a promoter-Cre (Tα1-Cre). In the retina, Tα1-Cre expression is detected predominantly in retinal ganglion cells (RGCs). At 6 months, significant loss of RGCs had occurred in the CKO retinas, with the greatest loss in the temporal retina, which is the same spatial phenotype observed in FD, Leber hereditary optic neuropathy, and dominant optic atrophy. Interestingly, the melanopsin-positive RGCs were resistant to degeneration. By 9 months, signs of photoreceptor degeneration were observed, which later progressed to panretinal degeneration, including RGC and photoreceptor loss, optic nerve thinning, Müller glial activation, and disruption of layers. Taking these results together, we conclude that although Ikbkap is not required for normal development of RGCs, its loss causes a slow, progressive RGC degeneration most severely in the temporal retina, which is later followed by indirect photoreceptor loss and complete retinal disorganization. This mouse model of FD is not only useful for identifying the mechanisms mediating retinal degeneration, but also provides a model system in which to attempt to test therapeutics that may mitigate the loss of vision in FD patients.
Collapse
|
35
|
Park KK, Luo X, Mooney SJ, Yungher BJ, Belin S, Wang C, Holmes MM, He Z. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats. J Comp Neurol 2016; 525:380-388. [PMID: 27350178 DOI: 10.1002/cne.24070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 01/06/2023]
Abstract
In the adult mammalian central nervous system (CNS), axonal damage often triggers neuronal cell death and glial activation, with very limited spontaneous axon regeneration. In this study, we performed optic nerve injury in adult naked mole-rats, the longest living rodent, with a maximum life span exceeding 30 years, and found that injury responses in this species are quite distinct from those in other mammalian species. In contrast to what is seen in other mammals, the majority of injured retinal ganglion cells (RGCs) survive with relatively high spontaneous axon regeneration. Furthermore, injured RGCs display activated signal transducer and activator of transcription-3 (STAT3), whereas astrocytes in the optic nerve robustly occupy and fill the lesion area days after injury. These neuron-intrinsic and -extrinsic injury responses are reminiscent of those in "cold-blooded" animals, such as fish and amphibians, suggesting that the naked mole-rat is a powerful model for exploring the mechanisms of neuronal injury responses and axon regeneration in mammals. J. Comp. Neurol. 525:380-388, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kevin K Park
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Xueting Luo
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Skyler J Mooney
- Departments of Psychology and Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G3, Canada
| | - Benjamin J Yungher
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Stephane Belin
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Melissa M Holmes
- Departments of Psychology and Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G3, Canada
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, Massachusetts, 02115
| |
Collapse
|
36
|
Joly S, Pernet V. Sphingosine 1-phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma. J Neurochem 2016; 138:571-86. [PMID: 27309795 DOI: 10.1111/jnc.13701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/11/2016] [Accepted: 06/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Sandrine Joly
- CUO-Recherche; Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine; Université Laval; Quebec City Quebec Canada
| | - Vincent Pernet
- CUO-Recherche; Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine; Université Laval; Quebec City Quebec Canada
| |
Collapse
|
37
|
Lax P, Esquiva G, Fuentes-Broto L, Segura F, Sánchez-Cano A, Cuenca N, Pinilla I. Age-related changes in photosensitive melanopsin-expressing retinal ganglion cells correlate with circadian rhythm impairments in sighted and blind rats. Chronobiol Int 2016; 33:374-91. [DOI: 10.3109/07420528.2016.1151025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Promoting axon regeneration in the adult CNS by modulation of the melanopsin/GPCR signaling. Proc Natl Acad Sci U S A 2016; 113:1937-42. [PMID: 26831088 DOI: 10.1073/pnas.1523645113] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell-type-specific G protein-coupled receptor (GPCR) signaling regulates distinct neuronal responses to various stimuli and is essential for axon guidance and targeting during development. However, its function in axonal regeneration in the mature CNS remains elusive. We found that subtypes of intrinsically photosensitive retinal ganglion cells (ipRGCs) in mice maintained high mammalian target of rapamycin (mTOR) levels after axotomy and that the light-sensitive GPCR melanopsin mediated this sustained expression. Melanopsin overexpression in the RGCs stimulated axonal regeneration after optic nerve crush by up-regulating mTOR complex 1 (mTORC1). The extent of the regeneration was comparable to that observed after phosphatase and tensin homolog (Pten) knockdown. Both the axon regeneration and mTOR activity that were enhanced by melanopsin required light stimulation and Gq/11 signaling. Specifically, activating Gq in RGCs elevated mTOR activation and promoted axonal regeneration. Melanopsin overexpression in RGCs enhanced the amplitude and duration of their light response, and silencing them with Kir2.1 significantly suppressed the increased mTOR signaling and axon regeneration that were induced by melanopsin. Thus, our results provide a strategy to promote axon regeneration after CNS injury by modulating neuronal activity through GPCR signaling.
Collapse
|
39
|
Fernandes KA, Bloomsburg SJ, Miller CJ, Billingslea SA, Merrill MM, Burgess RW, Libby RT, Fuerst PG. Novel axon projection after stress and degeneration in the Dscam mutant retina. Mol Cell Neurosci 2015; 71:1-12. [PMID: 26691152 DOI: 10.1016/j.mcn.2015.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022] Open
Abstract
The Down syndrome cell adhesion molecule gene (Dscam) is required for normal dendrite patterning and promotes developmental cell death in the mouse retina. Loss-of-function studies indicate that Dscam is required for refinement of retinal ganglion cell (RGC) axons in the lateral geniculate nucleus, and in this study we report and describe a requirement for Dscam in the maintenance of RGC axon projections within the retina. Mouse Dscam loss of function phenotypes related to retinal ganglion cell axon outgrowth and targeting have not been previously reported, despite the abundance of axon phenotypes reported in Drosophila Dscam1 loss and gain of function models. Analysis of the Dscam deficient retina was performed by immunohistochemistry and Western blot analysis during postnatal development of the retina. Conditional targeting of Dscam and Jun was performed to identify factors underlying axon-remodeling phenotypes. A subset of RGC axons were observed to project and branch extensively within the Dscam mutant retina after eye opening. Axon remodeling was preceded by histological signs of RGC stress. These included neurofilament accumulation, axon swelling, axon blebbing and activation of JUN, JNK and AKT. Novel and extensive projection of RGC axons within the retina was observed after upregulation of these markers, and novel axon projections were maintained to at least one year of age. Further analysis of retinas in which Dscam was conditionally targeted with Brn3b or Pax6α Cre indicated that axon stress and remodeling could occur in the absence of hydrocephalus, which frequently occurs in Dscam mutant mice. Analysis of mice mutant for the cell death gene Bax, which executes much of Dscam dependent cell death, identified a similar axon misprojection phenotype. Deleting Jun and Dscam resulted in increased axon remodeling compared to Dscam or Bax mutants. Retinal ganglion cells have a very limited capacity to regenerate after damage in the adult retina, compared to the extensive projections made in the embryo. In this study we find that DSCAM and JUN limit ectopic growth of RGC axons, thereby identifying these proteins as targets for promoting axon regeneration and reconnection.
Collapse
Affiliation(s)
- K A Fernandes
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - S J Bloomsburg
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| | - C J Miller
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| | - S A Billingslea
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| | - M M Merrill
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| | - R W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - R T Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - P G Fuerst
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA; WWAMI Medical Education Program, Moscow, ID 83844, USA.
| |
Collapse
|
40
|
Münch M, Léon L, Collomb S, Kawasaki A. Comparison of acute non-visual bright light responses in patients with optic nerve disease, glaucoma and healthy controls. Sci Rep 2015; 5:15185. [PMID: 26478261 PMCID: PMC4609937 DOI: 10.1038/srep15185] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/22/2015] [Indexed: 11/30/2022] Open
Abstract
This study examined the effect of optic nerve disease, hence retinal ganglion cell loss, on non-visual functions related to melanopsin signalling. Test subjects were patients with bilateral visual loss and optic atrophy from either hereditary optic neuropathy (n = 11) or glaucoma (n = 11). We measured melatonin suppression, subjective sleepiness and cognitive functions in response to bright light exposure in the evening. We also quantified the post-illumination pupil response to a blue light stimulus. All results were compared to age-matched controls (n = 22). Both groups of patients showed similar melatonin suppression when compared to their controls. Greater melatonin suppression was intra-individually correlated to larger post-illumination pupil response in patients and controls. Only the glaucoma patients demonstrated a relative attenuation of their pupil response. In addition, they were sleepier with slower reaction times during nocturnal light exposure. In conclusion, glaucomatous, but not hereditary, optic neuropathy is associated with reduced acute light effects. At mild to moderate stages of disease, this is detected only in the pupil function and not in responses conveyed via the retinohypothalamic tract such as melatonin suppression.
Collapse
Affiliation(s)
- M Münch
- Solar Energy and Building Physics Laboratory, Environmental and Civil Engineering Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - L Léon
- University of Lausanne, Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland
| | - S Collomb
- University of Lausanne, Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland
| | - A Kawasaki
- University of Lausanne, Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland
| |
Collapse
|
41
|
Vidal-Sanz M, Valiente-Soriano FJ, Ortín-Martínez A, Nadal-Nicolás FM, Jiménez-López M, Salinas-Navarro M, Alarcón-Martínez L, García-Ayuso D, Avilés-Trigueros M, Agudo-Barriuso M, Villegas-Pérez MP. Retinal neurodegeneration in experimental glaucoma. PROGRESS IN BRAIN RESEARCH 2015; 220:1-35. [PMID: 26497783 DOI: 10.1016/bs.pbr.2015.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In rats and mice, limbar tissues of the left eye were laser-photocoagulated (LP) and ocular hypertension (OHT) effects were investigated 1 week to 6 months later. To investigate the innermost layers, retinas were examined in wholemounts using tracing from the superior colliculi to identify retinal ganglion cells (RGCs) with intact retrograde axonal transport, melanopsin immunodetection to identify intrinsically photosensitive RGCs (m(+)RGC), Brn3a immunodetection to identify most RGCs but not m(+)RGCs, RECA1 immunodetection to examine the inner retinal vessels, and DAPI staining to detect all nuclei in the GC layer. The outer retinal layers (ORLs) were examined in cross sections analyzed morphometrically or in wholemounts to study S- and L-cones. Innervation of the superior colliculi was examined 10 days to 14 weeks after LP with orthogradely transported cholera toxin subunit B. By 2 weeks, OHT resulted in pie-shaped sectors devoid of FG(+)RGCs or Brn3a(+)RGCs but with large numbers of DAPI(+)nuclei. Brn3a(+)RGCs were significantly greater than FG(+)RGCs, indicating the survival of large numbers of RGCs with their axonal transport impaired. The inner retinal vasculature showed no abnormalities that could account for the sectorial loss of RGCs. m(+)RGCs decreased to approximately 50-51% in a diffuse loss across the retina. Cross sections showed focal areas of degeneration in the ORLs. RGC loss at 1m diminished to 20-25% and did not progress further with time, whereas the S- and L-cone populations diminished progressively up to 6m. The retinotectal projection was reduced by 10 days and did not progress further. LP-induced OHT results in retrograde degeneration of RGCs and m(+)RGCs, severe damage to the ORL, and loss of retinotectal terminals.
Collapse
Affiliation(s)
- Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Arturo Ortín-Martínez
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco M Nadal-Nicolás
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Luis Alarcón-Martínez
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Maria P Villegas-Pérez
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
42
|
Differential monocular vs. binocular pupil responses from melanopsin-based photoreception in patients with anterior ischemic optic neuropathy. Sci Rep 2015; 5:10780. [PMID: 26074032 PMCID: PMC4466591 DOI: 10.1038/srep10780] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/05/2015] [Indexed: 01/05/2023] Open
Abstract
We examined the effect of anterior ischemic optic neuropathy (AION) on the activity of intrinsically photosensitive retinal ganglion cells (ipRGCs) using the pupil as proxy. Eighteen patients with AION (10 unilateral, 8 bilateral) and 29 age-matched control subjects underwent chromatic pupillometry. Red and blue light stimuli increasing in 0.5 log steps were presented to each eye independently under conditions of dark and light adaptation. The recorded pupil contraction was plotted against stimulus intensity to generate scotopic and photopic response curves for assessment of synaptically-mediated ipRGC activity. Bright blue light stimuli presented monocularly and binocularly were used for melanopsin activation. The post-stimulus pupil size (PSPS) at the 6th second following stimulus offset was the marker of intrinsic ipRGC activity. Finally, questionnaires were administered to assess the influence of ipRGCs on sleep. The pupil response and PSPS to all monocularly-presented light stimuli were impaired in AION eyes, indicating ipRGC dysfunction. To binocular light stimulation, the PSPS of AION patients was similar to that of controls. There was no difference in the sleep habits of the two groups. Thus after ischemic injury to one or both optic nerves, the summated intrinsic ipRGC activity is preserved when both eyes receive adequate light exposure.
Collapse
|
43
|
Jeong MJ, Jeon CJ. Localization of melanopsin-immunoreactive cells in the Mongolian gerbil retina. Neurosci Res 2015; 100:6-16. [PMID: 26083722 DOI: 10.1016/j.neures.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian rhythm and pupil responses. The purpose of this study was to reveal the organization of melanopsin-immunoreactive (IR) neurons in the Mongolian gerbil retina using immunocytochemistry. Melanopsin-IR cells were primarily located in the ganglion cell layer (GCL; M1c; 75.15%). Many melanopsin-IR cells were also observed in the inner nuclear layer (INL; M1d; 22.28%). The M1c and M1d cell types extended their dendritic processes into the OFF sublayer of the inner plexiform layer (IPL). We rarely observed bistratified cells (M3; 2.56%) with dendrites in both the ON and OFF sublayers of the IPL. Surprisingly, we did not observe M2 cells which are well observed in other rodents. Melanopsin-IR cell somas were small to medium in size and had large dendritic fields. They had 2-5 primary dendrites that branched sparingly and had varicosities. Melanopsin-IR cell density was very low: they comprised 0.50% of the total ganglion cell population. Moreover, none of the melanopsin-IR cells expressed calbindin-D28K, calretinin, or parvalbumin. These results suggest that in the Mongolian gerbil, melanopsin-IR cells are expressed in a very small RGC subpopulation, and are independent of calcium-binding proteins-containing RGCs.
Collapse
Affiliation(s)
- Mi-Jin Jeong
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
44
|
Deficiency of aldose reductase attenuates inner retinal neuronal changes in a mouse model of retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 2015; 253:1503-13. [PMID: 25921391 DOI: 10.1007/s00417-015-3024-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/08/2015] [Accepted: 04/14/2015] [Indexed: 01/02/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness where vascular abnormality and retinal dysfunction are reported. We showed earlier that genetic deletion of aldose reductase (AR), the rate-limiting enzyme in the polyol pathway, reduced the neovascularization through attenuating oxidative stress induction in the mouse oxygen-induced retinopathy (OIR) modeling ROP. In this study, we further investigated the effects of AR deficiency on retinal neurons in the mouse OIR. Seven-day-old wild-type and AR-deficient mice were exposed to 75 % oxygen for 5 days and then returned to room air. Electroretinography was used to assess the neuronal function at postnatal day (P) 30. On P17 and P30, retinal cytoarchitecture was examined by morphometric analysis and immunohistochemistry for calbindin, protein kinase C alpha, calretinin, Tuj1, and glial fibrillary acidic protein. In OIR, attenuated amplitudes and delayed implicit time of a-wave, b-wave, and oscillatory potentials were observed in wild-type mice, but they were not significantly changed in AR-deficient mice. The morphological changes of horizontal, rod bipolar, and amacrine cells were shown in wild-type mice and these changes were partly preserved with AR deficiency. AR deficiency attenuated the Müller cell gliosis induced in OIR. Our observations demonstrated AR deficiency preserved retinal functions in OIR and AR deficiency could partly reduce the extent of retinal neuronal histopathology. These findings suggested a therapeutic potential of AR inhibition in ROP treatment with beneficial effects on the retinal neurons.
Collapse
|
45
|
Valiente-Soriano FJ, Salinas-Navarro M, Jiménez-López M, Alarcón-Martínez L, Ortín-Martínez A, Bernal-Garro JM, Avilés-Trigueros M, Agudo-Barriuso M, Villegas-Pérez MP, Vidal-Sanz M. Effects of ocular hypertension in the visual system of pigmented mice. PLoS One 2015; 10:e0121134. [PMID: 25811653 PMCID: PMC4374934 DOI: 10.1371/journal.pone.0121134] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/12/2015] [Indexed: 11/21/2022] Open
Abstract
To study the effects of ocular hypertension (OHT) on the visual system of C57BL/6 pigmented mice, the limbal and episcleral veins of the left eye were laser photocoagulated (LP). LP increased the intraocular pressure during the first five days (d), reaching basal values at 7d. To investigate the effect of OHT on the retinal ganglion cell (RGC) retrograde axonal transport, hydroxistilbamidine methanesulfonate (OHSt) was applied to both superior colliculi (SCi) and the retinas were dissected 2 or 4 weeks after LP. To determine RGC survival, these same retinas were immunoreacted against Brn3a (general RGC population) and melanopsin (intrinsically photosensitive RGCs, m+RGCs). To study whether OHT affected non-RGC neurons in the ganglion cell layer (GCL), RGCs were immunodetected with Brn3a and all GCL nuclei counterstained with DAPI in a group of animals examined 4 weeks post-LP. Innervation of the SCi was examined at 10 days, 8 or 14 weeks after LP with the orthogradely transported cholera toxin subunit-B. OHT resulted in diffuse and sectorial loss of OHSt+RGCs (50% at 2 weeks and 62% at 4 weeks) and in a comparable loss of Brn3a+RGCs at the same time intervals. m+RGCs decreased to 59% at 2 weeks and to 46% at 4 weeks, such loss was diffuse, did not parallel the sectorial loss of the general RGC population and was more severe in the superior-temporal retina. In the GCL, cell loss is selective for RGCs and does not affect other non-RGC neurons. The retinotectal innervation appeared significantly reduced at 10 days (55.7%) and did not progress further up to 14 weeks (46.6%). Thus, LP-induced OHT results in retrograde degeneration of RGCs and m+RGCs, as well as in the loss of CTB-labelled retinotectal terminals.
Collapse
Affiliation(s)
- Francisco J. Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Luis Alarcón-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - José M. Bernal-Garro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - María P. Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
- * E-mail:
| |
Collapse
|
46
|
Duan X, Qiao M, Bei F, Kim IJ, He Z, Sanes JR. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 2015; 85:1244-56. [PMID: 25754821 PMCID: PMC4391013 DOI: 10.1016/j.neuron.2015.02.017] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/22/2014] [Accepted: 01/17/2015] [Indexed: 12/23/2022]
Abstract
In mammals, few retinal ganglion cells (RGCs) survive following axotomy, and even fewer regenerate axons. This could reflect differential extrinsic influences or the existence of subpopulations that vary in their responses to injury. We tested these alternatives by comparing responses of molecularly distinct subsets of mouse RGCs to axotomy. Survival rates varied dramatically among subtypes, with alpha-RGCs (αRGCs) surviving preferentially. Among survivors, αRGCs accounted for nearly all regeneration following downregulation of PTEN, which activates the mTOR pathway. αRGCs have uniquely high mTOR signaling levels among RGCs and also selectively express osteopontin (OPN) and receptors for the insulin-like growth factor 1 (IGF-1). Administration of OPN plus IGF-1 promotes regeneration as effectively as downregulation of PTEN; however, regeneration is still confined to αRGCs. Our results reveal dramatic subtype-specific differences in the ability of RGCs to survive and regenerate following injury, and they identify promising agents for promoting axonal regeneration.
Collapse
Affiliation(s)
- Xin Duan
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Mu Qiao
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Fengfeng Bei
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - In-Jung Kim
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
47
|
Cui Q, Ren C, Sollars PJ, Pickard GE, So KF. The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. Neuroscience 2014; 284:845-853. [PMID: 25446359 PMCID: PMC4637166 DOI: 10.1016/j.neuroscience.2014.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/17/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022]
Abstract
Neurons in the mammalian retina expressing the photopigment melanopsin have been identified as a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). This discovery more than a decade ago has opened up an exciting new field of retinal research, and following the initial identification of photosensitive ganglion cells, several subtypes have been described. A number of studies have shown that ipRGCs subserve photoentrainment of circadian rhythms. They also influence other non-image forming functions of the visual system, such as the pupillary light reflex, sleep, cognition, mood, light aversion and development of the retina. These novel photosensitive neurons also influence form vision by contributing to contrast detection. Furthermore, studies have shown that ipRGCs are more injury-resistant following optic nerve injury, in animal models of glaucoma, and in patients with mitochondrial optic neuropathies, i.e., Leber’s hereditary optic neuropathy and dominant optic atrophy. There is also an indication that these cells may be resistant to glutamate-induced excitotoxicity. Herein we provide an overview of ipRGCs and discuss the injury-resistant character of these neurons under certain pathological and experimental conditions.
Collapse
Affiliation(s)
- Q Cui
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - C Ren
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - P J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - G E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K-F So
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China; Department of Ophthalmology, University of Hong Kong, Hong Kong.
| |
Collapse
|
48
|
González Fleitas MF, Bordone M, Rosenstein RE, Dorfman D. Effect of retinal ischemia on the non-image forming visual system. Chronobiol Int 2014; 32:152-63. [PMID: 25238585 DOI: 10.3109/07420528.2014.959526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Retinal ischemic injury is an important cause of visual impairment. The loss of retinal ganglion cells (RGCs) is a key sign of retinal ischemic damage. A subset of RGCs expressing the photopigment melanopsin (mRGCs) regulates non-image-forming visual functions such as the pupillary light reflex (PLR), and circadian rhythms. We studied the effect of retinal ischemia on mRGCs and the non-image-forming visual system function. For this purpose, transient ischemia was induced by raising intraocular pressure to 120 mm Hg for 40 min followed by retinal reperfusion by restoring normal pressure. At 4 weeks post-treatment, animals were subjected to electroretinography and histological analysis. Ischemia induced a significant retinal dysfunction and histological alterations. At this time point, a significant decrease in the number of Brn3a(+) RGCs and in the anterograde transport from the retina to the superior colliculus and lateral geniculate nucleus was observed, whereas no differences in the number of mRGCs, melanopsin levels, and retinal projections to the suprachiasmatic nuclei and the olivary pretectal nucleus were detected. At low light intensity, a decrease in pupil constriction was observed in intact eyes contralateral to ischemic eyes, whereas at high light intensity, retinal ischemia did not affect the consensual PLR. Animals with ischemia in both eyes showed a conserved locomotor activity rhythm and a photoentrainment rate which did not differ from control animals. These results suggest that the non-image forming visual system was protected against retinal ischemic damage.
Collapse
Affiliation(s)
- María Florencia González Fleitas
- Laboratorio de Neuroquímica Retiniana y Oftalmología Experimental, Departamento de Bioquímica Humana, Facultad de Medicina/CEFyBO, Universidad de Buenos Aires/CONICET , Buenos Aires , Argentina
| | | | | | | |
Collapse
|
49
|
Pérez de Sevilla Müller L, Sargoy A, Rodriguez AR, Brecha NC. Melanopsin ganglion cells are the most resistant retinal ganglion cell type to axonal injury in the rat retina. PLoS One 2014; 9:e93274. [PMID: 24671191 PMCID: PMC3966869 DOI: 10.1371/journal.pone.0093274] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/28/2014] [Indexed: 12/25/2022] Open
Abstract
We report that the most common retinal ganglion cell type that remains after optic nerve transection is the M1 melanopsin ganglion cell. M1 ganglion cells are members of the intrinsically photosensitive retinal ganglion cell population that mediates non-image-forming vision, comprising ∼2.5% of all ganglion cells in the rat retina. In the present study, M1 ganglion cells comprised 1.7±1%, 28±14%, 55±13% and 82±8% of the surviving ganglion cells 7, 14, 21 and 60 days after optic nerve transection, respectively. Average M1 ganglion cell somal diameter and overall morphological appearance remained unchanged in non-injured and injured retinas, suggesting a lack of injury-induced degeneration. Average M1 dendritic field size increased at 7 and 60 days following optic nerve transection, while average dendritic field size remained similar in non-injured retinas and in retinas at 14 and 21 days after optic nerve transection. These findings demonstrate that M1 ganglion cells are more resistant to injury than other ganglion cell types following optic nerve injury, and provide an opportunity to develop pharmacological or genetic therapeutic approaches to mitigate ganglion cell death and save vision following optic nerve injury.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Allison Sargoy
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Allen R. Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- CURE Digestive Diseases Research Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Health System, Los Angeles, California, United States of America
| |
Collapse
|
50
|
Matynia A. Blurring the boundaries of vision: novel functions of intrinsically photosensitive retinal ganglion cells. J Exp Neurosci 2013; 7:43-50. [PMID: 25157207 PMCID: PMC4089729 DOI: 10.4137/jen.s11267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian vision consists of the classic image-forming pathway involving rod and cone photoreceptors interacting through a neural network within the retina before sending signals to the brain, and a non image-forming pathway that uses a photosensitive cell employing an alternative and evolutionary ancient phototransduction system and a direct connection to various centers in the brain. Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin, which is independently capable of photon detection while also receiving synaptic input from rod and cone photoreceptors via bipolar cells. These cells are the retinal sentry for subconscious visual processing that controls circadian photoentrainment and the pupillary light reflex. Classified as irradiance detectors, recent investigations have led to expanding roles for this specific cell type and its own neural pathways, some of which are blurring the boundaries between image-forming and non image-forming visual processes.
Collapse
Affiliation(s)
- Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA. ; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|