1
|
Azrad Leibovitch T, Farah N, Markus A, Mandel Y. A novel GCaMP6f-RCS rat model for studying electrical stimulation in the degenerated retina. Front Cell Dev Biol 2024; 12:1386141. [PMID: 38711618 PMCID: PMC11070775 DOI: 10.3389/fcell.2024.1386141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
Background: Retinal prostheses aim to restore vision by electrically stimulating the remaining viable retinal cells in Retinal Degeneration (RD) cases. Research in this field necessitates a comprehensive analysis of retinal ganglion cells' (RGCs) responses to assess the obtained visual acuity and quality. Here we present a novel animal model which facilitates the optical recording of RGCs activity in an RD rat. This model can significantly enhance the functional evaluation of vision restoration treatments. Methods: The development of the novel rat model is based on crossbreeding a retinal degenerated Royal College of Surgeons (RCS) rat with a transgenic line expressing the genetic calcium indicator GCaMP6f in the RGCs. Characterization of the model was achieved using Optical Coherence Tomography (OCT) imaging, histology, and electroretinography (ERG) at the ages of 4, 8, and 12 weeks. Additionally, optical recordings of RGCs function in response to ex-vivo subretinal electrical stimulations were performed. Results: Histological investigations confirmed the high expression of GCaMP6f in the RGCs and minimal expression in the inner nuclear layer (INL). OCT imaging and histological studies revealed the expected gradual retinal degeneration, as evident by the decrease in retinal thickness with age and the formation of subretinal debris. This degeneration was further confirmed by ERG recordings, which demonstrated a significant decrease in the b-wave amplitude throughout the degeneration process, culminating in its absence at 12 weeks in the GCaMP6f-RCS rat. Importantly, the feasibility of investigating subretinal stimulation was demonstrated, revealing a consistent increase in activation threshold throughout degeneration. Furthermore, an increase in the diameter of the activated area with increasing currents was observed. The spatial spread of the activation area in the GCaMP6f-RCS rat was found to be smaller and exhibited faster activation dynamics compared with the GCaMP6f-LE strain. Conclusion: This novel animal model offers an opportunity to deepen our understanding of prosthetically induced retinal responses, potentially leading to significant advancements in prosthetic interventions in visual impairments.
Collapse
Affiliation(s)
- Tamar Azrad Leibovitch
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- Faculty of Life Sciences, School of Optometry and Visual Science, Bar Ilan University, Ramat Gan, Israel
| | - Nairouz Farah
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- Faculty of Life Sciences, School of Optometry and Visual Science, Bar Ilan University, Ramat Gan, Israel
| | - Amos Markus
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- Faculty of Life Sciences, School of Optometry and Visual Science, Bar Ilan University, Ramat Gan, Israel
| | - Yossi Mandel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- Faculty of Life Sciences, School of Optometry and Visual Science, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
2
|
Palanker D. Electronic Retinal Prostheses. Cold Spring Harb Perspect Med 2023; 13:a041525. [PMID: 36781222 PMCID: PMC10411866 DOI: 10.1101/cshperspect.a041525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Retinal prostheses are a promising means for restoring sight to patients blinded by photoreceptor atrophy. They introduce visual information by electrical stimulation of the surviving inner retinal neurons. Subretinal implants target the graded-response secondary neurons, primarily the bipolar cells, which then transfer the information to the ganglion cells via the retinal neural network. Therefore, many features of natural retinal signal processing can be preserved in this approach if the inner retinal network is retained. Epiretinal implants stimulate primarily the ganglion cells, and hence should encode the visual information in spiking patterns, which, ideally, should match the target cell types. Currently, subretinal arrays are being developed primarily for restoration of central vision in patients impaired by age-related macular degeneration (AMD), while epiretinal implants-for patients blinded by retinitis pigmentosa, where the inner retina is less preserved. This review describes the concepts and technologies, preclinical characterization of prosthetic vision and clinical outcomes, and provides a glimpse into future developments.
Collapse
Affiliation(s)
- Daniel Palanker
- Department of Ophthalmology and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
3
|
Damle S, Carleton M, Kapogianis T, Arya S, Cavichini-Corderio M, Freeman WR, Lo YH, Oesch NW. Minimizing Iridium Oxide Electrodes for High Visual Acuity Subretinal Stimulation. eNeuro 2021; 8:ENEURO.0506-20.2021. [PMID: 34799411 PMCID: PMC8704424 DOI: 10.1523/eneuro.0506-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Vision loss from diseases of the outer retina, such as age-related macular degeneration, is among the leading causes of irreversible blindness in the world today. The goal of retinal prosthetics is to replace the photo-sensing function of photoreceptors lost in these diseases with optoelectronic hardware to electrically stimulate patterns of retinal activity corresponding to vision. To enable high-resolution retinal prosthetics, the scale of stimulating electrodes must be significantly decreased from current designs; however, this reduces the amount of stimulating current that can be delivered. The efficacy of subretinal stimulation at electrode sizes suitable for high visual acuity retinal prosthesis are not well understood, particularly within the safe charge injection limits of electrode materials. Here, we measure retinal ganglion cell (RGC) responses in a mouse model of blindness to evaluate the stimulation efficacy of 10, 20, and 30 μm diameter iridium oxide electrodes within the electrode charge injection limits, focusing on measures of charge threshold and dynamic range. Stimulation thresholds were lower for smaller electrodes, but larger electrodes could elicit a greater dynamic range of spikes and recruited more ganglion cells within charge injection limits. These findings suggest a practical lower limit for planar electrode size and indicate strategies for maximizing stimulation thresholds and dynamic range.
Collapse
Affiliation(s)
- Samir Damle
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Maya Carleton
- Department of Psychology, University of California San Diego, La Jolla, CA 92093
| | - Theodoros Kapogianis
- Department of Psychology, University of California San Diego, La Jolla, CA 92093
| | - Shaurya Arya
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92161
| | - Melina Cavichini-Corderio
- Jacobs Retina Center at Shiley Eye Institute, Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093
| | - William R Freeman
- Jacobs Retina Center at Shiley Eye Institute, Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093
| | - Yu-Hwa Lo
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92161
| | - Nicholas W Oesch
- Department of Psychology, University of California San Diego, La Jolla, CA 92093
- Jacobs Retina Center at Shiley Eye Institute, Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
4
|
Hadjinicolaou AE, Meffin H, Maturana MI, Cloherty SL, Ibbotson MR. Prosthetic vision: devices, patient outcomes and retinal research. Clin Exp Optom 2021; 98:395-410. [DOI: 10.1111/cxo.12342] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/06/2015] [Accepted: 08/04/2015] [Indexed: 12/11/2022] Open
Affiliation(s)
- Alex E Hadjinicolaou
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia,
- ARC Centre of Excellence for Integrative Brain Function and Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia,
| | - Hamish Meffin
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia,
- ARC Centre of Excellence for Integrative Brain Function and Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia,
| | - Matias I Maturana
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia,
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia,
| | - Shaun L Cloherty
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia,
- ARC Centre of Excellence for Integrative Brain Function and Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia,
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia,
| | - Michael R Ibbotson
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia,
- ARC Centre of Excellence for Integrative Brain Function and Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia,
| |
Collapse
|
5
|
Hejazi M, Tong W, Ibbotson MR, Prawer S, Garrett DJ. Advances in Carbon-Based Microfiber Electrodes for Neural Interfacing. Front Neurosci 2021; 15:658703. [PMID: 33912007 PMCID: PMC8072048 DOI: 10.3389/fnins.2021.658703] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Neural interfacing devices using penetrating microelectrode arrays have emerged as an important tool in both neuroscience research and medical applications. These implantable microelectrode arrays enable communication between man-made devices and the nervous system by detecting and/or evoking neuronal activities. Recent years have seen rapid development of electrodes fabricated using flexible, ultrathin carbon-based microfibers. Compared to electrodes fabricated using rigid materials and larger cross-sections, these microfiber electrodes have been shown to reduce foreign body responses after implantation, with improved signal-to-noise ratio for neural recording and enhanced resolution for neural stimulation. Here, we review recent progress of carbon-based microfiber electrodes in terms of material composition and fabrication technology. The remaining challenges and future directions for development of these arrays will also be discussed. Overall, these microfiber electrodes are expected to improve the longevity and reliability of neural interfacing devices.
Collapse
Affiliation(s)
- Maryam Hejazi
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
| | - Wei Tong
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
| | - David J. Garrett
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Lindner M, Gilhooley MJ, Peirson SN, Hughes S, Hankins MW. The functional characteristics of optogenetic gene therapy for vision restoration. Cell Mol Life Sci 2021; 78:1597-1613. [PMID: 32728765 PMCID: PMC7904736 DOI: 10.1007/s00018-020-03597-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/20/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022]
Abstract
Optogenetic strategies to restore vision in patients blind from end-stage retinal degenerations aim to render remaining retinal neurons light-sensitive. We present an innovative combination of multi-electrode array recordings together with a complex pattern-generating light source as a toolset to determine the extent to which neural retinal responses to complex light stimuli can be restored following viral delivery of red-shifted channelrhodopsin in the retinally degenerated mouse. Our data indicate that retinal output level spatiotemporal response characteristics achieved by optogenetic gene therapy closely parallel those observed for normal mice but equally reveal important limitations, some of which could be mitigated using bipolar-cell targeted gene-delivery approaches. As clinical trials are commencing, these data provide important new information on the capacity and limitations of channelrhodopsin-based gene therapies. The toolset we established enables comparing optogenetic constructs and stem-cell-based techniques, thereby providing an efficient and sensitive starting point to identify future approaches for vision restoration.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Marburg, Germany.
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Neuroophthalmology, Institute of Ophthalmology, London, UK
| | - Stuart N Peirson
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Polino G, Lubrano C, Ciccone G, Santoro F. Photogenerated Electrical Fields for Biomedical Applications. Front Bioeng Biotechnol 2018; 6:167. [PMID: 30474026 PMCID: PMC6237932 DOI: 10.3389/fbioe.2018.00167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
The application of electrical engineering principles to biology represents the main issue of bioelectronics, focusing on interfacing of electronics with biological systems. In particular, it includes many applications that take advantage of the peculiar optoelectronic and mechanical properties of organic or inorganic semiconductors, from sensing of biomolecules to functional substrates for cellular growth. Among these, technologies for interacting with bioelectrical signals in living systems exploiting the electrical field of biomedical devices have attracted considerable attention. In this review, we present an overview of principal applications of phototransduction for the stimulation of electrogenic and non-electrogenic cells focusing on photovoltaic-based platforms.
Collapse
Affiliation(s)
| | | | | | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
8
|
Rathbun DL, Ghorbani N, Shabani H, Zrenner E, Hosseinzadeh Z. Spike-triggered average electrical stimuli as input filters for bionic vision—a perspective. J Neural Eng 2018; 15:063002. [DOI: 10.1088/1741-2552/aae493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Corna A, Herrmann T, Zeck G. Electrode-size dependent thresholds in subretinal neuroprosthetic stimulation. J Neural Eng 2018; 15:045003. [DOI: 10.1088/1741-2552/aac1c8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Weiland JD, Walston ST, Humayun MS. Electrical Stimulation of the Retina to Produce Artificial Vision. Annu Rev Vis Sci 2018; 2:273-294. [PMID: 28532361 DOI: 10.1146/annurev-vision-111815-114425] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal prostheses aim to restore vision to blind individuals suffering from retinal diseases such as retinitis pigmentosa and age-related macular degeneration. These devices function by electrically stimulating surviving retinal neurons, whose activation is interpreted by the brain as a visual percept. Many prostheses are currently under development. They are categorized as epiretinal, subretinal, and suprachoroidal prostheses on the basis of the placement of the stimulating microelectrode array. Each can activate ganglion cells through direct or indirect stimulation. The response of retinal neurons to these modes of stimulation are discussed in detail and are placed in context of the visual percept they are likely to evoke. This article further reviews challenges faced by retinal prosthesis and discusses potential solutions to address them.
Collapse
Affiliation(s)
- James D Weiland
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90007; .,USC Roski Eye Institute, University of Southern California, Los Angeles, California 90033.,Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California 90033
| | - Steven T Walston
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90007;
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90007; .,USC Roski Eye Institute, University of Southern California, Los Angeles, California 90033.,Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
11
|
Jalligampala A, Sekhar S, Zrenner E, Rathbun DL. Optimal voltage stimulation parameters for network-mediated responses in wild type and rd10 mouse retinal ganglion cells. J Neural Eng 2017; 14:026004. [PMID: 28155848 DOI: 10.1088/1741-2552/14/2/026004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To further improve the quality of visual percepts elicited by microelectronic retinal prosthetics, substantial efforts have been made to understand how retinal neurons respond to electrical stimulation. It is generally assumed that a sufficiently strong stimulus will recruit most retinal neurons. However, recent evidence has shown that the responses of some retinal neurons decrease with excessively strong stimuli (a non-monotonic response function). Therefore, it is necessary to identify stimuli that can be used to activate the majority of retinal neurons even when such non-monotonic cells are part of the neuronal population. Taking these non-monotonic responses into consideration, we establish the optimal voltage stimulation parameters (amplitude, duration, and polarity) for epiretinal stimulation of network-mediated (indirect) ganglion cell responses. We recorded responses from 3958 mouse retinal ganglion cells (RGCs) in both healthy (wild type, WT) and a degenerating (rd10) mouse model of retinitis pigmentosa-using flat-mounted retina on a microelectrode array. Rectangular monophasic voltage-controlled pulses were presented with varying voltage, duration, and polarity. We found that in 4-5 weeks old rd10 mice the RGC thresholds were comparable to those of WT. There was a marked response variability among mouse RGCs. To account for this variability, we interpolated the percentage of RGCs activated at each point in the voltage-polarity-duration stimulus space, thus identifying the optimal voltage-controlled pulse (-2.4 V, 0.88 ms). The identified optimal voltage pulse can activate at least 65% of potentially responsive RGCs in both mouse strains. Furthermore, this pulse is well within the range of stimuli demonstrated to be safe and effective for retinal implant patients. Such optimized stimuli and the underlying method used to identify them support a high yield of responsive RGCs and will serve as an effective guideline for future in vitro investigations of retinal electrostimulation by establishing standard stimuli for each unique experimental condition.
Collapse
Affiliation(s)
- Archana Jalligampala
- Institute for Ophthalmic Research, Eberhard Karls University, D-72076 Tübingen, Germany. Werner Reichardt Centre for Integrative Neuroscience (CIN), D-72076 Tübingen, Germany. Graduate Training Center of Neuroscience/International Max Planck Research School, D-72074 Tübingen, Germany
| | | | | | | |
Collapse
|
12
|
Goetz GA, Palanker DV. Electronic approaches to restoration of sight. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096701. [PMID: 27502748 PMCID: PMC5031080 DOI: 10.1088/0034-4885/79/9/096701] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Retinal prostheses are a promising means for restoring sight to patients blinded by the gradual atrophy of photoreceptors due to retinal degeneration. They are designed to reintroduce information into the visual system by electrically stimulating surviving neurons in the retina. This review outlines the concepts and technologies behind two major approaches to retinal prosthetics: epiretinal and subretinal. We describe how the visual system responds to electrical stimulation. We highlight major differences between direct encoding of the retinal output with epiretinal stimulation, and network-mediated response with subretinal stimulation. We summarize results of pre-clinical evaluation of prosthetic visual functions in- and ex vivo, as well as the outcomes of current clinical trials of various retinal implants. We also briefly review alternative, non-electronic, approaches to restoration of sight to the blind, and conclude by suggesting some perspectives for future advancement in the field.
Collapse
Affiliation(s)
- G A Goetz
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA. Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
13
|
Veerabhadrappa R, Lim CP, Nguyen TT, Berk M, Tye SJ, Monaghan P, Nahavandi S, Bhatti A. Unified selective sorting approach to analyse multi-electrode extracellular data. Sci Rep 2016; 6:28533. [PMID: 27339770 PMCID: PMC4919792 DOI: 10.1038/srep28533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/03/2016] [Indexed: 11/10/2022] Open
Abstract
Extracellular data analysis has become a quintessential method for understanding the neurophysiological responses to stimuli. This demands stringent techniques owing to the complicated nature of the recording environment. In this paper, we highlight the challenges in extracellular multi-electrode recording and data analysis as well as the limitations pertaining to some of the currently employed methodologies. To address some of the challenges, we present a unified algorithm in the form of selective sorting. Selective sorting is modelled around hypothesized generative model, which addresses the natural phenomena of spikes triggered by an intricate neuronal population. The algorithm incorporates Cepstrum of Bispectrum, ad hoc clustering algorithms, wavelet transforms, least square and correlation concepts which strategically tailors a sequence to characterize and form distinctive clusters. Additionally, we demonstrate the influence of noise modelled wavelets to sort overlapping spikes. The algorithm is evaluated using both raw and synthesized data sets with different levels of complexity and the performances are tabulated for comparison using widely accepted qualitative and quantitative indicators.
Collapse
Affiliation(s)
- R Veerabhadrappa
- Institute for Intelligent Systems Research and Innovation, Deakin University, Vic 3216, Australia
| | - C P Lim
- Institute for Intelligent Systems Research and Innovation, Deakin University, Vic 3216, Australia
| | - T T Nguyen
- Institute for Intelligent Systems Research and Innovation, Deakin University, Vic 3216, Australia
| | - M Berk
- IMPACT Strategic Research Centre, Barwon Health, Deakin University, Vic 3216, Australia
| | - S J Tye
- Department of Psychiatry &Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - P Monaghan
- Australian Animal Health Laboratory, CSIRO, Vic 3219, Australia
| | - S Nahavandi
- Institute for Intelligent Systems Research and Innovation, Deakin University, Vic 3216, Australia
| | - A Bhatti
- Institute for Intelligent Systems Research and Innovation, Deakin University, Vic 3216, Australia
| |
Collapse
|
14
|
Maturana MI, Apollo NV, Hadjinicolaou AE, Garrett DJ, Cloherty SL, Kameneva T, Grayden DB, Ibbotson MR, Meffin H. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina. PLoS Comput Biol 2016; 12:e1004849. [PMID: 27035143 PMCID: PMC4818105 DOI: 10.1371/journal.pcbi.1004849] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/04/2016] [Indexed: 11/19/2022] Open
Abstract
Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. Implantable multi-electrode arrays (MEAs) are used to record neurological signals and stimulate the nervous system to restore lost function (e.g. cochlear implants). MEAs that can combine both sensing and stimulation will revolutionize the development of the next generation of devices. Simple models that can accurately characterize neural responses to electrical stimulation are necessary for the development of future neuroprostheses controlled by neural feedback. We demonstrate a model that accurately predicts neural responses to concurrent stimulation across multiple electrodes. The model is simple to evaluate, making it an appropriate model for use with neural feedback. The methods described are applicable to a wide range of neural prostheses, thus greatly assisting future device development.
Collapse
Affiliation(s)
- Matias I. Maturana
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia
- Department of Electrical and Electronic Engineering, NeuroEngineering Laboratory, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas V. Apollo
- Department of Physics, University of Melbourne, Parkville, Victoria, Australia
| | - Alex E. Hadjinicolaou
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia
| | - David J. Garrett
- Department of Physics, University of Melbourne, Parkville, Victoria, Australia
| | - Shaun L. Cloherty
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia
- Department of Electrical and Electronic Engineering, NeuroEngineering Laboratory, University of Melbourne, Parkville, Victoria, Australia
- Department of Optometry and Vision Sciences, ARC Centre of Excellence for Integrative Brain Function, University of Melbourne, Parkville, Victoria, Australia
| | - Tatiana Kameneva
- Department of Electrical and Electronic Engineering, NeuroEngineering Laboratory, University of Melbourne, Parkville, Victoria, Australia
| | - David B. Grayden
- Department of Electrical and Electronic Engineering, NeuroEngineering Laboratory, University of Melbourne, Parkville, Victoria, Australia
- Centre for Neural Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia
- Department of Optometry and Vision Sciences, ARC Centre of Excellence for Integrative Brain Function, University of Melbourne, Parkville, Victoria, Australia
| | - Hamish Meffin
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia
- Department of Optometry and Vision Sciences, ARC Centre of Excellence for Integrative Brain Function, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
15
|
Yang F, Yang CH, Wang FM, Cheng YT, Teng CC, Lee LJ, Yang CH, Fan LS. A high-density microelectrode-tissue-microelectrode sandwich platform for application of retinal circuit study. Biomed Eng Online 2015; 14:109. [PMID: 26611649 PMCID: PMC4662037 DOI: 10.1186/s12938-015-0106-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/23/2015] [Indexed: 01/05/2023] Open
Abstract
Background Microelectrode array (MEA) devices are frequently used in neural circuit studies, especially in retinal prosthesis. For a high throughput stimulation and recording paradigm, it is desirable to obtain the responses of multiple surface RGCs initiated from the electrical signals delivered to multiple photoreceptor cells. This can be achieved by an high density MEA-tissue-MEA (MTM) sandwich configuration. However, the retina is one of the most metabolically active tissues, consumes oxygen as rapidly as the brain. The major concern of the MTM configuration is the supply of oxygen. Methods We aimed to develop a high density MTM sandwich platform which consists of stacks of a stimulation MEA, retinal tissue and a recording MEA. Retina is a metabolically active tissue and the firing rate is very sensitive to oxygen level. We designed, simulated and microfabricated porous high density MEAs and an adjustable perfusion system that electrical signals can be delivered to and recorded from the clipped retinal tissue. Results The porous high-density MEAs linked with stimulation or recording devices within a perfusion system were manufactured and the MTM platform was assembled with a retina slice inside. The firing rate remained constant between 25 and 55 min before dramatically declined, indicating that within certain period of time (e.g. 30 min after habituation), the retina condition was kept by sufficient oxygen supply via the perfusion holes in the MEAs provided by the double perfusion system. Conclusions MTM sandwich structure is an efficient platform to study the retinal neural circuit. The material and arrangement of high density microelectrodes with porous design make this MEA appropriate for sub-retina prosthesis. Finding ways to prolong the recording time and reduce the signal-to-noise ratio are important to improve our MTM prototype.
Collapse
Affiliation(s)
- Frank Yang
- Institute of NanoEngineering and Microsystems, National Tsing-Hua University, Hsin-Chu, Taiwan
| | - Chung-Hua Yang
- Institute of NanoEngineering and Microsystems, National Tsing-Hua University, Hsin-Chu, Taiwan
| | - Fu-Min Wang
- Institute of NanoEngineering and Microsystems, National Tsing-Hua University, Hsin-Chu, Taiwan
| | - Ya-Ting Cheng
- Institute of NanoEngineering and Microsystems, National Tsing-Hua University, Hsin-Chu, Taiwan
| | - Chih-Ciao Teng
- Institute of NanoEngineering and Microsystems, National Tsing-Hua University, Hsin-Chu, Taiwan
| | - Li-Jen Lee
- Graduated Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Long-Sheng Fan
- Institute of NanoEngineering and Microsystems, National Tsing-Hua University, Hsin-Chu, Taiwan.
| |
Collapse
|