1
|
Tang XH, Wang MY, Jiang JY, Zhou FQ, Li D, Chen SS, Xiang CQ, Lei XY, Hu Y, Yang X. Vision Improvement in Keratoconus Patients Trained With Perceptual Learning: A Randomized Controlled Trial. Am J Ophthalmol 2025; 269:226-235. [PMID: 39218388 DOI: 10.1016/j.ajo.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/28/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To investigate the effectiveness and maintenance of perceptional learning (PL) on vision improvement in keratoconus (KC) patients corrected with spectacles. DESIGN Randomized, double-blind clinical trial. METHODS Non-progressive KC patients 9 years of age or older who had best spectacle-corrected distance visual acuity (CDVA) of 0 to 1.0 logMAR (Snellen equivalent range 20/20 to 20/200) and who were contact lenses intolerant were enrolled. Eligible subjects were randomized into PL and control groups to receive PL and placebo training for 3 months, respectively. Spectacle-corrected visual acuity, contrast sensitivity function (CSF), stereoacuity, and visual functioning and quality of life were measured at baseline, 3 months, and 6 months of follow-up. Statistics were analyzed following the intention-to-treat principle. RESULTS After 3 months of training, the CDVA of patients in the PL group improved as compared to the placebo group (0.17 ± 0.15 logMAR vs 0.02 ± 0.06 logMAR; P = .0006). Eight of 17 (47.06%) patients in the PL group reached CDVA improvement ≥2 lines (P = .0010). This improvement persisted for at least 6 months (from baseline) as compared to the placebo group (0.17 ± 0.17 logMAR vs 0.01 ± 0.07 logMAR; P = .0011). The increase in CSF in the PL group mainly was found for moderate spatial frequency (0.11 ± 0.17 log units at 3 cpd; 0.12 ± 0.19 log units at 6 cpd). Linear regression indicated that patients with worse initial CDVA achieved better gains in CDVA after PL (P = .009). No side effects were observed, and no subjects withdrew from the study because of training difficulties. CONCLUSIONS Three-month PL improved vision in KC patients, and the improvement was maintained after 3 months of treatment cessation. The results indicate that PL may be a promising therapy for KC patients with unsatisfied spectacle-corrected visual acuity.
Collapse
Affiliation(s)
- Xiang-Hua Tang
- From the State Key Laboratory of Ophthalmology (X.-H.T., M.-Y.W., J.-Y.J., D.L., S.-S.C., C.-Q.X., X.-Y.L., Y.H., X.Y.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Meng-Yi Wang
- From the State Key Laboratory of Ophthalmology (X.-H.T., M.-Y.W., J.-Y.J., D.L., S.-S.C., C.-Q.X., X.-Y.L., Y.H., X.Y.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Jin-Yun Jiang
- From the State Key Laboratory of Ophthalmology (X.-H.T., M.-Y.W., J.-Y.J., D.L., S.-S.C., C.-Q.X., X.-Y.L., Y.H., X.Y.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Feng-Qi Zhou
- Department of Ophthalmology (F.-Q.Z.), Mayo Clinic Health System, Eau Claire, Wisconsin, USA
| | - Dan Li
- From the State Key Laboratory of Ophthalmology (X.-H.T., M.-Y.W., J.-Y.J., D.L., S.-S.C., C.-Q.X., X.-Y.L., Y.H., X.Y.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Shuo-Shuo Chen
- From the State Key Laboratory of Ophthalmology (X.-H.T., M.-Y.W., J.-Y.J., D.L., S.-S.C., C.-Q.X., X.-Y.L., Y.H., X.Y.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Chu-Qi Xiang
- From the State Key Laboratory of Ophthalmology (X.-H.T., M.-Y.W., J.-Y.J., D.L., S.-S.C., C.-Q.X., X.-Y.L., Y.H., X.Y.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Xing-Yu Lei
- From the State Key Laboratory of Ophthalmology (X.-H.T., M.-Y.W., J.-Y.J., D.L., S.-S.C., C.-Q.X., X.-Y.L., Y.H., X.Y.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Yin Hu
- From the State Key Laboratory of Ophthalmology (X.-H.T., M.-Y.W., J.-Y.J., D.L., S.-S.C., C.-Q.X., X.-Y.L., Y.H., X.Y.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China.
| | - Xiao Yang
- From the State Key Laboratory of Ophthalmology (X.-H.T., M.-Y.W., J.-Y.J., D.L., S.-S.C., C.-Q.X., X.-Y.L., Y.H., X.Y.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Abbas M, Szpiro SFA, Karawani H. Interconnected declines in audition vision and cognition in healthy aging. Sci Rep 2024; 14:30805. [PMID: 39730569 DOI: 10.1038/s41598-024-81154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Age-related sensory declines are unavoidable and closely linked to decreased visual, auditory, and cognitive functions. However, the interrelations of these declines remain poorly understood. Despite extensive studies in each domain, shared age-related characteristics are complex and may not consistently manifest direct relationships at the individual level. We investigated the link between visual and auditory perceptual declines in healthy aging and their relation to cognitive function using six psychophysical and three cognitive tasks. Eighty young and older healthy adults participated, revealing a general age-related decline. Young adults consistently outperformed older adults in all tasks. Critically, the performance in visual tasks significantly correlated with performance in auditory tasks in older adults. This suggests a domain-general decline in perception, where declines in vision are related to declines in audition within individuals. Additionally, perceptual performance in older adults decreased monotonically year by year. Working memory performance significantly correlated with perceptual performance across both age groups and modalities, further supporting the hypothesis of a domain-general decline. These findings highlight the complex and interconnected nature of sensory and cognitive declines in aging, providing a foundation for future translational research focused on enhancing cognitive and perceptual abilities to promote healthy aging and ultimately improve the quality of life for older adults.
Collapse
Affiliation(s)
- Mais Abbas
- Department of Communication Sciences and Disorders, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Sarit F A Szpiro
- Department of Special Education, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub, University of Haifa, Haifa, Israel
| | - Hanin Karawani
- Department of Communication Sciences and Disorders, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
- The Haifa Brain and Behavior Hub, University of Haifa, Haifa, Israel.
| |
Collapse
|
3
|
Yassin M, Lev M, Polat U. Dynamics of the perceptive field size in human adults. Vision Res 2024; 224:108488. [PMID: 39305648 DOI: 10.1016/j.visres.2024.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
The receptive field (RF) is the fundamental processing unit of human vision; both masking and crowding depend on its size. The RF has a psychophysical corresponding term, the perceptive field (PF); whereas the RF is measured physiologically, the PF is measured psychophysically (a perceptual response). We investigated how spatial (lateral interactions), temporal (the stimulus presentation time), and the procedure affect the PF size for both monocular and binocular viewing. The stimuli consisted of a central vertically oriented Gabor target and high-contrast Gabor flankers positioned in two configurations (orthogonal or collinear) with target-flanker separations of either 2 or 3 wavelengths (λ). We used two main methods to control the monocular and binocular vision: mono-optic glasses vs. stereo glasses. The presentation order was either mixed or non-mixed for the presentation time and the eye condition. We estimated the PF size for both monocular and binocular viewing at 4 different presentation times (40, 80,120, and 200 ms) with different orders of presentation in each experiment (mono-optic glasses vs. stereo glasses, utilizing the lateral masking paradigm). In each experiment we explored one variable: how changing one parameter would affect the PF size in both monocular and binocular viewing (the temporal duration, the testing order of conditions, and the spatial distance) while keeping the others constant. We found that both the monocular and binocular PF size were dynamic and were significantly affected by the presentation order, leading to reduced lateral suppression under the collinear 2λ condition. Hence, both the monocular and binocular PF size depended on the sequence of the stimulus presentation time and the testing order of the conditions. Furthermore, we found that the binocular PF size was significantly larger than the monocular PF size.
Collapse
Affiliation(s)
- Marzouk Yassin
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
4
|
Chang M, Suzuki S, Kurose T, Ibaraki T. Pretraining alpha rhythm enhancement by neurofeedback facilitates short-term perceptual learning and improves visual acuity by facilitated consolidation. FRONTIERS IN NEUROERGONOMICS 2024; 5:1399578. [PMID: 38894852 PMCID: PMC11184131 DOI: 10.3389/fnrgo.2024.1399578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Introduction Learning through perceptual training using the Gabor patch (GP) has attracted attention as a new vision restoration technique for myopia and age-related deterioration of visual acuity (VA). However, the task itself is monotonous and painful and requires numerous training sessions and some time before being effective, which has been a challenge for its widespread application. One effective means of facilitating perceptual learning is the empowerment of EEG alpha rhythm in the sensory cortex before neurofeedback (NF) training; however, there is a lack of evidence for VA. Methods We investigated whether four 30-min sessions of GP training, conducted over 2 weeks with/without EEG NF to increase alpha power (NF and control group, respectively), can improve vision in myopic subjects. Contrast sensitivity (CS) and VA were measured before and after each GP training. Results The NF group showed an improvement in CS at the fourth training session, not observed in the control group. In addition, VA improved only in the NF group at the third and fourth training sessions, this appears as a consolidation effect (maintenance of the previous training effect). Participants who produced stronger alpha power during the third training session showed greater VA recovery during the fourth training session. Discussion These results indicate that enhanced pretraining alpha empowerment strengthens the subsequent consolidation of perceptual learning and that even a short period of GP training can have a positive effect on VA recovery. This simple protocol may facilitate use of a training method to easily recover vision.
Collapse
Affiliation(s)
| | - Shuntaro Suzuki
- Vie, Inc., Kamakura, Japan
- NTT Data Institute of Management Consulting, Inc., Tokyo, Japan
| | | | - Takuya Ibaraki
- Vie, Inc., Kamakura, Japan
- NTT Data Institute of Management Consulting, Inc., Tokyo, Japan
| |
Collapse
|
5
|
Yassin M, Lev M, Polat U. Space, time, and dynamics of binocular interactions. Sci Rep 2023; 13:21449. [PMID: 38052879 DOI: 10.1038/s41598-023-48380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023] Open
Abstract
Binocular summation (BS), defined as the superiority of binocular over monocular visual performance, shows that thresholds are about 40% (a factor of 1.4) better in binocular than in monocular viewing. However, it was reported that different amounts of BS exist in a range from 1.4 to 2 values because BS is affected by the spatiotemporal parameters of the stimulus. Lateral interactions can be defined as the neuron's ability to affect the neighboring neurons by either inhibiting or exciting their activity. We investigated the effect of the spatial and temporal domains on binocular interactions and BS under the lateral masking paradigm and how BS would be affected by lateral interactions via a lateral masking experiment. The two temporal alternative forced-choice (2TAFC) method was used. The stimuli consisted of a central vertically oriented Gabor target and high-contrast Gabor flankers positioned in two configurations (orthogonal or collinear) with target-flanker separations of either 2 or 3 wavelengths (λ), presented at 4 different presentation times (40, 80, 120, and 200 ms) using a different order of measurements across the different experiments. Opaque lenses were used to control the monocular and binocular vision. BS is absent at close distances (2λ), depending on the presentation time's order, for the collinear but not for the orthogonal configuration. However, BS exists at more distant flankers (collinear and orthogonal, 3λ). BS is not uniform (1.4); it depends on the stimulus condition, the presentation times, the order, and the method that was used to control the monocular and binocular vision.
Collapse
Affiliation(s)
- Marzouk Yassin
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
6
|
Benhaim-Sitbon L, Lev M, Polat U. Abnormal basic visual processing functions in binocular fusion disorders. Sci Rep 2023; 13:19301. [PMID: 37935803 PMCID: PMC10630403 DOI: 10.1038/s41598-023-46291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
Heterophoria is a common type of binocular fusion disorder that consists of a latent eye misalignment with potential consequences on daily activities such as reading or working on a computer (with CVS). Crowding, a type of contextual modulation, can also impair reading. Our recent studies found an abnormal pattern of low-level visual processing with larger perceptive fields (PF) in heterophoria. The PF is the fundamental processing unit of human vision and both masking and crowding depend on its size. We investigated how heterophoria would impact the PF's size via a lateral masking experiment and consequently affect the foveal crowding at different letter-spacings (the crowding zone). More specifically, we explored the relationship between crowding, lateral masking, the PF's size, and the amount of heterophoria. The binocular horizontal PF's size was larger with heterophoric subjects, in agreement with our previous study. We found a stronger crowding and an extended crowding zone associated with slower response times; this shows that the processing of letter identification under both crowded and uncrowded conditions requires more processing effort in heterophoric individuals. In agreement with previous studies, we found a correlation between the crowding zone and the PF's size; each was strongly correlated with the amount of phoria. These findings resemble those involving the PF size and the extended crowding found at the fovea in amblyopia and young children. We suggest that these findings could help explain the inter-observers' variability found in the masking literature, and the reading difficulties often encountered in subjects with high heterophoria.
Collapse
Affiliation(s)
- Laura Benhaim-Sitbon
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
7
|
Di W, Yifan W, Na L, Pan Z. Dissociable effects of transcranial direct current stimulation (tDCS) on early and later stages of visual motion perceptual learning. Brain Res Bull 2023; 199:110669. [PMID: 37196735 DOI: 10.1016/j.brainresbull.2023.110669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Transcranial direct current stimulation (tDCS) has the potential to benefit visual perceptual learning (VPL). However, previous studies investigated the effect of tDCS on VPL within early sessions, and the influence of tDCS on learning effects at later stages (plateau level) is unclear. Here, participants completed 9 days of training on coherent motion direction identification to reach a plateau (stage 1) and then continued training for 3 days (stage 2). The coherent thresholds were measured before training, after stage 1 and after stage 2. In the first group, anodal tDCS was applied when participants trained over a period of 12 days (stage 1+ stage 2). In the second group, participants completed a 9-day training period without any stimulation to reach a plateau (stage 1); after that, participants completed a 3-day training period while anodal tDCS was administered (stage 2). The third group was treated the same as the second group except that anodal tDCS was replaced by sham tDCS. The results showed that anodal tDCS did not improve posttest performance after the plateau was reached. The comparison of learning curves between the first and third groups showed that anodal tDCS decreased the threshold at the early stage, but it did not improve the plateau level. For the second and third groups, anodal tDCS did not further enhance the plateau level after a continued 3-day training period. These results suggest that anodal tDCS boosts VLP during the early period of training sessions, but it fails to facilitate later learning effects. This study contributed to a deep understanding of the dissociable tDCS effects at distinct temporal stages, which may be due to the dynamic change in brain regions during the time course of VPL.
Collapse
Affiliation(s)
- Wu Di
- Department of Medical Psychology, Air Force Medical University, Xi'an, China; Department of Neurobiology, Basic Medical School, Air Force Medical University, Xi'an, China
| | - Wang Yifan
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Liu Na
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Zhang Pan
- Department of Psychology, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
8
|
Eisen-Enosh A, Farah N, Polat U, Mandel Y. Perceptual learning based on a temporal stimulus enhances visual function in adult amblyopic subjects. Sci Rep 2023; 13:7643. [PMID: 37169784 PMCID: PMC10175483 DOI: 10.1038/s41598-023-34421-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023] Open
Abstract
Studies have shown that Perceptual Learning (PL) can lead to enhancement of spatial visual functions in amblyopic subjects. Here we aimed to determine whether a simple flickering stimulus can be utilized in PL to enhance temporal function performance and whether enhancement will transfer to spatial functions in amblyopic subjects. Six adult amblyopic and six normally sighted subjects underwent an evaluation of their performance of baseline psychophysics spatial functions (Visual acuity (VA), contrast sensitivity (CS), temporal functions (critical fusion frequency (CFF) test), as well as a static and flickering stereopsis test, and an electrophysiological evaluation (VEP). The subjects then underwent 5 training sessions (on average, a total of 150 min over 2.5 weeks), which included a task similar to the CFF test using the method of constant stimuli. After completing the training sessions, subjects repeated the initial performance evaluation tasks. All amblyopic subjects showed improved temporal visual performance (CFF) in the amblyopic eye (on average, 17%, p << 0.01) following temporal PL. Generalization to spatial, spatio-temporal, and binocular tasks was also found: VA increased by 0.12 logMAR (p = 0.004), CS in backward masking significantly increased (by up to 19%, p = 0.003), and flickering stereopsis increased by 85 arcsec (p = 0.048). These results were further electrophysiologically manifested by an increase in VEP amplitude (by 43%, p = 0.03), increased Signal-to-Noise ratio (SNR) (by 39%, p = 0.024) to levels not different from normally sighted subjects, along with an improvement in inter-ocular delay (by 5.8 ms, p = 0.003). In contrast, no significant effect of training was found in the normally sighted group. These results highlight the potential of PL based on a temporal stimulus to improve the temporal and spatial visual performance in amblyopes. Future work is needed to optimize this method for clinical applications.
Collapse
Affiliation(s)
- Auria Eisen-Enosh
- School of Optometry and Vision Science, Bar-Ilan University, Ramat Gan, Israel
| | - Nairouz Farah
- School of Optometry and Vision Science, Bar-Ilan University, Ramat Gan, Israel
| | - Uri Polat
- School of Optometry and Vision Science, Bar-Ilan University, Ramat Gan, Israel
| | - Yossi Mandel
- School of Optometry and Vision Science, Bar-Ilan University, Ramat Gan, Israel.
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel.
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
9
|
Benhaim-Sitbon L, Lev M, Polat U. Extended perceptive field revealed in humans with binocular fusion disorders. Sci Rep 2023; 13:6584. [PMID: 37085571 PMCID: PMC10121568 DOI: 10.1038/s41598-023-33429-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
Binocular vision disorders or dysfunctions have considerable impact on daily visual activities such as reading. Heterophoria (phoria) is a latent eye misalignment (with a prevalence of up to 35%) that appears in conditions that disrupt binocular vision and it may affect the quality of binocular fusion. Our recent study, which used lateral masking (LM), suggests that subjects with binocular fusion disorders (horizontal phoria) exhibit an asymmetry and an abnormal pattern of both binocular and monocular lateral interactions, but only for the horizontal meridian (HM). The perceptive field (PF) is the fundamental processing unit of human vision and both masking and crowding depend on its size. An increased PF size is found in amblyopic populations or in young children. We hypothesized that the PF's size would be asymmetric only for the phoric group (larger along the HM). We estimated the PF's size using two different methods (LM with equal-phase and opposite-phase flankers). Phoric subjects exhibited a larger binocular PF size, only for the HM, confirming our hypothesis of an asymmetric PF size. However, the monocular PF size of phoric and control subjects was similar. Phoria affects the PF's size similarly to meridional amblyopia but without being attributed to abnormal refraction. We suggest that these findings could help explain the inter-observer variability found in the masking literature and the reading difficulties often encountered in subjects with high heterophoria. Since perceptual learning can reduce the PF's size, further investigation of training may provide a novel therapy to reduce some symptoms related to heterophoria.
Collapse
Affiliation(s)
- Laura Benhaim-Sitbon
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
10
|
Wu D, Wang Y, Liu N, Wang P, Sun K, Zhang P. Posttraining anodal tDCS improves early consolidation of visual perceptual learning. Clin Neurophysiol 2023; 146:89-96. [PMID: 36563555 DOI: 10.1016/j.clinph.2022.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We aimed to investigate the transcranial direct current stimulation (tDCS)-induced facilitation of early consolidation over a period of extended training sessions and explored the effect of tDCS on visual perceptual learning (VPL) improvement during online learning and offline consolidation. METHODS In the current double-blind sham-controlled study, twenty-four healthy participants were trained on coherent motion direction identification for 5 consecutive sessions. Performance was assessed at the pre- and posttests. Anodal or sham tDCS of the left human middle temporal region (hMT+) was applied immediately after the completion of daily training (termed early consolidation). RESULTS The magnitude of improvement between anodal and sham tDCS was marginally significant, supporting the beneficial effect of anodal tDCS on VPL by stimulating early consolidation. Additionally, anodal tDCS induced a larger improvement between the first two training sessions than sham tDCS. No effect of anodal tDCS was found on the within-session improvement. CONCLUSIONS The above results indicated that anodal tDCS facilitates offline consolidation during the early period of the whole training series, not online learning. The possible neural mechanisms and limitations (sample size and persistent effects) were discussed. SIGNIFICANCE Our findings support the use of the combination of tDCS and behavioral training in facilitating visual rehabilitation and contribute to a deeper understanding of learning processes by neuromodulation procedures.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China; Department of Neurobiology, Basic Medical School, Air Force Medical University, Xi'an, China
| | - Yifan Wang
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Panhui Wang
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
11
|
Liang J, Pang S, Yan L, Zhu J. Efficacy of binocular vision training and Fresnel press-on prism on children with esotropia and amblyopia. Int Ophthalmol 2023; 43:583-588. [PMID: 35945412 DOI: 10.1007/s10792-022-02461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE In the process of clinical diagnosis and treatment of amblyopia, we have found that the treatment time of this disease was significantly different among different patients. The purpose of this study was to compare the efficacy of binocular vision training (BVT) and Fresnel press-on prism (FPP) on children with esotropia combined with amblyopia. METHODS From May 2015 to December 2018, a total of 101 children aged 3-9 years with esotropia and amblyopia who were in our hospital were enrolled in this randomized clinical trial. They were randomly divided into combined group (48 cases) and prism group (53 cases): the children in the prism group received FPP treatment, and those in the combined group received the combined treatment of BVT and FPP. The visual acuity, the binocular function and the strabismic therapeutic effects were compared between two groups. RESULTS After treatment, the visual acuity in both groups was both significantly improved compared with that before treatment (P = 0.0079). The binocular-monocular function, including synoptophore visual function and the Titmus stereopsis, in both groups was significantly improved compared with those before treatment (P < 0.05), and it was more significant in the combined group compared with the prism group (P < 0.05). The cure rate of strabismus was 87.50% (42/48) and 30.19% (16/53) in the combined group and the prism group, respectively, and there was significant difference between groups (P = 0.0036). The cure time was shortened with the lower of the degree of esotropia. CONCLUSION BVT combined with FPP can effectively promote the recovery of binocular vision in children with esotropia combined with amblyopia, and some children can achieve complete cure of strabismus.
Collapse
Affiliation(s)
- Jincai Liang
- Department of Ophthalmology, Guiyang Maternal and Child Health Hospital, Guiyang, 550003, Guizhou, China. .,, Guiyang City, China.
| | - Shasha Pang
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou, 510500, China
| | - Li Yan
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou, 510500, China
| | - Jianhua Zhu
- Department of Ophthalmology, Guiyang Maternal and Child Health Hospital, Guiyang, 550003, Guizhou, China
| |
Collapse
|
12
|
Wu D, Zhang P, Wang Y, Liu N, Sun K, Wang P, Xiao W. Anodal online transcranial direct current stimulation facilitates visual motion perceptual learning. Eur J Neurosci 2023; 57:479-489. [PMID: 36511948 DOI: 10.1111/ejn.15895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Visual perceptual learning (VPL) has great potential implications for clinical populations, but adequate improvement often takes weeks to months to obtain; therefore, practical applications of VPL are limited. Strategies that enhance visual performance acquisition make great practical sense. Transcranial direct current stimulation (tDCS) could be beneficial to VPL, but thus far, the results are inconsistent. The current study had two objectives: (1) to investigate the effect of anodal tDCS on VPL and (2) to determine whether the timing sequence of anodal tDCS and training influences VPL. Anodal tDCS was applied on the left human middle temporal (hMT+) during training on a coherent motion discrimination task (online), anodal tDCS was also applied before training (offline) and sham tDCS was applied during training (sham). The coherent thresholds were measured without stimulation before, 2 days after and 1 month after training. All participants trained for five consecutive days. Anodal tDCS resulted in more performance improvement when applied during daily training but not when applied before training. Additionally, neither within-session improvement nor between-session improvement differed among the online, offline and sham tDCS conditions. These findings contribute to the development of efficient stimulation protocols and a deep understanding of the mechanisms underlying the effect of tDCS on VPL.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
- Department of Neurobiology, Basic Medical School, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Yifan Wang
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Panhui Wang
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Wei Xiao
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| |
Collapse
|
13
|
Wu D, Wang Y, Liu N, Wang P, Sun K, Xiao W. High-definition transcranial direct current stimulation of the left middle temporal complex does not affect visual motion perception learning. Front Neurosci 2022; 16:988590. [PMID: 36117616 PMCID: PMC9474993 DOI: 10.3389/fnins.2022.988590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Visual perceptual learning (VPL) refers to the improvement in visual perceptual abilities through training and has potential implications for clinical populations. However, improvements in perceptual learning often require hundreds or thousands of trials over weeks to months to attain, limiting its practical application. Transcranial direct current stimulation (tDCS) could potentially facilitate perceptual learning, but the results are inconsistent thus far. Thus, this research investigated the effect of tDCS over the left human middle temporal complex (hMT+) on learning to discriminate visual motion direction. Twenty-seven participants were randomly assigned to the anodal, cathodal and sham tDCS groups. Before and after training, the thresholds of motion direction discrimination were assessed in one trained condition and three untrained conditions. Participants were trained over 5 consecutive days while receiving 4 × 1 ring high-definition tDCS (HD-tDCS) over the left hMT+. The results showed that the threshold of motion direction discrimination significantly decreased after training. However, no obvious differences in the indicators of perceptual learning, such as the magnitude of improvement, transfer indexes, and learning curves, were noted among the three groups. The current study did not provide evidence of a beneficial effect of tDCS on VPL. Further research should explore the impact of the learning task characteristics, number of training sessions and the sequence of stimulation.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yifan Wang
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi’an, China
| | - Panhui Wang
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Wei Xiao
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
- *Correspondence: Wei Xiao,
| |
Collapse
|
14
|
Truong J, Buschkuehl M, Smith-Peirce RN, Carrillo AA, Seitz AR, Jaeggi SM. Change-detection training and its effects on visual processing skills. Sci Rep 2022; 12:12646. [PMID: 35879360 PMCID: PMC9314349 DOI: 10.1038/s41598-022-15649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022] Open
Abstract
Previous cognitive training research with the change-detection paradigm found only sparse effects that went beyond improvements in the training task but stressed an increase in fidelity of internal memory representations. Motivated by the demanding visual processing requirements of change-detection training, we extended this work by focusing on whether training on a change-detection task would improve visual processing skills. Fifty participants were randomly assigned to train on a change-detection task or on a control task for seven sessions. Participants' visual processing skills were assessed before and after the intervention, focusing on visual search, contrast sensitivity, and contour integration. Our results suggest a general improvement in perceptual skills that was primarily driven by a conjunction search task and to a much lesser extent by a complex visual search task and a contrast sensitivity task. The data from the conjunction search task further suggest a causal link between training and improvements of perceptual as opposed to attentional processes. Since the change-detection paradigm is commonly used to assess working memory capacity, future research needs to investigate how much of its variance is explained by memory performance and how much is explained by perceptual processes.
Collapse
Affiliation(s)
- Jennifer Truong
- School of Education, University of California-Irvine, Irvine, CA, USA.
| | | | | | - Audrey A Carrillo
- Department of Psychology, University of California-Riverside, Riverside, CA, USA
| | - Aaron R Seitz
- Department of Psychology, University of California-Riverside, Riverside, CA, USA
| | - Susanne M Jaeggi
- School of Education, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
15
|
He Q, Yang XY, Zhao D, Fang F. Enhancement of visual perception by combining transcranial electrical stimulation and visual perceptual training. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:271-284. [PMID: 37724187 PMCID: PMC10388778 DOI: 10.1515/mr-2022-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 09/20/2023]
Abstract
The visual system remains highly malleable even after its maturity or impairment. Our visual function can be enhanced through many ways, such as transcranial electrical stimulation (tES) and visual perceptual learning (VPL). TES can change visual function rapidly, but its modulation effect is short-lived and unstable. By contrast, VPL can lead to a substantial and long-lasting improvement in visual function, but extensive training is typically required. Theoretically, visual function could be further improved in a shorter time frame by combining tES and VPL than by solely using tES or VPL. Vision enhancement by combining these two methods concurrently is both theoretically and practically significant. In this review, we firstly introduced the basic concept and possible mechanisms of VPL and tES; then we reviewed the current research progress of visual enhancement using the combination of two methods in both general and clinical population; finally, we discussed the limitations and future directions in this field. Our review provides a guide for future research and application of vision enhancement and restoration by combining VPL and tES.
Collapse
Affiliation(s)
- Qing He
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xin-Yue Yang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daiqing Zhao
- Department of Psychology, The Pennsylvania State University, University Park, State College, PA, USA
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
16
|
Kutzner BL, Ring M, Michelson G. [Binocular vision training for professional athletes]. Ophthalmologe 2022; 119:721-729. [PMID: 35107596 DOI: 10.1007/s00347-022-01574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Optimal visual abilities including stereo acuity seem to be an important issue in sports. There is increasing evidence that stereo acuity can be sustainably improved by digital vision training even for people with good stereo acuity. STUDY DESIGN AND TEST METHODS In this study 31 male and female tennis players (professionals, young professionals, coaches and former professionals) completed at least 6 training units each with 192 dynamic stereoscopic tasks (N = 1152) within 6 weeks including a 4-option test with different levels of difficulty on a 3D screen at a distance of 5 m. The parameter reaction time and correctness at 15-300 arcseconds was determined. For a more precise representation of the reaction time improvement as a function of the difficulty level, the parameter reaction time increase per stereo disparity reduction (ReST) was defined. RESULTS Reaction time to 15 arcsecond stimuli significantly decreased from 3.9 s to 1.6 s (59%) as a result of digital vision training. The correctness at 30 arcsecond stimuli significantly increased by 23%. DISCUSSION The observed improvement in reaction time during vision training did not result in decreasing correctness when answering the visual questions. This represents an overall improvement in stereo vision. CONCLUSION Dynamic visual training over 6 weeks improves stereoscopic performance including stereo acuity, response time and correctness.
Collapse
Affiliation(s)
- Benedikt L Kutzner
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Deutschland.
| | - Matthias Ring
- Department Artificial Intelligence in Biomedical Engineering (AIBE), Lehrstuhl für Maschinelles Lernen und Datenanalytik, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Carl-Thiersch-Str. 2b, 91052, Erlangen, Deutschland.
| | - Georg Michelson
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Deutschland.
| |
Collapse
|
17
|
Testing the efficacy of vision training for presbyopia: alternating-distance training does not facilitate vision improvement compared to fixed-distance training. Graefes Arch Clin Exp Ophthalmol 2022; 260:1551-1563. [PMID: 35006331 DOI: 10.1007/s00417-021-05548-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Current evidence demonstrates the effectiveness of vision training for presbyopia. We developed and examined a training program to test the effectiveness of alternating focal distances as a training method. METHODS We devised a sharpness discrimination task, in which participants judged whether the stimulus was a sine- or square-wave grating, and tested in two training groups and one control group. In the alternating-distance training group (N = 8, age 49-64), participants had to alternate the fixation between a near- and far-screen. In the fixed-distance training group (N=8, age 47-65), participants fixated on the same-distance target for the whole block. Before and after the 20 training sessions, we measured the near- and far-visual acuity (VA) using the Landolt C and Early Treatment Diabetic Retinopathy Study (ETDRS) tasks and contrast sensitivity using the qCSF procedure. The control group (N=8, age 49-65) participated only in the pre- and post-tests. RESULTS Both training groups showed a significant improvement between the pre- and post-tests in the Landolt C task, and the improvement sizes were not significantly different between the groups. In the ETDRS task, only the fixed-distance training group showed significant improvement, although there was no significant difference between the two groups. Neither group showed improvement in the contrast sensitivity task compared to the control group. CONCLUSION The novel sharpness discrimination task can be an effective training method for presbyopia to prevent the deterioration of VA; however, contrary to popular belief, the effect of alternating-distance training was comparable to or even weaker than that of fixed-distance training.
Collapse
|
18
|
Contò F, Edwards G, Tyler S, Parrott D, Grossman E, Battelli L. Attention network modulation via tRNS correlates with attention gain. eLife 2021; 10:e63782. [PMID: 34826292 PMCID: PMC8626087 DOI: 10.7554/elife.63782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.
Collapse
Affiliation(s)
- Federica Contò
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Grace Edwards
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Department of Psychology, Harvard UniversityCambridgeUnited States
| | - Sarah Tyler
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Butte CollegeOrovilleUnited States
| | - Danielle Parrott
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Emily Grossman
- Department of Cognitive Sciences, University of California, IrvineIrvineUnited States
| | - Lorella Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
- Department of Psychology, Harvard UniversityCambridgeUnited States
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel, Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
19
|
The effect of initial performance on motion perception improvements is modulated by training method. Atten Percept Psychophys 2021; 84:179-187. [PMID: 34657999 DOI: 10.3758/s13414-021-02381-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
Repeated practice of a perceptual task, termed "perceptual learning," can improve visual performance. Previously, the training thresholds were determined in two ways. One is that the stimulus corresponding to a certain level in individually set psychometric functions was selected as the training threshold. The other is that the certain stimulus was selected as the training threshold without consideration of individual differences. However, little is known about how the two training methods modulate perceptual learning. This study aimed to evaluate the effect of initial performance on patterns of motion perceptual learning under two methods-individually set or group averaged-for setting the training threshold. Thirty-six observers were randomly divided into individual and group thresholds. Psychometric functions, with the percentage correct as a function of coherence, were measured using the coherent motion direction identification task. For the individual threshold, each observer was trained at individualized coherence level, targeting 60% correct for each observer's psychometric function. For the group threshold, each observer was trained at one coherence level, targeting 60% correct in the group-averaged psychometric function. The threshold was reduced after training with the method of constant stimulus in both groups, indicating improvements following perceptual learning. Furthermore, observers with a poorer initial performance exhibited greater learning gains independent of the training method. Importantly, the correlation between the initial performance and learning gains was larger in the individual threshold than in the group threshold, suggesting the influence of the initial performance on the learning amount depends on the training method.
Collapse
|
20
|
Marciano H, Gal E, Kimchi R, Hedley D, Goldfarb Y, Bonneh YS. Visual Detection and Decoding Skills of Aerial Photography by Adults with Autism Spectrum Disorder (ASD). J Autism Dev Disord 2021; 52:1346-1360. [PMID: 33948824 DOI: 10.1007/s10803-021-05039-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 11/27/2022]
Abstract
Despite challenges in social communication skills people with ASD often display strengths in visual processing. Aerial photography analysis is an occupation reliant on strong visual processing skills that matches this unique profile. We investigated basic-vision and "real-life" visual tasks in 20 cognitively-able young adults with ASD and 20 typically-developed (TD) "gamers". Basic-vision tests included Visual-Search, Embedded-Figures, and Vigilance; "real-life" tests included aerial-photograph detection and identification. Groups performed equally well, and did not differ significantly on any tasks. The study demonstrates strong visual skills in people with ASD in basic and "real-life" settings, and supports the idea that they may be well suited for employment in occupations that demand high visual perception skills such as aerial photography analysis.
Collapse
Affiliation(s)
- Hadas Marciano
- The Institute of Information Processing and Decision Making (IIPDM), Ergonomics and Human Factors Unit, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, 3498838, Haifa, Israel. .,Stress and Resilience Research Center, Tel-Hai College, Qiryat Shemona, Israel.
| | - Eynat Gal
- Department of Occupational Therapy, University of Haifa, Haifa, Israel
| | - Ruth Kimchi
- Department of Psychology and Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
| | - Darren Hedley
- Olga Tennison Autism Research Centre, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Yael Goldfarb
- Department of Occupational Therapy, University of Haifa, Haifa, Israel
| | - Yoram S Bonneh
- School of Optometry and Vision Science, Faculty of Life Science, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
21
|
Abstract
Perceptual learning has been widely used to study the plasticity of the visual system in adults. Owing to the belief that practice makes perfect, perceptual learning protocols usually require subjects to practice a task thousands of times over days, even weeks. However, we know very little about the relationship between training amount and behavioral improvement. Here, four groups of subjects underwent motion direction discrimination training over 8 days with 40, 120, 360, or 1080 trials per day. Surprisingly, different daily training amounts induced similar improvement across the four groups, and the similarity lasted for at least 2 weeks. Moreover, the group with 40 training trials per day showed more learning transfer from the trained direction to the untrained directions than the group with 1080 training trials per day immediately after training and 2 weeks later. These findings suggest that perceptual learning of motion direction discrimination is not always dependent on the daily training amount and less training leads to more transfer.
Collapse
Affiliation(s)
- Yongqian Song
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China.,
| | - Nihong Chen
- Department of Psychology, Tsinghua University, Beijing, People's Republic of China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, People's Republic of China.,
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China.,
| |
Collapse
|
22
|
Siman-Tov Z, Lev M, Polat U. Binocular summation is affected by crowding and tagging. Sci Rep 2021; 11:4843. [PMID: 33649371 PMCID: PMC7921124 DOI: 10.1038/s41598-021-83510-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/01/2021] [Indexed: 11/09/2022] Open
Abstract
In perceptual crowding, a letter easily recognized on its own, becomes unrecognizable if it is surrounded by other letters, an effect that confers a limit on the visual processing. Models assume that crowding is a hallmark of the periphery but that it is almost absent in the fovea. However, recently it was shown that crowding occurs in the fovea of people with an abnormal development of functional vision (amblyopia), when the stimulus is presented for a very short time. When targets and flankers are dissimilar, the crowding is reduced (tagging). Since a combination of binocular inputs increases the processing load, we investigated whether color tagging the target reduces crowding in the fovea of subjects with normal vision and determined how crowding is combined with binocular vision. The crowding effect at the fovea was significantly reduced by tagging with a color target. Interestingly, whereas binocular summation for a single letter was expected to be about 40%, it was significantly reduced and almost absent under crowding conditions. Our results are consistent with the notion that the crowding effect produces a high processing load on visual processing, which interferes with other processes such as binocular summation. We assume that the tagging effect in our experiment improved the subject's abilities (sensitivity and RT) by creating a "segmentation", i.e., a visual simulated separation between the target letter and the background. Interestingly, tagging the target with a distinct color can eliminate or reduce the crowding effect and consequently, binocular summation recovers.
Collapse
Affiliation(s)
- Ziv Siman-Tov
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
23
|
Asher JM, Hibbard PB. No effect of feedback, level of processing or stimulus presentation protocol on perceptual learning when easy and difficult trials are interleaved. Vision Res 2020; 176:100-117. [DOI: 10.1016/j.visres.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022]
|
24
|
Donovan I, Shen A, Tortarolo C, Barbot A, Carrasco M. Exogenous attention facilitates perceptual learning in visual acuity to untrained stimulus locations and features. J Vis 2020; 20:18. [PMID: 32340029 PMCID: PMC7405812 DOI: 10.1167/jov.20.4.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Visual perceptual learning (VPL) refers to the improvement in performance on a visual task due to practice. A hallmark of VPL is specificity, as improvements are often confined to the trained retinal locations or stimulus features. We have previously found that exogenous (involuntary, stimulus-driven) and endogenous (voluntary, goal-driven) spatial attention can facilitate the transfer of VPL across locations in orientation discrimination tasks mediated by contrast sensitivity. Here, we investigated whether exogenous spatial attention can facilitate such transfer in acuity tasks that have been associated with higher specificity. We trained observers for 3 days (days 2-4) in a Landolt acuity task (Experiment 1) or a Vernier hyperacuity task (Experiment 2), with either exogenous precues (attention group) or neutral precues (neutral group). Importantly, during pre-tests (day 1) and post-tests (day 5), all observers were tested with neutral precues; thus, groups differed only in their attentional allocation during training. For the Landolt acuity task, we found evidence of location transfer in both the neutral and attention groups, suggesting weak location specificity of VPL. For the Vernier hyperacuity task, we found evidence of location and feature specificity in the neutral group, and learning transfer in the attention group-similar improvement at trained and untrained locations and features. Our results reveal that, when there is specificity in a perceptual acuity task, exogenous spatial attention can overcome that specificity and facilitate learning transfer to both untrained locations and features simultaneously with the same training. Thus, in addition to improving performance, exogenous attention generalizes perceptual learning across locations and features.
Collapse
Affiliation(s)
- Ian Donovan
- Department of Psychology and Neural Science, New York University,New York,NY,USA
| | - Angela Shen
- Department of Psychology, New York University,New York,NY,USA
| | | | - Antoine Barbot
- Department of Psychology, New York University,New York,NY,USA
- Center for Neural Science, New York University,New York,NY,USA
| | - Marisa Carrasco
- Department of Psychology, New York University,New York,NY,USA
- Center for Neural Science, New York University,New York,NY,USA
| |
Collapse
|
25
|
Wu D, Zhang P, Li C, Liu N, Jia W, Chen G, Ren W, Sun Y, Xiao W. Perceptual Learning at Higher Trained Cutoff Spatial Frequencies Induces Larger Visual Improvements. Front Psychol 2020; 11:265. [PMID: 32153473 PMCID: PMC7047335 DOI: 10.3389/fpsyg.2020.00265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/04/2020] [Indexed: 12/29/2022] Open
Abstract
It is well known that extensive practice of a perceptual task can improve visual performance, termed perceptual learning. The goal of the present study was to evaluate the dependency of visual improvements on the features of training stimuli (i.e., spatial frequency). Twenty-eight observers were divided into training and control groups. Visual acuity (VA) and contrast sensitivity function (CSF) were measured and compared before and after training. All observers in the training group were trained in a monocular grating detection task near their individual cutoff spatial frequencies. The results showed that perceptual learning induced significant visual improvement, which was dependent on the cutoff spatial frequency, with a greater improvement magnitude and transfer of perceptual learning observed for those trained with higher spatial frequencies. However, VA significantly improved following training but was not related to the cutoff spatial frequency. The results may broaden the understanding of the nature of the learning rule and the neural plasticity of different cortical areas.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Chenxi Li
- School of Nursing, Yueyang Vocational Technical College, Yueyang, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Wuli Jia
- Department of Psychology, School of Education Science, Huaiyin Normal University, Huai'an, China
| | - Ge Chen
- School of Arts and Design, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Weicong Ren
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Yuqi Sun
- Department of Systems Neuroscience, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Wei Xiao
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| |
Collapse
|
26
|
Torres-Sepúlveda W, Mira-Agudelo A, Barrera-Ramírez JF, Petelczyc K, Kolodziejczyk A. Optimization of the Light Sword Lens for Presbyopia Correction. Transl Vis Sci Technol 2020; 9:6. [PMID: 32704426 PMCID: PMC7347505 DOI: 10.1167/tvst.9.3.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose We propose and evaluate the modifications of a light sword lens (LSL) to obtain better performance for distance vision while maintaining good operation for near and intermediate vision. Methods The modifications consisted of assigning angular or circular windows for distance vision while rescaling the LSL profile in the remaining area of the element. The objective performance of the redesigned LSLs was verified numerically by the Strehl ratio and experimentally using correlation coefficients and Michelson contrast. Subjective assessments were provided by monocular visual acuity (VA) and contrast sensitivity (CS) through-focus curves for six patients with paralyzed accommodation. The tested object vergence range was [-4.0, 0.0] diopters (D). All experiments were conducted in a custom-made monocular visual simulator. Results Computational simulations and objective experiments confirmed the better performance of the modified LSL for the imaging of distant objects. The proposed angular and radial modulations resulted in flat VA and CS through-focus curves, indicating more uniform quality of vision with clearly improved distance vision. The VA provided by the modified LSL profiles showed a maximal improvement of 1.5 lines of acuity with respect to the VA provided by the conventional LSL at distance vision. Conclusions Optimized LSLs provide better imaging of distant objects while maintaining a large depth of focus. This results in comparable and acceptable quality for distance, intermediate, and near vision. Therefore, the modified LSLs appear to be promising presbyopia correctors. Translational Relevance The new design of LSL reveals an improved performance for all ranges of vision and becomes a promissory element for a real presbyopia correction in clinical applications.
Collapse
Affiliation(s)
- Walter Torres-Sepúlveda
- Grupo de Óptica y Fotónica, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Alejandro Mira-Agudelo
- Grupo de Óptica y Fotónica, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - John Fredy Barrera-Ramírez
- Grupo de Óptica y Fotónica, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Krzysztof Petelczyc
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warszawa, Poland
| | - Andrzej Kolodziejczyk
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warszawa, Poland
| |
Collapse
|
27
|
Doron R, Sterkin A, Fried M, Yehezkel O, Lev M, Belkin M, Rosner M, Solomon AS, Mandel Y, Polat U. Spatial visual function in anomalous trichromats: Is less more? PLoS One 2019; 14:e0209662. [PMID: 30673711 PMCID: PMC6343896 DOI: 10.1371/journal.pone.0209662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 12/09/2018] [Indexed: 12/03/2022] Open
Abstract
Color deficiency is a common inherited disorder affecting 8% of Caucasian males with anomalous trichromacy (AT); it is the most common type of inherited color vision deficiency. Anomalous trichromacy is caused by alteration of one of the three cone-opsins’ spectral sensitivity; it is usually considered to impose marked limitations for daily life as well as for choice of occupation. Nevertheless, we show here that anomalous trichromat subjects have superior basic visual functions such as visual acuity (VA), contrast sensitivity (CS), and stereo acuity, compared with participants with normal color vision. Both contrast sensitivity and stereo acuity performance were correlated with the severity of color deficiency. We further show that subjects with anomalous trichromacy exhibit a better ability to detect objects camouflaged in natural gray scale figures. The advantages of color-deficient subjects in spatial vision performance could explain the relatively high prevalence of color-vision polymorphism in humans.
Collapse
Affiliation(s)
- Ravid Doron
- Department of Optometry and Vision Science, Hadassah Academic College, Jerusalem, Israel
| | - Anna Sterkin
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Moshe Fried
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Oren Yehezkel
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Maria Lev
- The School of Optometry and Vision Science, The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Michael Belkin
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Mordechai Rosner
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Arieh S. Solomon
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Yossi Mandel
- The School of Optometry and Vision Science, The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Material (BINA), Bar Ilan University, Ramat-Gan, Israel
- * E-mail: (UP); (YM)
| | - Uri Polat
- The School of Optometry and Vision Science, The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- * E-mail: (UP); (YM)
| |
Collapse
|
28
|
Donovan I, Carrasco M. Endogenous spatial attention during perceptual learning facilitates location transfer. J Vis 2018; 18:7. [PMID: 30347094 PMCID: PMC6181190 DOI: 10.1167/18.11.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 11/24/2022] Open
Abstract
Covert attention and perceptual learning enhance perceptual performance. The relation between these two mechanisms is largely unknown. Previously, we showed that manipulating involuntary, exogenous spatial attention during training improved performance at trained and untrained locations, thus overcoming the typical location specificity. Notably, attention-induced transfer only occurred for high stimulus contrasts, at the upper asymptote of the psychometric function (i.e., via response gain). Here, we investigated whether and how voluntary, endogenous attention, the top-down and goal-based type of covert visual attention, influences perceptual learning. Twenty-six participants trained in an orientation discrimination task at two locations: half of participants received valid endogenous spatial precues (attention group), while the other half received neutral precues (neutral group). Before and after training, all participants were tested with neutral precues at two trained and two untrained locations. Within each session, stimulus contrast varied on a trial basis from very low (2%) to very high (64%). Performance was fit by a Weibull psychometric function separately for each day and location. Performance improved for both groups at the trained location, and unlike training with exogenous attention, at the threshold level (i.e., via contrast gain). The neutral group exhibited location specificity: Thresholds decreased at the trained locations, but not at the untrained locations. In contrast, participants in the attention group showed significant location transfer: Thresholds decreased to the same extent at both trained and untrained locations. These results indicate that, similar to exogenous spatial attention, endogenous spatial attention induces location transfer, but influences contrast gain instead of response gain.
Collapse
Affiliation(s)
- Ian Donovan
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|