1
|
Inafuku N, Sowa Y, Kishida T, Sawai S, Ntege EH, Numajiri T, Yamamoto K, Shimizu Y, Mazda O. Investigation of the stemness and wound-healing potential of long-term cryopreserved stromal vascular fraction cells. Regen Ther 2025; 29:128-139. [PMID: 40162021 PMCID: PMC11952815 DOI: 10.1016/j.reth.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Stromal vascular fraction (SVF), a heterogeneous cell population primarily derived from adipose tissue, is widely utilized in regenerative therapies for its wound-healing properties and accessibility. While its immediate availability is advantageous, repeated harvesting can be burdensome, especially for elderly patients, and the regenerative capacity of SVF declines with donor age. Long-term cryopreservation offers a potential solution by allowing the banking of SVF from younger donors for future use; however, the impact of this process on SVF functionality remains elusive. This study investigates the stemness and wound-healing potential of SVF following prolonged cryopreservation. Methods SVF cells were isolated from adipose tissue harvested from twelve patients and cryopreserved for either two months (short-term cryopreserved SVF, S-SVF) or 12-13 years (long-term cryopreserved SVF, L-SVF), with six patients in each group. In vitro assays assessed cell viability and stemness, while in vivo assays evaluated wound-healing ability by administering thawed SVF cells from each group to dorsal wounds in immunodeficient mice, compared with a control group. Non-parametric statistical tests analyzed the differences between groups. Results L-SVF exhibited significantly lower stemness compared to S-SVF. Importantly, the L-SVF group showed significantly improved wound healing compared with the control group, although the wound-healing effect of L-SVF was inferior to that of the S-SVF. Conclusion This study demonstrated that, despite reduced stemness, L-SVF retains partial wound-healing potential after 12-13 years of cryopreservation. These findings highlight the need for optimized cryopreservation protocols to enhance SVF viability and regenerative capacity for clinical applications.
Collapse
Affiliation(s)
- Naoki Inafuku
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Seiji Sawai
- Department of Orthopedics, Jyujyo Takeda Rehabilitation Hospital, Kyoto, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Toshiaki Numajiri
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Kenta Yamamoto
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| |
Collapse
|
2
|
Zhao Y, Liu W, Ding Y, Zhou J, Zhang F, Wang Z, Wang Q, Luan Z. Human umbilical cord-derived mesenchymal stem cells attenate histaminergic effect of intestinal mucosa through bax/bcl-2 pathway in food allergic enteritis. Sci Rep 2025; 15:18442. [PMID: 40419693 DOI: 10.1038/s41598-025-03563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 05/21/2025] [Indexed: 05/28/2025] Open
Abstract
This study was designed to comprehensively elucidate the mechanism by which human umbilical cord-derived mesenchymal stem cell (hUC-MSC) therapy modulates epithelial cell apoptosis and preserves the integrity of the intestinal barrier. A series of meticulously planned in vivo and in vitro experiments were conducted to evaluate the effects of hUC-MSC treatment on various pathological parameters. Our in vivo findings demonstrated that hUC-MSC therapy significantly attenuated pathological damage, as evidenced by decreased tissue necrosis and inflammation. Furthermore, ultrastructural injury to the intestinal epithelium and mast cell infiltration were notably alleviated. With respect to the systemic immune response, serum levels of key immune factors, including IgG, IgE, mouse mast cell protease (mMCP-1), histamine, interleukin (IL)-6, and tumor necrosis factor (TNF)-α, were observably reduced following hUC-MSC treatment. At the molecular level, in jejunal tissue from food allergy mice treated with hUC-MSCs, the expression of IL-6 and TNF-α mRNA was downregulated, whereas the expression of , interferon (IFN)-γ, T-box transcription factor (T-bet) mRNA was upregulated. In vitro experiments using histamine-induced apoptosis in FHs 74 Int cells revealed that hUC-MSC therapy led to a marked decrease in the expression levels of pro-apoptotic proteins Bax, caspase-3, and cleaved caspase-3. Concurrently, significant upregulation of both the anti-apoptotic protein Bcl-2 and tight junction protein Zonula Occludens-1 (ZO-1) was observed. hUC-MSCs substantially improved cellular viability during histamine challenge by suppressing apoptosis (quantified by Annexin V/7-AAD staining) and reducing reactive oxygen species (ROS) generation in FHs 74 Int cells, demonstrating dual cytoprotective effects against histamine-induced toxicity. Our findings provide compelling evidence that hUC-MSCs mediate anti-apoptotic effects via modulation of the Bax/Bcl-2 pathway in histamine-stimulated intestinal mucosa during allergic responses. These results reveal novel therapeutic potential for hUC-MSCs in maintaining epithelial homeostasis and intestinal barrier function in food allergy-associated enteritis, suggesting promising clinical applications for this disorder.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Department of Pediatrics, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Neonatology, Children's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, China
| | - Weipeng Liu
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yabing Ding
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Zhou
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Fan Zhang
- Department of Pediatrics, The Medical Center of PLA General Hospital, Beijing, China
| | - Zhaoyan Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zuo Luan
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China.
- Department of Pediatrics, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Ou J, Li Z, Yao D, Lu C, Zeng X. Multimodal Function of Mesenchymal Stem Cells in Psoriasis Treatment. Biomolecules 2025; 15:737. [PMID: 40427630 PMCID: PMC12109568 DOI: 10.3390/biom15050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/05/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Psoriasis is a chronic inflammatory disease mediated by the innate and adaptive immune systems, and its pathogenesis involves multiple aspects, including abnormal interleukin (IL)-23-Th17 axis, dysfunction of Tregs and other immune cells, and a complex relationship between keratinocytes and the vascular endothelium. Dysfunction of mesenchymal stem cells in psoriatic skin may also be the main reason for the dysregulated inflammatory response. Mesenchymal stem cells, a type of adult stem cells with multidifferentiation potential, are involved in the regulation of multiple links and targets in the pathogenesis of psoriasis. Thus, a detailed exploration of these mechanisms may lead to the development of new therapeutic strategies for the treatment of psoriasis. In this paper, the role of mesenchymal stem cells in skin homeostasis, the pathogenesis of psoriasis, and the multimodal function of using mesenchymal stem cells in the treatment of psoriasis are reviewed.
Collapse
Affiliation(s)
- Jiaxin Ou
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou 510120, China
- National Institute of Stem Cell Clinical Research, Guangdong Hospital of Chinese Medicine, Guangzhou 510120, China
- Lab of Stem Cell Biology and Innovative Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine/Guangdong Academy of Chinese Medicine, Guangzhou 510120, China
| | - Ziqing Li
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou 510120, China
| | - Danni Yao
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou 510120, China
| | - Chuanjian Lu
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou 510120, China
- National Institute of Stem Cell Clinical Research, Guangdong Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Xiang Zeng
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- National Institute of Stem Cell Clinical Research, Guangdong Hospital of Chinese Medicine, Guangzhou 510120, China
- Lab of Stem Cell Biology and Innovative Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine/Guangdong Academy of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou 510120, China
| |
Collapse
|
4
|
Xie Y, Ni X, Wan X, Xu N, Chen L, Lin C, Zheng X, Cai B, Lin Q, Ke R, Huang T, Hu X, Wang B, Shan X. KLF5 enhances CXCL12 transcription in adipose-derived stem cells to promote endothelial progenitor cells neovascularization and accelerate diabetic wound healing. Cell Mol Biol Lett 2025; 30:24. [PMID: 40038579 PMCID: PMC11877965 DOI: 10.1186/s11658-025-00702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) have been shown to accelerate diabetic wound healing by promoting neovascularization, though the underlying mechanisms are not fully understood. This study aims to explore whether ADSCs influence endothelial progenitor cells (EPCs) function to enhance diabetic wound healing. METHODS Human adipose-derived stem cells (hADSCs) were isolated from patient adipose tissue and cultured under normal and high glucose (HG) conditions. RNA sequencing analyzed gene expression, while immunofluorescence validated findings in patient wound tissues. Mouse adipose-derived stem cells (ADSCs) from C57BL/6 mice were evaluated in vitro for their effects on EPCs under HG using EdU, Transwell, and tube formation assays. A diabetic mouse wound model was used to assess ADSCs therapeutic effects via digital imaging, histology, and immunofluorescence. Kruppel-like factor 5 (KLF5), identified via the JASPAR database, was confirmed by immunohistochemistry and immunofluorescence. KLF5 and C-X-C motif chemokine 12 (CXCL12) expression levels were measured by enzyme-linked immunosorbent assay (ELISA), western blot, and quantitative reverse transcription polymerase chain reaction (RT-qPCR), and their relationship was validated through dual-luciferase assays. RESULTS We constructed a neovascularization-related signature (NRS) comprising 75 genes on the basis of differentially expressed genes (DEGs) linked to neovascularization. GO and KEGG analyses revealed that the NRS is primarily involved in vasculature development and receptor-ligand activity. Seven hub genes (CD34, CXCL12, FGF7, FGF18, FGF1, TEK, KIT) were identified and validated. In a diabetic mouse model, CXCL12 knockdown in ADSCs reduced their ability of promoting wound healing and neovascularization. KLF5 expression was lower in patients with diabetic ulcers and diabetic mice wound tissues compared with normal tissues, while ADSCs treatment significantly increased KLF5 expression in diabetic mice wounds. Dual-luciferase reporter assays confirmed KLF5 as an upstream transcription factor of CXCL12. Additionally, knocking down KLF5 in ADSCs impaired their therapeutic effects on diabetic wound healing. In vitro, the addition of exogenous CXCL12 recombinant protein restored EPCs proliferation, migration, and vasculogenic capacity in a high glucose environment after KLF5 silencing in ADSCs. CONCLUSIONS Our findings underscore the pivotal role of KLF5 in enhancing CXCL12 transcription within ADSCs, thereby facilitating EPC-mediated neovascularization and improving diabetic wound healing. Additionally, KLF5 emerges as a promising therapeutic target for accelerating tissue repair in diabetic wounds.
Collapse
Affiliation(s)
- Yunjia Xie
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xuejun Ni
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiaofen Wan
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Nating Xu
- Department of Burn and Plastic Surgery, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Lu Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Xi Zheng
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Beichen Cai
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qian Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ruonan Ke
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Tao Huang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| | - Biao Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Xiuying Shan
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
5
|
Lee J, Var SR, Chen D, Natera-Rodriguez DE, Hassanipour M, West MD, Low WC, Grande AW, Larocca D. Exosomes derived from highly scalable and regenerative human progenitor cells promote functional improvement in a rat model of ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631793. [PMID: 39829810 PMCID: PMC11741374 DOI: 10.1101/2025.01.07.631793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Globally, there are 15 million stroke patients each year who have significant neurological deficits. Today, there are no treatments that directly address these deficits. With demographics shifting to an older population, the problem is worsening. Therefore, it is crucial to develop feasible therapeutic treatments for stroke. In this study, we tested exosomes derived from embryonic endothelial progenitor cells (eEPC) to assess their therapeutic efficacy in a rat model of ischemic stroke. Importantly, we have developed purification methods aimed at producing robust and scalable exosomes suitable for manufacturing clinical grade therapeutic exosomes. We characterized exosome cargos including RNA-seq, miRNAs targets, and proteomic mass spectrometry analysis, and we found that eEPC-exosomes were enhanced with angiogenic miRNAs (i.e., miR-126), anti-inflammatory miRNA (i.e., miR-146), and anti-apoptotic miRNAs (i.e., miR-21). The angiogenic activity of diverse eEPC-exosomes sourced from a panel of eEPC production lines was assessed in vitro by live-cell vascular tube formation and scratch wound assays, showing that several eEPC-exosomes promoted the proliferation, tube formation, and migration in endothelial cells. We further applied the exosomes systemically in a rat middle cerebral artery occlusion (MCAO) model of stroke and tested for neurological recovery (mNSS) after injury in ischemic animals. The mNSS scores revealed that recovery of sensorimotor functioning in ischemic MCAO rats increased significantly after intravenous administration of eEPC-exosomes and outpaced recovery obtained through treatment with umbilical cord stem cells. Finally, we investigated the potential mechanism of eEPC-exosomes in mitigating ischemic stroke injury and inflammation by the expression of neuronal, endothelial, and inflammatory markers. Taken together, these data support the finding that eEPCs provide a valuable source of exosomes for developing scalable therapeutic products and therapies for stroke and other ischemic diseases.
Collapse
Affiliation(s)
- Jieun Lee
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
| | - Susanna R. Var
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Derek Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Mohammad Hassanipour
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
| | - Michael D. West
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
- LifeCraft Sciences, Inc., Alameda, California, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew W. Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dana Larocca
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
- Further Biotechnologies, LLC, Alameda, California, USA
| |
Collapse
|
6
|
Feng Y, Li HP. Optimizing collagen-based biomaterials for periodontal regeneration: clinical opportunities and challenges. Front Bioeng Biotechnol 2024; 12:1469733. [PMID: 39703793 PMCID: PMC11655217 DOI: 10.3389/fbioe.2024.1469733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
Periodontal disease (PD) is a chronic inflammatory condition that affects the teeth and their supporting tissues, ultimately culminating in tooth loss. Currently, treatment modalities, such as systemic and local administration of antibiotics, serve to mitigate the progression of inflammation yet fall short in restoring the original anatomical structure and physiological function of periodontal tissues. Biocompatible material-based tissue engineering seems to be a promising therapeutic strategy for treating PD. Collagen, a component of the extracellular matrix commonly used for tissue engineering, has been regarded as a promising biogenic material for tissue regeneration owing to its high cell-activating and biocompatible properties. The structural and chemical similarities between collagen and components of the oral tissue extracellular matrix render it a promising candidate for dental regeneration. This review explored the properties of collagen and its current applications in periodontal regeneration. We also discussed the recent progression in collagen therapies and preparation techniques. The review also scrutinizes the pros and cons associated with the application of collagen-based biomaterials in PD treatment, aiming to pave the way for future applications of collagen-based biomaterials in the management of PD.
Collapse
Affiliation(s)
- Ye Feng
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong-Peng Li
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| |
Collapse
|
7
|
Jung H, Jung Y, Seo J, Bae Y, Kim HS, Jeong W. Roles of extracellular vesicles from mesenchymal stem cells in regeneration. Mol Cells 2024; 47:100151. [PMID: 39547584 DOI: 10.1016/j.mocell.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are highly valued in regenerative medicine due to their ability to self-renew and differentiate into various cell types. Their therapeutic benefits are primarily due to their paracrine effects, in particular through extracellular vesicles (EVs), which are related to intercellular communication. Recent advances in EV production and extraction technologies highlight the potential of MSC-derived EVs (MSC-EVs) in tissue engineering and regenerative medicine. MSC-EVs offer several advantages over traditional cell therapies, including reduced toxicity and immunogenicity compared with whole MSCs. EVs carrying functional molecules such as growth factors, cytokines, and miRNAs play beneficial roles in tissue repair, fibrosis treatment, and scar prevention by promoting angiogenesis, skin cell migration, proliferation, extracellular matrix remodeling, and reducing inflammation. Despite the potential of MSC-EVs, there are several limitations to their use, including variability in quality, the need for standardized methods, low yield, and concerns about the composition of EVs and the potential risks. Overall, MSC-EVs are a promising alternative to cell-based therapies, and ongoing studies aim to understand their actions and optimize their use for better clinical outcomes in wound healing and skin regeneration.
Collapse
Affiliation(s)
- Hyeseong Jung
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Yuyeon Jung
- Department of Dental Hygiene, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Junsik Seo
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Yeongju Bae
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea; Research Center for Marine Bio-Food and Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Han-Soo Kim
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Wooyoung Jeong
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea; Research Center for Marine Bio-Food and Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea.
| |
Collapse
|
8
|
Moll M, Scheurle A, Nawaz Q, Walker T, Kunisch E, Renkawitz T, Boccaccini AR, Westhauser F. Osteogenic and angiogenic potential of molybdenum-containing mesoporous bioactive glass nanoparticles: An ionic approach to bone tissue engineering. J Trace Elem Med Biol 2024; 86:127518. [PMID: 39236559 DOI: 10.1016/j.jtemb.2024.127518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Biomaterials intended for application in bone tissue engineering (BTE) ideally stimulate osteogenesis and angiogenesis simultaneously, as both mechanisms are of critical importance for successful bone regeneration. Mesoporous bioactive glass nanoparticles (MBGNs) can be tailored towards specific biological needs, for example by addition of ions like Molybdenum (Mo). While Mo has been shown to enhance osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (BMSCs) as well as their ability to form and mature a primitive osseous extracellular matrix (ECM), there are contradictory findings regarding its impact on angiogenesis. In this study, the effects of Mo-MBGNs (mol%: 70 SiO2, 25 CaO, 5 MoO3) on viability, proliferation, osteogenic differentiation, ECM formation and angiogenic response of BMSCs were compared to undoped MBGNs (in mol%: 70 SiO2, 30 CaO) and a control group of BMSCs. Furthermore, a human umbilical vein endothelial cells tube formation assay and a chorioallantoic membrane-assay using fertilized chicken eggs were used to analyze angiogenic properties. Mo-MBGNs were cytocompatible and promoted the proliferation of BMSCs. Furthermore, Mo-MBGNs showed promising osteogenic properties as they enhanced osteogenic differentiation, ECM formation and maturation as well as the gene expression and protein production of relevant osteogenic factors in BMSCs. However, despite the promising outcome on osteogenic properties, the addition of Mo to MBGNs resulted in anti-angiogenic effects. Due to the high relevance of vascularization in-vivo, the anti-angiogenic properties of Mo-MBGNs might hamper their osteogenic properties and therefore might restrict their performance in BTE applications. These limitations can be overcome by the addition of ions with distinct pro-angiogenic properties to the Mo-MBGNs-composition. Due to their promising osteogenic properties, Mo-MBGNs constitute a suitable basis for further research in the field of ionic (growth factor free) BTE.
Collapse
Affiliation(s)
- M Moll
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - A Scheurle
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Q Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - T Walker
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - E Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - T Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - A R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - F Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
9
|
Belousova E, Salikhova D, Maksimov Y, Nebogatikov V, Sudina A, Goldshtein D, Ustyugov A. Proposed Mechanisms of Cell Therapy for Alzheimer's Disease. Int J Mol Sci 2024; 25:12378. [PMID: 39596443 PMCID: PMC11595163 DOI: 10.3390/ijms252212378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis.
Collapse
Affiliation(s)
- Ekaterina Belousova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Diana Salikhova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Yaroslav Maksimov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Anastasiya Sudina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| |
Collapse
|
10
|
Wu Y, Li J, Feng K, Tan A, Gao Y, Chen W, Jia W, Guo X, Kang J. N-CADHERIN +/CD168 - subpopulation determines therapeutic variations of UC-MSCs for cardiac repair after myocardial infarction. Stem Cell Res Ther 2024; 15:423. [PMID: 39533355 PMCID: PMC11559175 DOI: 10.1186/s13287-024-04032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The efficiency of mesenchymal stem cells (MSCs) in treating myocardial infarction (MI) remains inconsistent, which limits their therapeutic applications. Therefore, exploring the mechanism for the inconsistent efficacy of MSCs and identification the criteria for screening MSCs are important for improving the efficiency of MSCs. METHODS Mouse model after MI was utilized to test the role of MSCs from different donors and the functional subpopulation in improving cardiac function. Heterogeneity of MSCs was identified using single-cell RNA sequencing (scRNA-seq) of MSC-GY. GSEA and Scissor analyses were used to find the functional subpopulations of MSCs that promote angiogenesis. The role of functional subpopulations in promoting angiogenesis was verified by detecting the secretory proteins, the ratio of N-CADHERIN+/CD168- subpopulations in MSCs, and the tube formation, migration, and proliferation of HUVECs after treatment with conditional medium (CM) derived from different MSCs. RESULTS We found that umbilical cord-derived MSCs (UC-MSCs) from different donors have varied therapeutic efficacy in MI mice and UC-MSCs with higher therapeutic effectiveness exhibited the most potent pro-angiogenic effects by secreting elevated levels of angiogenesis-related proteins, such as MYDGF, VEGFA, and FGF2. ScRNA-seq of 10,463 UC-MSCs revealed that the N-CADHERIN+/CD168- subpopulation was closely associated with pro-angiogenic effects, and the ratio of this cell subpopulation was positively correlated with the angiogenic potential of MSCs. We also found that the N-CADHERIN+/CD168- subpopulation was the functional subpopulation of MSCs in improving cardiac function of MI mice. CONCLUSIONS Our study identified that the N-CADHERIN+/CD168- subpopulation was the functional subpopulation of MSCs in treating MI, which was essential for the development and utilization of MSCs in MI treatment.
Collapse
Affiliation(s)
- Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ailing Tan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingying Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Hegde M, Singh AK, Kannan S, Kolkundkar U, Seetharam RN. Therapeutic Applications of Engineered Mesenchymal Stromal Cells for Enhanced Angiogenesis in Cardiac and Cerebral Ischemia. Stem Cell Rev Rep 2024; 20:2138-2154. [PMID: 39305405 PMCID: PMC11554727 DOI: 10.1007/s12015-024-10787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 11/12/2024]
Abstract
Ischemic diseases are characterized by obstruction of blood flow to the respective organs, of which ischemia of the heart and brain are the most prominent manifestations with shared pathophysiological mechanisms and risk factors. While most revascularization therapies aim to restore blood flow, this can be challenging due to the limited therapeutic window available for treatment approaches. For a very long time, mesenchymal stromal cells have been used to treat cerebral and cardiac ischemia. However, their application is restricted either by inefficient mode of delivery or the low cell survival rates following implantation into the ischemic microenvironment. Nonetheless, several studies are currently focusing on using of mesenchymal stromal cells engineered to overexpress therapeutic genes as a cell-based gene therapy to restore angiogenesis. This review delves into the utilization of MSCs for angiogenesis and the applications of engineered MSCs for the treatment of cardiac and cerebral ischemia. Moreover, the safety issues related to the genetic modification of MSCs have also been discussed.
Collapse
Affiliation(s)
- Madhavi Hegde
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Suresh Kannan
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Udaykumar Kolkundkar
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
12
|
Bzinkowska A, Sarnowska A. Assessment of the Dose-Dependent Effect of Human Platelet Lysate on Wharton's Jelly-Derived Mesenchymal Stem/Stromal Cells Culture for Manufacturing Protocols. Stem Cells Cloning 2024; 17:21-32. [PMID: 39386994 PMCID: PMC11463174 DOI: 10.2147/sccaa.s471118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Mesenchymal stem/stromal cells (MSCs)-based products have unique characteristics compared to other drugs because of their inherently variable effects depending on culture conditions and microenvironment. In some cases, cells can be produced individually, one batch at a time, for personalized therapy. Therefore, it is very important to optimize both culture conditions and medium composition under Good Manufacturing Practice (GMP) standards. MSCs properties have been exploited as potential cell therapies in regenerative medicine. The main mechanism of their protective and regenerative effect is based on their secretory activity. Simultaneously, their secretome is highly variable and sensitive to any change in environmental conditions. Depending on the type of damage and the target application, it is desirable to enhance the secretion of therapeutic factors. Changes in the modulation of environmental conditions can affect survival, migration ability, and both proliferative and clonogenic potentials. Materials and Methods This study cultured Wharton's jelly-derived MSCs (WJ-MSCs) in media with varying concentrations of human platelet lysate (hPL). Two groups were created: one with low hPL concentration and another with a high hPL concentration. The effects of these different hPL concentrations were analyzed by assessing mesenchymal phenotype retention, secretory activity, clonogenic potential, proliferation, and migration capabilities. Additionally, the secretion levels of key therapeutic factors, such as Hepatocyte Growth Factor (HGF), Brain-Derived Neurotrophic Factor (BDNF), and Chemokine Ligand 2 (CCL-2), were measured. Results WJ-MSCs maintained their mesenchymal phenotype regardless of hPL concentration. However, a higher concentration of hPL promoted cell clonogenic potential, proliferation, migration, and increased secretion of therapeutic factors. Conclusion Adjusting the hPL concentration in the culture medium modulates the response of WJ MSCs and enhances their therapeutic potential. Higher hPL concentration promotes increased secretory activity and improves the regenerative capacity of WJ-MSCs, suggesting a promising strategy to optimize MSC-based therapies.
Collapse
Affiliation(s)
- Aleksandra Bzinkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Carreira M, Pires-Santos M, Correia CR, Nadine S, Mano JF. Liquefied capsules containing nanogrooved microdiscs and umbilical cord-derived cells for bone tissue engineering. OPEN RESEARCH EUROPE 2024; 4:94. [PMID: 39279819 PMCID: PMC11393531 DOI: 10.12688/openreseurope.17000.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Background Surface topography has been shown to influence cell behavior and direct stromal cell differentiation into distinct lineages. Whereas this phenomenon has been verified in two-dimensional cultures, there is an urgent need for a thorough investigation of topography's role within a three-dimensional (3D) environment, as it better replicates the natural cellular environment. Methods A co-culture of Wharton's jelly-derived mesenchymal stem/stromal cells (WJ-MSCs) and human umbilical vein endothelial cells (HUVECs) was encapsulated in a 3D system consisting of a permselective liquefied environment containing freely dispersed spherical microparticles (spheres) or nanogrooved microdiscs (microdiscs). Microdiscs presenting 358 ± 23 nm grooves and 944 ± 49 nm ridges were produced via nanoimprinting of spherical polycaprolactone microparticles between water-soluble polyvinyl alcohol counter molds of nanogrooved templates. Spheres and microdiscs were cultured in vitro with umbilical cord-derived cells in a basal or osteogenic medium within liquefied capsules for 21 days. Results WJ-MSCs and HUVECs were successfully encapsulated within liquefied capsules containing spheres and microdiscs, ensuring high cellular viability. Results show an enhanced osteogenic differentiation in microdiscs compared to spheres, even in basal medium, evidenced by alkaline phosphatase activity and osteopontin expression. Conclusions This work suggests that the topographical features present in microdiscs induce the osteogenic differentiation of adhered WJ-MSCs along the contact guidance, without additional differentiation factors. The developed 3D bioencapsulation system comprising topographical features might be suitable for bone tissue engineering approaches with minimum in vitro manipulation.
Collapse
Affiliation(s)
- Mariana Carreira
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Manuel Pires-Santos
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Clara R Correia
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Sara Nadine
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - João F Mano
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| |
Collapse
|
14
|
Sarvestani M, Rajabzadeh A, Mazoochi T, Samimi M, Navari M, Moradi F. Use of placental-derived mesenchymal stem cells to restore ovarian function and metabolic profile in a rat model of the polycystic ovarian syndrome. BMC Endocr Disord 2024; 24:154. [PMID: 39160512 PMCID: PMC11331624 DOI: 10.1186/s12902-024-01688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disturbance that affects many women worldwide and is characterized by chronic anovulation, hyperandrogenism, and ovarian dysfunction. Placenta-derived mesenchymal stem cells (PDMSCs) are derived from the placenta and have advantages over other sources of MSCs in terms of availability, safety, and immunomodulation. MATERIALS AND METHODS In this experimental study, twenty female Wistar rats were assigned to four groups (n = 5) including control, sham, PCOS, and PCOS+PDMSCs groups. Then, PCOS was induced in the rats through administering letrozole for 21 days. PDMSCs (1 × 106 cells) were injected through the tail vein. Fourteen days after the cell infusion, evaluation was performed on the number of healthy follicles, corpus luteum, and cystic follicles as well as the levels of testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), fasting blood glucose, fasting insulin, and insulin resistance. Moreover, the serum levels of cholesterol, triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were measured. Liver function was also determined by the evaluation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. RESULTS The number of corpus luteum and primordial, primary, secondary, and antral follicles was significantly elevated in the PCOS+PDMSCs group compared to the PCOS group. However, the number of cystic follicles significantly decreased in the PCOS+PDMSCs group. The LH and testosterone levels also decreased significantly, while FSH levels increased significantly in the PCOS+PDMSCs group. The levels of fasting blood glucose, fasting insulin, and insulin resistance notably decreased in the PCOS+PDMSCs group. Moreover, the lipid profile improved in the PCOS+PDMSCs group along with a significant decrease of cholesterol, LDL, and TG and an increase in HDL. The PCOS+PDMSCs group exhibited marked decreases in the AST and ALT levels as well. CONCLUSION The results of this study suggest that PDMSCs are a potential treatment option for PCOS because they can effectively restore folliculogenesis and correct hormonal imbalances, lipid profiles and liver dysfunction in a rat model of PCOS. However, further research is needed to establish the safety and effectiveness of PDMSCs for treating PCOS.
Collapse
Affiliation(s)
- Mojtaba Sarvestani
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Rajabzadeh
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Tahereh Mazoochi
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mansooreh Samimi
- Department of obstetrics and gynecology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Navari
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Faezeh Moradi
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Biobank of Research, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
15
|
Urrata V, Toia F, Cammarata E, Franza M, Montesano L, Cordova A, Di Stefano AB. Characterization of the Secretome from Spheroids of Adipose-Derived Stem Cells (SASCs) and Its Potential for Tissue Regeneration. Biomedicines 2024; 12:1842. [PMID: 39200306 PMCID: PMC11351933 DOI: 10.3390/biomedicines12081842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
INTRODUCTION Spheroids are spherical aggregates of cells that mimic the three-dimensional (3D) architecture of tissues more closely than traditional two dimensional (2D) cultures. Spheroids of adipose stem cells (SASCs) show special features such as high multilineage differentiation potential and immunomodulatory activity. These properties have been attributed to their secreted factors, such as cytokines and growth factors. Moreover, a key role is played by the extracellular vesicles (EVs), which lead a heterogeneous cargo of proteins, mRNAs, and small RNAs that interfere with the pathways of the recipient cells. PURPOSE The aim of this work was to characterize the composition of the secretome and exosome from SASCs and evaluate their regenerative potential. MATERIALS AND METHODS SASCs were extracted from adipose samples of healthy individuals after signing informed consent. The exosomes were isolated and characterized by Dinamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Western blotting analyses. The expression of mRNAs and miRNAs were evaluated through real-time PCR. Lastly, a wound-healing assay was performed to investigate their regenerative potential on different cell cultures. RESULTS The SASCs' exosomes showed an up-regulation of NANOG and SOX2 mRNAs, typical of stemness maintenance, as well as miR126 and miR146a, related to angiogenic and osteogenic processes. Moreover, the exosomes showed a regenerative effect. CONCLUSIONS The SASCs' secretome carried paracrine signals involved in stemness maintenance, pro-angiogenic and pro-osteogenic differentiation, immune system regulation, and regeneration.
Collapse
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| | - Francesca Toia
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Emanuele Cammarata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Mara Franza
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Luigi Montesano
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Adriana Cordova
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| |
Collapse
|
16
|
Wang KH, Chang YH, Ding DC. Bone Marrow Mesenchymal Stem Cells Promote Ovarian Cancer Cell Proliferation via Cytokine Interactions. Int J Mol Sci 2024; 25:6746. [PMID: 38928452 PMCID: PMC11203416 DOI: 10.3390/ijms25126746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are key players in promoting ovarian cancer cell proliferation, orchestrated by the dynamic interplay between cytokines and their interactions with immune cells; however, the intricate crosstalk among BMSCs and cytokines has not yet been elucidated. Here, we aimed to investigate interactions between BMSCs and ovarian cancer cells. We established BMSCs with a characterized morphology, surface marker expression, and tri-lineage differentiation potential. Ovarian cancer cells (SKOV3) cultured with conditioned medium from BMSCs showed increased migration, invasion, and colony formation, indicating the role of the tumor microenvironment in influencing cancer cell behavior. BMSCs promoted SKOV3 tumorigenesis in nonobese diabetic/severe combined immunodeficiency mice, increasing tumor growth. The co-injection of BMSCs increased the phosphorylation of p38 MAPK and GSK-3β in SKOV3 tumors. Co-culturing SKOV3 cells with BMSCs led to an increase in the expression of cytokines, especially MCP-1 and IL-6. These findings highlight the influence of BMSCs on ovarian cancer cell behavior and the potential involvement of specific cytokines in mediating these effects. Understanding these mechanisms will highlight potential therapeutic avenues that may halt ovarian cancer progression.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
17
|
Aleynik DY, Charykova IN, Rubtsova YP, Linkova DD, Farafontova EA, Egorikhina MN. Specific Features of the Functional Activity of Human Adipose Stromal Cells in the Structure of a Partial Skin-Equivalent. Int J Mol Sci 2024; 25:6290. [PMID: 38927998 PMCID: PMC11203524 DOI: 10.3390/ijms25126290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Mesenchymal adipose stromal cells (ASCs) are considered the most promising and accessible material for translational medicine. ASCs can be used independently or within the structure of scaffold-based constructs, as these not only ensure mechanical support, but can also optimize conditions for cell activity, as specific features of the scaffold structure have an impact on the vital activity of the cells. This manuscript presents a study of the secretion and accumulation that occur in a conditioned medium during the cultivation of human ASCs within the structure of such a partial skin-equivalent that is in contact with it. It is demonstrated that the ASCs retain their functional activity during cultivation both within this partial skin-equivalent structure and, separately, on plastic substrates: they proliferate and secrete various proteins that can then accumulate in the conditioned media. Our comparative study of changes in the conditioned media during cultivation of ASCs on plastic and within the partial skin-equivalent structure reveals the different dynamics of the release and accumulation of such secretory factors in the media under a variety of conditions of cell functioning. It is also demonstrated that the optimal markers for assessment of the ASCs' secretory functions in the studied partial skin-equivalent structure are the trophic factors VEGF-A, HGF, MCP, SDF-1α, IL-6 and IL-8. The results will help with the development of an algorithm for preclinical studies of this skin-equivalent in vitro and may be useful in studying various other complex constructs that include ASCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (D.Y.A.); (I.N.C.); (Y.P.R.); (D.D.L.); (E.A.F.)
| |
Collapse
|
18
|
Fadilah NIM, Fauzi MB, Maarof M. Effect of Multiple-Cycle Collections of Conditioned Media from Different Cell Sources towards Fibroblasts in In Vitro Wound Healing Model. Pharmaceutics 2024; 16:767. [PMID: 38931888 PMCID: PMC11207063 DOI: 10.3390/pharmaceutics16060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Conditioned media refers to a collection of the used cell culture media. The goal of this study was to evaluate the possible impacts of different conditioned media collected across a number of cycles on the fibroblast proliferation, migration, and profiles of protein release. Human dermal fibroblast (HDF) cells and Wharton jelly mesenchymal stem cells (WJMSC) were cultured and incubated for 3 days prior to being harvested as cycle-1 using the serum-free media F12:DMEM and DMEM, respectively. The procedures were repeatedly carried out until the fifth cycle of conditioned media collection. An in-vitro scratch assay was conducted to measure the effectiveness of wound healing. Collagen hydrogel was combined separately with both the Wharton jelly-conditioned medium (WJCM) and the dermal fibroblast-conditioned medium (DFCM) in order to evaluate the protein release profile. The conditioned medium from many cycles had a lower level of fibroblast attachment than the control (complete medium); however, the growth rate increased from 100 to 250 h-1, when supplemented with a conditioned medium collected from multiple cycles. The wound scratch assay showed that fibroblast cell migration was significantly increased by repeating cycles up to cycle-5 of DFCM, reaching 98.73 ± 1.11%. This was faster than the rate of migration observed in the cycle-5 of the WJCM group, which was 27.45 ± 5.55%. Collagen hydrogel from multiple cycles of DFCM and WJCM had a similar protein release profile. These findings demonstrate the potential for employing repeated cycles of DFCM- and WJCM-released proteins with collagen hydrogel for applications in wound healing.
Collapse
Affiliation(s)
| | | | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.I.M.F.); (M.B.F.)
| |
Collapse
|
19
|
Carmona-Luque MD, Ballesteros-Ribelles A, Millán-López A, Blanco A, Nogueras S, Herrera C. The Effect of Cell Culture Passage on the Efficacy of Mesenchymal Stromal Cells as a Cell Therapy Treatment. J Clin Med 2024; 13:2480. [PMID: 38731011 PMCID: PMC11084414 DOI: 10.3390/jcm13092480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Background/Objective: Mesenchymal Stromal Cells (MSCs) have been considered a promising treatment for several diseases, such as cardiac injuries. Many studies have analyzed their functional properties; however, few studies have characterized MSCs through successive culture passages. The main objective of this work was to analyze the phenotype and functionality of MSCs isolated from two different sources in five culture passages to determine if the culture passage might influence the efficacy of MSCs as a cell therapy treatment. Methods: Bone Marrow (BM)-MSCs were harvested from the femur of Wistar rats (n = 17) and Adipose Tissue(AT)-MSCs were isolated from inguinal fat (n = 17). MSCs were cultured for five culture passages, and the immunophenotype was analyzed by flow cytometry, the functionality was characterized by adipogenic, osteogenic, and chondrogenic differentiation assays, and cytokine secretion capacity was determined through the quantification of the Vascular Endothelial Growth-Factor, Fibroblast Growth-Factor2, and Transforming Growth-Factorβ1 in the cell supernatant. The ultrastructure of MSCs was analyzed by transmission electron microscopy. Results: BM-MSCs exhibited typical phenotypes in culture passages two, four, and five, and their differentiation capacity showed an irregular profile throughout the five culture passages analyzed. AT-MSCs showed a normal phenotype and differentiation capacity in all the culture passages. BM- and AT-MSCs did not modify their secretion ability or ultrastructural morphology. Conclusions: Throughout the culture passages, BM-MSCs, but not AT-MSCs, exhibited changes in their functional and phenotypic characteristic that might affect their efficacy as a cell therapy treatment. Therefore, the culture passage selected should be considered for the application of MSCs as a cell therapy treatment.
Collapse
Affiliation(s)
- MDolores Carmona-Luque
- Cell Therapy Group, Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.B.-R.); (A.M.-L.); (C.H.)
| | - Antonio Ballesteros-Ribelles
- Cell Therapy Group, Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.B.-R.); (A.M.-L.); (C.H.)
| | - Alejandro Millán-López
- Cell Therapy Group, Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.B.-R.); (A.M.-L.); (C.H.)
| | - Alfonso Blanco
- Anatomy and Comparative Pathology Department, University of Cordoba, 14014 Cordoba, Spain
| | - Sonia Nogueras
- Cell Therapy Group, Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.B.-R.); (A.M.-L.); (C.H.)
| | - Concha Herrera
- Cell Therapy Group, Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.B.-R.); (A.M.-L.); (C.H.)
- Department of Hematology, Reina Sofia University Hospital, University of Cordoba, 14014 Cordoba, Spain
| |
Collapse
|
20
|
Taheri M, Tehrani HA, Dehghani S, Rajabzadeh A, Alibolandi M, Zamani N, Arefian E, Ramezani M. Signaling crosstalk between mesenchymal stem cells and tumor cells: Implications for tumor suppression or progression. Cytokine Growth Factor Rev 2024; 76:30-47. [PMID: 38341337 DOI: 10.1016/j.cytogfr.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stem cells (MSCs) have been extensively used in various therapeutic applications over the last two decades, particularly in regenerative medicine and cancer treatment. MSCs have the ability to differentiate into mesodermal and non-mesodermal lineages, which makes them a popular choice in tissue engineering and regenerative medicine. Studies have shown that MSCs have inherent tumor-suppressive properties and can affect the behavior of multiple cells contributing to tumor development. Additionally, MSCs possess a tumor tropism property and have a hypoimmune nature. The intrinsic features of MSCs along with their potential to undergo genetic manipulation and be loaded with various anticancer therapeutics have motivated researchers to use them in different cancer therapy approaches without considering their complex dynamic biological aspects. However, despite their desirable features, several reports have shown that MSCs possess tumor-supportive properties. These contradictory results signify the sophisticated nature of MSCs and warn against the potential therapeutic applications of MSCs. Therefore, researchers should meticulously consider the biological properties of MSCs in preclinical and clinical studies to avoid any undesirable outcomes. This manuscript reviews preclinical studies on MSCs and cancer from the last two decades, discusses how MSC properties affect tumor progression and explains the mechanisms behind tumor suppressive and supportive functions. It also highlights critical cellular pathways that could be targeted in future studies to improve the safety and effectiveness of MSC-based therapies for cancer treatment. The insights obtained from this study will pave the way for further clinical research on MSCs and development of more effective cancer treatments.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rajabzadeh
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nina Zamani
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Zhu D, Hu Y, Kong X, Luo Y, Zhang Y, Wu Y, Tan J, Chen J, Xu T, Zhu L. Enhanced burn wound healing by controlled-release 3D ADMSC-derived exosome-loaded hyaluronan hydrogel. Regen Biomater 2024; 11:rbae035. [PMID: 38628545 PMCID: PMC11018541 DOI: 10.1093/rb/rbae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/23/2024] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
Adipose mesenchymal stem cell (ADMSC)-derived exosomes (ADMSC-Exos) have shown great potential in regenerative medicine and been evidenced benefiting wound repair such as burns. However, the low yield, easy loss after direct coating, and no suitable loading system to improve their availability and efficacy hinder their clinical application for wound healing. And few studies focused on the comparison of biological functions between exosomes derived from different culture techniques, especially in exosome-releasing hydrogel system. Therefore, we designed a high-performance exosome controllable releasing hydrogel system for burn wound healing, namely loading 3D-printed microfiber culture-derived exosomes in a highly biocompatible hyaluronic acid (HA). In this project, we compared the biological functions in vitro and in a burn model among exosomes derived from the conventional two-dimensional (2D) plate culture (2D-Exos), microcarrier culture (2.5D-Exos), and 3D-printed microfiber culture (3D-Exos). Results showed that compared with 2D-Exos and 2.5D-Exos, 3D-Exos promoted HACATs and HUVECs cell proliferation and migration more significantly. Additionally, 3D-Exos had stronger angiogenesis-promoting effects in tube formation of (HUVECs) cells. Moreover, we found HA-loaded 3D-Exos showed better burn wound healing promotion compared to 2D-Exos and 2.5D-Exos, including accelerated burn wound healing rate and better collagen remodeling. The study findings reveal that the HA-loaded, controllable-release 3D-Exos repair system distinctly augments therapeutic efficacy in terms of wound healing, while concurrently introducing a facile application approach. This system markedly bolsters the exosomal loading efficiency, provides a robust protective milieu, and potentiates the inherent biological functionalities of the exosomes. Our findings provide a rationale for more efficient utilization of high-quality and high-yield 3D exosomes in the future, and a novel strategy for healing severe burns.
Collapse
Affiliation(s)
- Delong Zhu
- Department of Dermatology & Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Ying Hu
- Department of Dermatology & Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Xiangkai Kong
- Department of Dermatology & Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Yuansen Luo
- Department of the Second Plastic Surgery, The First People’s Hospital of Foshan, Foshan 528000, China
| | - Yi Zhang
- Department of Research and Development, Huaqing Zhimei (Shenzhen) Biotechnology Co., Ltd, Shenzhen 518107, People’s Republic of China
| | - Yu Wu
- Department of Dermatology & Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Jiameng Tan
- Department of Dermatology & Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Jianwei Chen
- Center for Bio-Intelligent Manufacturing and Living Matter Bioprinting, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, People’s Republic of China
| | - Tao Xu
- Center for Bio-Intelligent Manufacturing and Living Matter Bioprinting, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, People’s Republic of China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People’s Republic of China
| | - Lei Zhu
- Department of Dermatology & Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
22
|
Vatandoust D, Ahmadi H, Amini A, Mostafavinia A, Fathabady FF, Moradi A, Fridoni M, Hamblin MR, Ebrahimpour-Malekshah R, Chien S, Bayat M. Photobiomodulation preconditioned diabetic adipose derived stem cells with additional photobiomodulation: an additive approach for enhanced wound healing in diabetic rats with a delayed healing wound. Lasers Med Sci 2024; 39:86. [PMID: 38438583 DOI: 10.1007/s10103-024-04034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
In this preclinical investigation, we examined the effects of combining preconditioned diabetic adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation (PBM) on a model of infected ischemic delayed healing wound (injury), (IIDHWM) in rats with type I diabetes (TIDM). During the stages of wound healing, we examined multiple elements such as stereology, macrophage polarization, and the mRNA expression levels of stromal cell-derived factor (SDF)-1α, vascular endothelial growth factor (VEGF), hypoxia-induced factor 1α (HIF-1α), and basic fibroblast growth factor (bFGF) to evaluate proliferation and inflammation. The rats were grouped into: (1) control group; (2) diabetic-stem cells were transversed into the injury site; (3) diabetic-stem cells were transversed into the injury site then the injury site exposed to PBM; (4) diabetic stem cells were preconditioned with PBM and implanted into the wound; (5) diabetic stem cells were preconditioned with PBM and transferred into the injury site, then the injury site exposed additional PBM. While on both days 4, and 8, there were advanced histological consequences in groups 2-5 than in group 1, we found better results in groups 3-5 than in group 2 (p < 0.05). M1 macrophages in groups 2-5 were lower than in group 1, while groups 3-5 were reduced than in group 2 (p < 0.01). M2 macrophages in groups 2-5 were greater than in group 1, and groups 3-5 were greater than in group 2. (p ≤ 0.001). Groups 2-5 revealed greater expression levels of bFGF, VEGF, SDF- 1α, and HIF- 1α genes than in group 1 (p < 0.001). Overall group 5 had the best results for histology (p < 0.05), and macrophage polarization (p < 0.001). AD-MSC, PBM, and AD-MSC + PBM treatments all enhanced the proliferative stage of injury repairing in the IIDHWM in TIDM rats. While AD-MSC + PBM was well than the single use of AD-MSC or PBM, the best results were achieved with PBM preconditioned AD-MSC, plus additional PBM of the injury.
Collapse
Affiliation(s)
- Dorsa Vatandoust
- Student Research Committee at Shahid Beheshti University of Medical Sciences (SBMU) in, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences, Arabi Ave, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences, Arabi Ave, Iran.
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Aza University in Tehran, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Student Research Committee at Shahid Beheshti University of Medical Sciences (SBMU) in, Tehran, Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences, Arabi Ave, Iran
| | - Mohammadjavad Fridoni
- Department of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Michael R Hamblin
- Laser Research Centre at the Faculty of Health Science, University of Johannesburg in Doornfontein 2028, Johannesburg, South Africa
| | | | - Sufan Chien
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA.
| | - Mohammad Bayat
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA.
| |
Collapse
|
23
|
Zhang S, Mulder C, Riddle S, Song R, Yue D. Mesenchymal stromal/stem cells and bronchopulmonary dysplasia. Front Cell Dev Biol 2023; 11:1247339. [PMID: 37965579 PMCID: PMC10642488 DOI: 10.3389/fcell.2023.1247339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication in preterm infants, leading to chronic respiratory disease. There has been an improvement in perinatal care, but many infants still suffer from impaired branching morphogenesis, alveolarization, and pulmonary capillary formation, causing lung function impairments and BPD. There is an increased risk of respiratory infections, pulmonary hypertension, and neurodevelopmental delays in infants with BPD, all of which can lead to long-term morbidity and mortality. Unfortunately, treatment options for Bronchopulmonary dysplasia are limited. A growing body of evidence indicates that mesenchymal stromal/stem cells (MSCs) can treat various lung diseases in regenerative medicine. MSCs are multipotent cells that can differentiate into multiple cell types, including lung cells, and possess immunomodulatory, anti-inflammatory, antioxidative stress, and regenerative properties. MSCs are regulated by mitochondrial function, as well as oxidant stress responses. Maintaining mitochondrial homeostasis will likely be key for MSCs to stimulate proper lung development and regeneration in Bronchopulmonary dysplasia. In recent years, MSCs have demonstrated promising results in treating and preventing bronchopulmonary dysplasia. Studies have shown that MSC therapy can reduce inflammation, mitochondrial impairment, lung injury, and fibrosis. In light of this, MSCs have emerged as a potential therapeutic option for treating Bronchopulmonary dysplasia. The article explores the role of MSCs in lung development and disease, summarizes MSC therapy's effectiveness in treating Bronchopulmonary dysplasia, and delves into the mechanisms behind this treatment.
Collapse
Affiliation(s)
- Shuqing Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Cassidy Mulder
- Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Deng Y, Li Y, Chu Z, Dai C, Ge J. Exosomes from umbilical cord-derived mesenchymal stem cells combined with gelatin methacryloyl inhibit vein graft restenosis by enhancing endothelial functions. J Nanobiotechnology 2023; 21:380. [PMID: 37848990 PMCID: PMC10583421 DOI: 10.1186/s12951-023-02145-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The prevalence of coronary artery disease is increasing. As a common treatment method, coronary artery bypass transplantation surgery can improve heart problems while also causing corresponding complications. Venous graft restenosis is one of the most critical and intractable complications. Stem cell-derived exosomes could have therapeutic promise and value. However, as exosomes alone are prone to inactivation and easy removal, this therapeutic method has not been widely used in clinical practice. Methacrylated gelatin (GelMA) is a polymer with a loose porous structure that maintains the biological activity of the exosome and can control its slow release in vivo. In this study, we combined human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) and GelMA to explore their effects and underlying mechanisms in inhibiting venous graft restenosis. RESULTS Human umbilical cord mesenchymal stem cells (hUCMSCs) were appraised using flow cytometry. hUCMSC-Exos were evaluated via transmission electron microscopy and western blotting. hUCMSC-Exos embedded in a photosensitive GelMA hydrogel (GelMA-Exos) were applied topically around venous grafts in a rat model of cervical arteriovenous transplantation, and their effects on graft reendothelialization and restenosis were evaluated through ultrasonic, histological, and immunofluorescence examinations. Additionally, we analyzed the material properties, cellular reactions, and biocompatibility of the hydrogels. We further demonstrated that the topical application of GelMA-Exos could accelerate reendothelialization after autologous vein transplantation and reduce restenosis in the rat model. Notably, GelMA-Exos caused neither damage to major organs in mice nor excessive immune rejection. The uptake of GelMA-Exos by endothelial cells stimulated cell proliferation and migration in vitro. A bioinformatic analysis of existing databases revealed that various cell proliferation and apoptosis pathways, including the mammalian target of rapamycin (mTOR)-phosphoinositide 3-kinase (PI3K)-AKT signaling pathways, might participate in the underlying regulatory mechanism. CONCLUSIONS Compared with the tail vein injection of hUCMSC-Exos, the local application of a mixture of hUCMSC-Exos and GelMA was more effective in promoting endothelial repair of the vein graft and inhibiting restenosis. Therefore, the proposed biomaterial-based therapeutic approach is a promising treatment for venous graft restenosis.
Collapse
Affiliation(s)
- Yuhang Deng
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yiming Li
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhuyang Chu
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chun Dai
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jianjun Ge
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
25
|
Skovronova R, Scaccia E, Calcat-I-Cervera S, Bussolati B, O'Brien T, Bieback K. Adipose stromal cells bioproducts as cell-free therapies: manufacturing and therapeutic dose determine in vitro functionality. J Transl Med 2023; 21:723. [PMID: 37840135 PMCID: PMC10577984 DOI: 10.1186/s12967-023-04602-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EV) are considered a cell-free alternative to mesenchymal stromal cell (MSC) therapy. Numerous reports describe the efficacy of EV in conferring immunomodulation and promoting angiogenesis, yet others report these activities to be conveyed in EV-free bioproducts. We hypothesized that this discrepancy may depend either on the method of isolation or rather the relative impact of the individual bioactive components within the MSC secretome. METHODS To answer this question, we performed an inter-laboratory study evaluating EV generated from adipose stromal cells (ASC) by either sequential ultracentrifugation (UC) or size-exclusion chromatography (SEC). The effect of both EV preparations on immunomodulation and angiogenesis in vitro was compared to that of the whole secretome and of the EV-free protein fraction after SEC isolation. RESULTS In the current study, neither the EV preparations, the secretome or the protein fraction were efficacious in inhibiting mitogen-driven T cell proliferation. However, EV generated by SEC stimulated macrophage phagocytic activity to a similar extent as the secretome. In turn, tube formation and wound healing were strongly promoted by the ASC secretome and protein fraction, but not by EV. Within the secretome/protein fraction, VEGF was identified as a potential driver of angiogenesis, and was absent in both EV preparations. CONCLUSIONS Our data indicate that the effects of ASC on immunomodulation and angiogenesis are EV-independent. Specific ASC-EV effects need to be dissected for their use as cell-free therapeutics.
Collapse
Affiliation(s)
- Renata Skovronova
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Eleonora Scaccia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service, Baden-Württemberg-Hessen, Friedrich-Ebert-Str.107, 68167, Mannheim, Germany
| | - Sandra Calcat-I-Cervera
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Timothy O'Brien
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service, Baden-Württemberg-Hessen, Friedrich-Ebert-Str.107, 68167, Mannheim, Germany.
- Mannheim Institute of Innate Immunoscience, Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
26
|
Lee J, Sternberg H, Bignone PA, Murai J, Malik NN, West MD, Larocca D. Clonal and Scalable Endothelial Progenitor Cell Lines from Human Pluripotent Stem Cells. Biomedicines 2023; 11:2777. [PMID: 37893151 PMCID: PMC10604251 DOI: 10.3390/biomedicines11102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) can be used as a renewable source of endothelial cells for treating cardiovascular disease and other ischemic conditions. Here, we present the derivation and characterization of a panel of distinct clonal embryonic endothelial progenitor cells (eEPCs) lines that were differentiated from human embryonic stem cells (hESCs). The hESC line, ESI-017, was first partially differentiated to produce candidate cultures from which eEPCs were cloned. Endothelial cell identity was assessed by transcriptomic analysis, cell surface marker expression, immunocytochemical marker analysis, and functional analysis of cells and exosomes using vascular network forming assays. The transcriptome of the eEPC lines was compared to various adult endothelial lines as well as various non-endothelial cells including both adult and embryonic origins. This resulted in a variety of distinct cell lines with functional properties of endothelial cells and strong transcriptomic similarity to adult endothelial primary cell lines. The eEPC lines, however, were distinguished from adult endothelium by their novel pattern of embryonic gene expression. We demonstrated eEPC line scalability of up to 80 population doublings (pd) and stable long-term expansion of over 50 pd with stable angiogenic properties at late passage. Taken together, these data support the finding that hESC-derived clonal eEPC lines are a potential source of scalable therapeutic cells and cell products for treating cardiovascular disease. These eEPC lines offer a highly promising resource for the development of further preclinical studies aimed at therapeutic interventions.
Collapse
Affiliation(s)
- Jieun Lee
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| | - Hal Sternberg
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| | - Paola A. Bignone
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| | - James Murai
- Advanced Cell Technology, Alameda, CA 94502, USA
| | - Nafees N. Malik
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| | | | - Dana Larocca
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| |
Collapse
|
27
|
Lee T, Hwang S, Seo D, Cho S, Yang S, Kim H, Kim J, Uh Y. Comparative Analysis of Biological Signatures between Freshly Preserved and Cryo-Preserved Bone Marrow Mesenchymal Stem Cells. Cells 2023; 12:2355. [PMID: 37830568 PMCID: PMC10571833 DOI: 10.3390/cells12192355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into multiple connective tissue lineages, including osteoblasts, chondrocytes, and adipocytes. MSCs secrete paracrine molecules that are associated with immunomodulation, anti-fibrotic effects, and angiogenesis. Due to their orchestrative potential, MSCs have been therapeutically applied for several diseases. An important aspect of this process is the delivery of high-quality MSCs to patients at the right time, and cryo-biology and cryo-preservation facilitate the advancement of the logistics thereof. This study aimed to compare the biological signatures between freshly preserved and cryo-preserved MSCs by using big data sourced from the Pharmicell database. From 2011 to 2022, data on approximately 2300 stem cell manufacturing cases were collected. The dataset included approximately 60 variables, including viability, population doubling time (PDT), immunophenotype, and soluble paracrine molecules. In the dataset, 671 cases with no missing data were able to receive approval from an Institutional Review Board and were analyzed. Among the 60 features included in the final dataset, 20 were selected by experts and abstracted into two features by using a principal component analysis. Circular clustering did not introduce any differences between the two MSC preservation methods. This pattern was also observed when using viability, cluster of differentiation (CD) markers, and paracrine molecular indices as inputs for unsupervised analysis. The individual average PDT and cell viability at most passages did not differ according to the preservation method. Most immunophenotypes (except for the CD14 marker) and paracrine molecules did not exhibit different mean levels or concentrations between the frozen and unfrozen MSC groups. Collectively, the biochemical signatures of the cryo-preserved and unfrozen bone marrow MSCs were comparable.
Collapse
Affiliation(s)
- Taesic Lee
- Division of Data Mining and Computational Biology, Regenerative Medicine Research Center, Wonju Severance Christian Hospital, Wonju 26426, Republic of Korea;
- Department of Family Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Sangwon Hwang
- Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Dongmin Seo
- Department of Medical Information, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Sungyoon Cho
- Pharmicell Co., Ltd., Seongnam 13229, Republic of Korea; (S.C.); (S.Y.); (H.K.)
| | - Sunja Yang
- Pharmicell Co., Ltd., Seongnam 13229, Republic of Korea; (S.C.); (S.Y.); (H.K.)
| | - Hyunsoo Kim
- Pharmicell Co., Ltd., Seongnam 13229, Republic of Korea; (S.C.); (S.Y.); (H.K.)
| | - Jangyoung Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
28
|
Vargas-Rodríguez P, Cuenca-Martagón A, Castillo-González J, Serrano-Martínez I, Luque RM, Delgado M, González-Rey E. Novel Therapeutic Opportunities for Neurodegenerative Diseases with Mesenchymal Stem Cells: The Focus on Modulating the Blood-Brain Barrier. Int J Mol Sci 2023; 24:14117. [PMID: 37762420 PMCID: PMC10531435 DOI: 10.3390/ijms241814117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders encompass a broad spectrum of profoundly disabling situations that impact millions of individuals globally. While their underlying causes and pathophysiology display considerable diversity and remain incompletely understood, a mounting body of evidence indicates that the disruption of blood-brain barrier (BBB) permeability, resulting in brain damage and neuroinflammation, is a common feature among them. Consequently, targeting the BBB has emerged as an innovative therapeutic strategy for addressing neurological disorders. Within this review, we not only explore the neuroprotective, neurotrophic, and immunomodulatory benefits of mesenchymal stem cells (MSCs) in combating neurodegeneration but also delve into their recent role in modulating the BBB. We will investigate the cellular and molecular mechanisms through which MSC treatment impacts primary age-related neurological conditions like Alzheimer's disease, Parkinson's disease, and stroke, as well as immune-mediated diseases such as multiple sclerosis. Our focus will center on how MSCs participate in the modulation of cell transporters, matrix remodeling, stabilization of cell-junction components, and restoration of BBB network integrity in these pathological contexts.
Collapse
Affiliation(s)
- Pablo Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Alejandro Cuenca-Martagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| |
Collapse
|
29
|
Yang Y, Wu Y, Yang D, Neo SH, Kadir ND, Goh D, Tan JX, Denslin V, Lee EH, Yang Z. Secretive derived from hypoxia preconditioned mesenchymal stem cells promote cartilage regeneration and mitigate joint inflammation via extracellular vesicles. Bioact Mater 2023; 27:98-112. [PMID: 37006826 PMCID: PMC10063382 DOI: 10.1016/j.bioactmat.2023.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Secretome derived from mesenchymal stem cells (MSCs) have profound effects on tissue regeneration, which could become the basis of future MSCs therapies. Hypoxia, as the physiologic environment of MSCs, has great potential to enhance MSCs paracrine therapeutic effect. In our study, the paracrine effects of secretome derived from MSCs preconditioned in normoxia and hypoxia was compared through both in vitro functional assays and an in vivo rat osteochondral defect model. Specifically, the paracrine effect of total EVs were compared to that of soluble factors to characterize the predominant active components in the hypoxic secretome. We demonstrated that hypoxia conditioned medium, as well as the corresponding EVs, at a relatively low dosage, were efficient in promoting the repair of critical-sized osteochondral defects and mitigated the joint inflammation in a rat osteochondral defect model, relative to their normoxia counterpart. In vitro functional test shows enhancement through chondrocyte proliferation, migration, and matrix deposition, while inhibit IL-1β-induced chondrocytes senescence, inflammation, matrix degradation, and pro-inflammatory macrophage activity. Multiple functional proteins, as well as a change in EVs' size profile, with enrichment of specific EV-miRNAs were detected with hypoxia preconditioning, implicating complex molecular pathways involved in hypoxia pre-conditioned MSCs secretome generated cartilage regeneration.
Collapse
|
30
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
31
|
Wang X, Jin L, Liu W, Stingelin L, Zhang P, Tan Z. Construction of engineered 3D islet micro-tissue using porcine decellularized ECM for the treatment of diabetes. Biomater Sci 2023; 11:5517-5532. [PMID: 37387616 DOI: 10.1039/d3bm00346a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Islet transplantation improves diabetes patients' long-term blood glucose control, but its success and utility are limited by cadaver availability, quality, and considerable islet loss after transplantation due to ischemia and inadequate angiogenesis. This study used adipose, pancreatic, and liver tissue decellularized extracellular matrix (dECM) hydrogels in an effort to recapitulate the islet sites inside the pancreas in vitro, and successfully generated viable and functional heterocellular islet micro-tissues using islet cells, human umbilical vein endothelial cells, and adipose-derived mesenchymal stem cells. The three-dimensional (3D) islet micro-tissues maintained prolonged viability and normal secretory function, and showed high drug sensitivity in drug testing. Meanwhile, the 3D islet micro-tissues significantly enhanced survival and graft function in a mouse model of diabetes. These supportive 3D physiomimetic dECM hydrogels can be used not only for islet micro-tissue culture in vitro, but also have great promise for islet transplantation for the treatment of diabetes.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of Infectious Diseases, Third Xiangya Hospital, Central South University, Changsha, 410008, China.
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Lijuan Jin
- College of Biology, Hunan University, Changsha, 410082, China.
- Shenzhen Institute, Hunan University, Shenzhen, 518000, China.
| | - Wenyu Liu
- College of Biology, Hunan University, Changsha, 410082, China.
- Shenzhen Institute, Hunan University, Shenzhen, 518000, China.
| | - Lukas Stingelin
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Pan Zhang
- Department of Infectious Diseases, Third Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha, 410082, China.
- Shenzhen Institute, Hunan University, Shenzhen, 518000, China.
| |
Collapse
|
32
|
Li Y, Zhong Z, Xu C, Wu X, Li J, Tao W, Wang J, Du Y, Zhang S. 3D micropattern force triggers YAP nuclear entry by transport across nuclear pores and modulates stem cells paracrine. Natl Sci Rev 2023; 10:nwad165. [PMID: 37457331 PMCID: PMC10347367 DOI: 10.1093/nsr/nwad165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 07/18/2023] Open
Abstract
Biophysical cues of the cellular microenvironment tremendously influence cell behavior by mechanotransduction. However, it is still unclear how cells sense and transduce the mechanical signals from 3D geometry to regulate cell function. Here, the mechanotransduction of human mesenchymal stem cells (MSCs) triggered by 3D micropatterns and its effect on the paracrine of MSCs are systematically investigated. Our findings show that 3D micropattern force could influence the spatial reorganization of the cytoskeleton, leading to different local forces which mediate nucleus alteration such as orientation, morphology, expression of Lamin A/C and chromatin condensation. Specifically, in the triangular prism and cuboid micropatterns, the ordered F-actin fibers are distributed over and fully transmit compressive forces to the nucleus, which results in nuclear flattening and stretching of nuclear pores, thus enhancing the nuclear import of YES-associated protein (YAP). Furthermore, the activation of YAP significantly enhances the paracrine of MSCs and upregulates the secretion of angiogenic growth factors. In contrast, the fewer compressive forces on the nucleus in cylinder and cube micropatterns cause less YAP entering the nucleus. The skin repair experiment provides the first in vivo evidence that enhanced MSCs paracrine by 3D geometry significantly promotes tissue regeneration. The current study contributes to understanding the in-depth mechanisms of mechanical signals affecting cell function and provides inspiration for innovative design of biomaterials.
Collapse
Affiliation(s)
| | | | - Cunjing Xu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Xiaodan Wu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Jiaqi Li
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Weiyong Tao
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | | | | |
Collapse
|
33
|
Suzdaltseva Y, Kiselev SL. Mesodermal Derivatives of Pluripotent Stem Cells Route to Scarless Healing. Int J Mol Sci 2023; 24:11945. [PMID: 37569321 PMCID: PMC10418846 DOI: 10.3390/ijms241511945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Scar formation during normal tissue regeneration in adults may result in noticeable cosmetic and functional defects and have a significant impact on the quality of life. In contrast, fetal tissues in the mid-gestation period are known to be capable of complete regeneration with the restitution of the initial architecture, organization, and functional activity. Successful treatments that are targeted to minimize scarring can be realized by understanding the cellular and molecular mechanisms of fetal wound regeneration. However, such experiments are limited by the inaccessibility of fetal material for comparable studies. For this reason, the molecular mechanisms of fetal regeneration remain unknown. Mesenchymal stromal cells (MSCs) are central to tissue repair because the molecules they secrete are involved in the regulation of inflammation, angiogenesis, and remodeling of the extracellular matrix. The mesodermal differentiation of human pluripotent stem cells (hPSCs) recapitulates the sequential steps of embryogenesis in vitro and provides the opportunity to generate the isogenic cell models of MSCs corresponding to different stages of human development. Further investigation of the functional activity of cells from stromal differon in a pro-inflammatory microenvironment will procure the molecular tools to better understand the fundamental mechanisms of fetal tissue regeneration. Herein, we review recent advances in the generation of clonal precursors of primitive mesoderm cells and MSCs from hPSCs and discuss critical factors that determine the functional activity of MSCs-like cells in a pro-inflammatory microenvironment in order to identify therapeutic targets for minimizing scarring.
Collapse
Affiliation(s)
- Yulia Suzdaltseva
- Department of Epigenetics, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119333 Moscow, Russia;
| | | |
Collapse
|
34
|
Clavellina D, Balkan W, Hare JM. Stem cell therapy for acute myocardial infarction: Mesenchymal Stem Cells and induced Pluripotent Stem Cells. Expert Opin Biol Ther 2023; 23:951-967. [PMID: 37542462 PMCID: PMC10837765 DOI: 10.1080/14712598.2023.2245329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION Acute myocardial infarction (AMI) remains a leading cause of death in the United States. The limited capacity of cardiomyocytes to regenerate and the restricted contractility of scar tissue after AMI are not addressed by current pharmacologic interventions. Mesenchymal stem/stromal cells (MSCs) have emerged as a promising therapeutic approach due to their low antigenicity, ease of harvesting, and efficacy and safety in preclinical and clinical studies, despite their low survival and engraftment rates. Other stem cell types, such as induced pluripotent stem cells (iPSCs) also show promise, and optimizing cardiac repair requires integrating emerging technologies and strategies. AREAS COVERED This review offers insights into advancing cell-based therapies for AMI, emphasizing meticulously planned trials with a standardized definition of AMI, for a bench-to-bedside approach. We critically evaluate fundamental studies and clinical trials to provide a comprehensive overview of the advances, limitations and prospects for cell-based therapy in AMI. EXPERT OPINION MSCs continue to show potential promise for treating AMI and its sequelae, but addressing their low survival and engraftment rates is crucial for clinical success. Integrating emerging technologies such as pluripotent stem cells and conducting well-designed trials will harness the full potential of cell-based therapy in AMI management. Collaborative efforts are vital to developing effective stem cell therapies for AMI patients.
Collapse
Affiliation(s)
- Diana Clavellina
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
35
|
Leone A, Nicolò A, Prevenzano I, Zatterale F, Longo M, Desiderio A, Spinelli R, Campitelli M, Conza D, Raciti GA, Beguinot F, Nigro C, Miele C. Methylglyoxal Impairs the Pro-Angiogenic Ability of Mouse Adipose-Derived Stem Cells (mADSCs) via a Senescence-Associated Mechanism. Cells 2023; 12:1741. [PMID: 37443775 PMCID: PMC10340470 DOI: 10.3390/cells12131741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) play a crucial role in angiogenesis and repair of damaged tissues. However, in pathological conditions including diabetes, ADSC function is compromised. This work aims at evaluating the effect of Methylglyoxal (MGO), a product of chronic hyperglycemia, on mouse ADSCs' (mADSCs) pro-angiogenic function and the molecular mediators involved. The mADSCs were isolated from C57bl6 mice. MGO-adducts and p-p38 MAPK protein levels were evaluated by Western Blot. Human retinal endothelial cell (hREC) migration was analyzed by transwell assays. Gene expression was measured by qRT-PCR, and SA-βGal activity by cytofluorimetry. Soluble factor release was evaluated by multiplex assay. MGO treatment does not impair mADSC viability and induces MGO-adduct accumulation. hREC migration is reduced in response to both MGO-treated mADSCs and conditioned media from MGO-treated mADSCs, compared to untreated cells. This is associated with an increase of SA-βGal activity, SASP factor release and p53 and p21 expression, together with a VEGF- and PDGF-reduced release from MGO-treated mADSCs and a reduced p38-MAPK activation in hRECs. The MGO-induced impairment of mADSC function is reverted by senolytics. In conclusion, MGO impairs mADSCs' pro-angiogenic function through the induction of a senescent phenotype, associated with the reduced secretion of growth factors crucial for hREC migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cecilia Nigro
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council & Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (A.L.); (A.N.); (I.P.)
| | | |
Collapse
|
36
|
Helissey C, Cavallero S, Guitard N, Théry H, Chargari C, François S. Revolutionizing Radiotoxicity Management with Mesenchymal Stem Cells and Their Derivatives: A Focus on Radiation-Induced Cystitis. Int J Mol Sci 2023; 24:ijms24109068. [PMID: 37240415 DOI: 10.3390/ijms24109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Although radiation therapy plays a crucial role in cancer treatment, and techniques have improved continuously, irradiation induces side effects in healthy tissue. Radiation cystitis is a potential complication following the therapeutic irradiation of pelvic cancers and negatively impacts patients' quality of life (QoL). To date, no effective treatment is available, and this toxicity remains a therapeutic challenge. In recent times, stem cell-based therapy, particularly the use of mesenchymal stem cells (MSC), has gained attention in tissue repair and regeneration due to their easy accessibility and their ability to differentiate into several tissue types, modulate the immune system and secrete substances that help nearby cells grow and heal. In this review, we will summarize the pathophysiological mechanisms of radiation-induced injury to normal tissues, including radiation cystitis (RC). We will then discuss the therapeutic potential and limitations of MSCs and their derivatives, including packaged conditioned media and extracellular vesicles, in the management of radiotoxicity and RC.
Collapse
Affiliation(s)
- Carole Helissey
- Clinical Unit Research, HIA Bégin, 69 Avenu de Paris, 94160 Saint-Mandé, France
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Sophie Cavallero
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Nathalie Guitard
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Hélène Théry
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Cyrus Chargari
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
- Department of Radiation Oncology, Pitié Salpêtrière University Hospital, 47-83 Bd de l'Hôpital, 75013 Paris, France
| | - Sabine François
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
37
|
Moradi-Gharibvand N, Hashemibeni B. The Effect of Stem Cells and Vascular Endothelial Growth Factor on Cancer Angiogenesis. Adv Biomed Res 2023; 12:124. [PMID: 37434939 PMCID: PMC10331557 DOI: 10.4103/abr.abr_378_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/17/2022] [Accepted: 04/24/2022] [Indexed: 07/13/2023] Open
Abstract
The formation of new vessels from pre-existing vessels is known as angiogenesis. The process is controlled by stimuli and inhibitors. Angiogenesis starts as a result of the unbalance of these factors, where balance has a tendency toward the stimulus. One of the most important factors promoting angiogenesis is the vascular endothelial growth factor (VEGF). In addition to being involved in vascular regeneration in normal tissues, VEGF also takes part in tumor tissue angiogenesis. These factors affect endothelial cells (ECs) directly as well as differentiate tumor cells from endothelial cells and play an active role in tumor tissue angiogenesis. Angiogenesis partakes in the growth and proliferation of tumor tissue. Because anti-angiogenic treatment is favorable in existing cancer therapies, the potential benefits should be considered. One of these new therapies is cell therapy using mesenchymal stem cells (MSCs). Research on MSCs remains controversial because much of the earlier research on MSCs has shown their effectiveness, but more recent research has identified harmful effects of these cells. This article reviews the role of stem cells and their secretions in the angiogenesis of tumor tissues.
Collapse
Affiliation(s)
- Nahid Moradi-Gharibvand
- Abadan University of Medical Sciences, Abadan, Iran
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
38
|
Zhang R, Liu Q, Lyu C, Gao X, Ma W. Knockdown SENP1 Suppressed the Angiogenic Potential of Mesenchymal Stem Cells by Impacting CXCR4-Regulated MRTF-A SUMOylation and CCN1 Expression. Biomedicines 2023; 11:biomedicines11030914. [PMID: 36979893 PMCID: PMC10046070 DOI: 10.3390/biomedicines11030914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
The angiogenic potential of mesenchymal stem cells (MSCs) is critical for adult vascular regeneration and repair, which is regulated by various growth factors and cytokines. In the current study, we report that knockdown SUMO-specific peptidase 1 (SENP1) stimulated the SUMOylation of MRTF-A and prevented its translocation into the nucleus, leading to downregulation of the cytokine and angiogenic factor CCN1, which significantly impacted MSC-mediated angiogenesis and cell migration. Further studies showed that SENP1 knockdown also suppressed the expression of a chemokine receptor CXCR4, and overexpression of CXCR4 could partially abrogate MRTF-A SUMOylation and reestablish the CCN1 level. Mutation analysis confirmed that SUMOylation occurred on three lysine residues (Lys-499, Lys-576, and Lys-624) of MRTF-A. In addition, SENP1 knockdown abolished the synergistic co-activation of CCN1 between MRTF-A and histone acetyltransferase p300 by suppressing acetylation on histone3K9, histone3K14, and histone4. These results revealed an important signaling pathway to regulate MSC differentiation and angiogenesis by MRTF-A SUMOylation involving cytokine/chemokine activities mediated by CCN1 and CXCR4, which may potentially impact a variety of cellular processes such as revascularization, wound healing, and progression of cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Hematology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Qingxi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Department of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan 250200, China
- Correspondence: (Q.L.); (W.M.)
| | - Cuicui Lyu
- Department of Hematology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Xing Gao
- Department of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Wenjian Ma
- Department of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan 250200, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: (Q.L.); (W.M.)
| |
Collapse
|
39
|
Jerkic M, Szaszi K, Laffey JG, Rotstein O, Zhang H. Key Role of Mesenchymal Stromal Cell Interaction with Macrophages in Promoting Repair of Lung Injury. Int J Mol Sci 2023; 24:ijms24043376. [PMID: 36834784 PMCID: PMC9965074 DOI: 10.3390/ijms24043376] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Lung macrophages (Mφs) are essential for pulmonary innate immunity and host defense due to their dynamic polarization and phenotype shifts. Mesenchymal stromal cells (MSCs) have secretory, immunomodulatory, and tissue-reparative properties and have shown promise in acute and chronic inflammatory lung diseases and in COVID-19. Many beneficial effects of MSCs are mediated through their interaction with resident alveolar and pulmonary interstitial Mφs. Bidirectional MSC-Mφ communication is achieved through direct contact, soluble factor secretion/activation, and organelle transfer. The lung microenvironment facilitates MSC secretion of factors that result in Mφ polarization towards an immunosuppressive M2-like phenotype for the restoration of tissue homeostasis. M2-like Mφ in turn can affect the MSC immune regulatory function in MSC engraftment and tissue reparatory effects. This review article highlights the mechanisms of crosstalk between MSCs and Mφs and the potential role of their interaction in lung repair in inflammatory lung diseases.
Collapse
Affiliation(s)
- Mirjana Jerkic
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Correspondence:
| | - Katalin Szaszi
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - John G. Laffey
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Anaesthesia and Intensive Care Medicine, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Ori Rotstein
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Haibo Zhang
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Anesthesiology and Pain Medicine, Interdepartmental Division of Critical Care Medicine and Department of Physiology, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
40
|
Zivec K, Veber M, Pizem J, Jez M, Bozikov K, Svajger U. Intraoperative Intradermal Application of Stromal Vascular Fraction into the Abdominal Suture Line: Histological Analysis of Abdominal Scar Tissue. Aesthetic Plast Surg 2022; 46:2853-2862. [PMID: 35353217 DOI: 10.1007/s00266-022-02860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/26/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Stem cell therapy is a promising new approach to wound healing. Stromal vascular fraction is a heterogeneous collection of cells, including adipose-derived stem cells, which are traditionally isolated using a manual collagenase-based technique. To our knowledge, this is the first human study that histologically assesses the potential of intraoperative intradermal injection of stromal vascular fraction on skin regeneration. METHODS In this controlled study, 20 patients undergoing deep inferior epigastric perforator flap breast reconstruction and bilateral flank liposuction were included. Stromal vascular fraction was injected intradermally into one side of the abdominal suture line, while the other side served as a control. Outcome measures included analysis of stromal vascular fraction by flow cytometry, histological analysis of scar tissue, and scar photography. RESULTS Cell yield for application and cell viability were 55.9 ± 28.5 × 106 and 75.1% ± 14.5%, respectively. Age and body mass index were positively correlated with the number of cells for application and adipose-derived stem cells. Mean vascular density, elastic fiber content, collagen maturity (scar index), epidermal thickness, and number of rete ridges all showed higher values on the treated side. Furthermore, the injected number of adipose-derived stem cells and pericytes positively correlated with vascular density. CONCLUSIONS It is safe to speculate that intradermal stromal vascular fraction injection at the beginning of the healing process increases vascular density, collagen maturity and organization, elastic fiber content, epidermal thickness, epidermal-dermal anchoring of the scarring skin and is therefore responsible for improved skin regeneration. It is a viable and safe method that can be used as an adjunctive treatment in plastic surgery procedures where suboptimal wound healing is anticipated. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Katarina Zivec
- Department of Plastic Surgery, University Medical Center Ljubljana, Zaloska 7, 1000, Ljubljana, Slovenia. .,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | | | - Joze Pizem
- Faculty of Medicine, Institute of Pathology, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Mojca Jez
- Blood Transfusion Center of Slovenia, 1000, Ljubljana, Slovenia
| | | | - Urban Svajger
- Blood Transfusion Center of Slovenia, 1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000, Ljubljana, Slovenia
| |
Collapse
|
41
|
Yüce M, Albayrak E. Hyperthermia-stimulated tonsil-mesenchymal stromal cells suppress hematological cancer cells through downregulation of IL-6. J Cell Biochem 2022; 123:1966-1979. [PMID: 36029519 DOI: 10.1002/jcb.30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
There are contradictory reports on the use of mesenchymal stromal cells (MSCs) in cancer therapy. Variable outcomes have been associated with several factors including cancer pathology, experimental procedure, MSC source tissue, and individual genetic differences. It is also known that MSCs exert their therapeutic effects with various paracrine factors released from these cells. The profiles of the factors released from MSCs are altered by heat shock, hypoxia, oxidative stress, starvation or various agents such as inflammatory cytokines, and their therapeutic potential is affected. In this study, the antitumor potential of conditioned media (CM), which contains paracrine factors, of mild hyperthermia-stimulated mesenchymal stromal cells derived from lymphoid organ tonsil tissue (T-MSC) was investigated in comparison with CM obtained from T-MSCs grew under normal culture conditions. CM was obtained from T-MSCs that were successfully isolated from palatine tonsil tissue and characterized. The cytotoxic effect of CM on the growth of hematological cancer cell lines at different concentrations (1:1 and 1:2) was demonstrated by methylthiazoldiphenyl-tetrazolium bromide analysis. In addition, the apoptotic effect of T-MSC-CM treatment was evaluated on the cancer cells using Annexin-V/PI detection method by flow cytometry. The pro/anti-apoptotic and cytokine-related gene expressions were also analyzed by real-time polymerase chain reaction post T-MSC-CM treatment. In conclusion, we demonstrated that the factors released from hyperthermia-stimulated T-MSCs induced apoptosis in hematological cancer cell lines in a dose-dependent manner. Importantly, our results at the transcriptional level support that the factors and cytokines released from hyperthermia-stimulated T-MSC may exert antitumoral effects in cancer cells by downregulation of IL-6 that promotes tumorigenesis. These findings reveal that T-MSC-CM can be a powerful cell-free therapeutical strategy for cancer therapy.
Collapse
Affiliation(s)
- Melek Yüce
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, Atakum/Samsun, Turkey
| | - Esra Albayrak
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, Atakum/Samsun, Turkey
| |
Collapse
|
42
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
43
|
Nachmias B, Zimran E, Avni B. Mesenchymal stroma/stem cells: Haematologists' friend or foe? Br J Haematol 2022; 199:175-189. [PMID: 35667616 PMCID: PMC9796884 DOI: 10.1111/bjh.18292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) are non-haematopoietic cells found in fetal and adult organs, that play important roles in tissue repair, inflammation and immune modulation. MSCs residing in the bone marrow interact closely with haematopoietic cells and comprise an important component of the microenvironment supporting haematopoiesis, in both health and disease states. Since their identification in 1970, basic scientific and preclinical research efforts have shed light on the role of MSCs in the regulation of haematopoiesis and evoked interest in their clinical application in haematopoietic stem cell transplantation (HSCT) and malignant haematology. Over the last two decades, these research efforts have led to numerous clinical trials, which have established the safety of MSC therapy; however, the optimal mode of administration and the benefit remain inconclusive. In this paper, we will review the clinical experience with use of MSCs in HSCT for enhancement of engraftment, prevention and treatment of graft-versus-host disease and haemorrhagic cystitis. Then, we will discuss the contradictory evidence regarding tumour-promoting versus tumour-suppressing effects of MSCs in haematological malignancies, which may have relevance for future clinical applications.
Collapse
Affiliation(s)
- Boaz Nachmias
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Eran Zimran
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Batia Avni
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| |
Collapse
|
44
|
Urrata V, Trapani M, Franza M, Moschella F, Di Stefano AB, Toia F. Analysis of MSCs' secretome and EVs cargo: Evaluation of functions and applications. Life Sci 2022; 308:120990. [PMID: 36155182 DOI: 10.1016/j.lfs.2022.120990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marco Trapani
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy
| | - Mara Franza
- Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Francesco Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Francesca Toia
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
45
|
Lana JFSD, Lana AVSD, da Fonseca LF, Coelho MA, Marques GG, Mosaner T, Ribeiro LL, Azzini GOM, Santos GS, Fonseca E, de Andrade MAP. Stromal Vascular Fraction for Knee Osteoarthritis - An Update. J Stem Cells Regen Med 2022; 18:11-20. [PMID: 36003656 DOI: 10.46582/jsrm.1801003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
Orthobiologics never cease to cause popularity within the medical science field, distinctly in regenerative medicine. Recently, adipose tissue has been an object of interest for many researchers and medical experts due to the fact that it represents a novel and potential cell source for tissue engineering and regenerative medicine purposes. Stromal vascular fraction (SVF), for instance, which is an adipose tissue-derivative, has generated optimistic results in many scenarios. Its biological potential can be harnessed and administered into injured tissues, particularly areas in which standard healing is disrupted. This is a typical feature of osteoarthritis (OA), a common degenerative joint disease which is outlined by persistent inflammation and destruction of surrounding tissues. SVF is known to carry a large amount of stem and progenitor cells, which are able to perform self-renewal, differentiation, and proliferation. Furthermore, they also secrete several cytokines and several growth factors, effectively sustaining immune modulatory effects and halting the escalated pro-inflammatory status of OA. Although SVF has shown interesting results throughout the medical community, additional research is still highly desirable in order to further elucidate its potential regarding musculoskeletal disorders, especially OA.
Collapse
Affiliation(s)
| | | | - Lucas Furtado da Fonseca
- Orthopaedic Department - Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo - SP, Brazil
| | - Marcelo Amaral Coelho
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | | - Tomas Mosaner
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | | | | - Gabriel Silva Santos
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | - Eduardo Fonseca
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | |
Collapse
|
46
|
Hagen A, Niebert S, Brandt VP, Holland H, Melzer M, Wehrend A, Burk J. Functional properties of equine adipose-derived mesenchymal stromal cells cultured with equine platelet lysate. Front Vet Sci 2022; 9:890302. [PMID: 36016806 PMCID: PMC9395693 DOI: 10.3389/fvets.2022.890302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Successful translation of multipotent mesenchymal stromal cell (MSC)-based therapies into clinical reality relies on adequate cell production procedures. These should be available not only for human MSC, but also for MSC from animal species relevant to preclinical research and veterinary medicine. The cell culture medium supplementation is one of the critical aspects in MSC production. Therefore, we previously established a scalable protocol for the production of buffy-coat based equine platelet lysate (ePL). This ePL proved to be a suitable alternative to fetal bovine serum (FBS) for equine adipose-derived (AD-) MSC culture so far, as it supported AD-MSC proliferation and basic characteristics. The aim of the current study was to further analyze the functional properties of equine AD-MSC cultured with the same ePL, focusing on cell fitness, genetic stability and pro-angiogenic potency. All experiments were performed with AD-MSC from n = 5 horses, which were cultured either in medium supplemented with 10% FBS, 10% ePL or 2.5% ePL. AD-MSC cultured with 2.5% ePL, which previously showed decreased proliferation potential, displayed higher apoptosis but lower senescence levels as compared to 10% ePL medium (p < 0.05). Non-clonal chromosomal aberrations occurred in 8% of equine AD-MSC cultivated with FBS and only in 4.8% of equine AD-MSC cultivated with 10% ePL. Clonal aberrations in the AD-MSC were neither observed in FBS nor in 10% ePL medium. Analysis of AD-MSC and endothelial cells in an indirect co-culture revealed that the ePL supported the pro-angiogenic effects of AD-MSC. In the 10% ePL group, more vascular endothelial growth factor (VEGF-A) was released and highest VEGF-A concentrations were reached in the presence of ePL and co-cultured cells (p < 0.05). Correspondingly, AD-MSC expressed the VEGF receptor-2 at higher levels in the presence of ePL (p < 0.05). Finally, AD-MSC and 10% ePL together promoted the growth of endothelial cells and induced the formation of vessel-like structures in two of the samples. These data further substantiate that buffy-coat-based ePL is a valuable supplement for equine AD-MSC culture media. The ePL does not only support stable equine AD-MSC characteristics as demonstrated before, but it also enhances their functional properties.
Collapse
Affiliation(s)
- Alina Hagen
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Niebert
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Vivian-Pascal Brandt
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Heidrun Holland
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Michaela Melzer
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Axel Wehrend
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
- *Correspondence: Janina Burk
| |
Collapse
|
47
|
Wiese DM, Wood CA, Ford BN, Braid LR. Cytokine Activation Reveals Tissue-Imprinted Gene Profiles of Mesenchymal Stromal Cells. Front Immunol 2022; 13:917790. [PMID: 35924240 PMCID: PMC9341285 DOI: 10.3389/fimmu.2022.917790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Development of standardized metrics to support manufacturing and regulatory approval of mesenchymal stromal cell (MSC) products is confounded by heterogeneity of MSC populations. Many reports describe fundamental differences between MSCs from various tissues and compare unstimulated and activated counterparts. However, molecular information comparing biological profiles of activated MSCs across different origins and donors is limited. To better understand common and source-specific mechanisms of action, we compared the responses of 3 donor populations each of human umbilical cord (UC) and bone marrow (BM) MSCs to TNF-α, IL-1β or IFN-γ. Transcriptome profiles were analysed by microarray and select secretome profiles were assessed by multiplex immunoassay. Unstimulated (resting) UC and BM-MSCs differentially expressed (DE) 174 genes. Signatures of TNF-α-stimulated BM and UC-MSCs included 45 and 14 new DE genes, respectively, while all but 7 of the initial 174 DE genes were expressed at comparable levels after licensing. After IL-1β activation, only 5 of the 174 DE genes remained significantly different, while 6 new DE genes were identified. IFN-γ elicited a robust transcriptome response from both cell types, yet nearly all differences (171/174) between resting populations were attenuated. Nine DE genes predominantly corresponding to immunogenic cell surface proteins emerged as a BM-MSC signature of IFN-γ activation. Changes in protein synthesis of select analytes correlated modestly with transcript levels. The dynamic responses of licensed MSCs documented herein, which attenuated heterogeneity between unstimulated populations, provide new insight into common and source-imprinted responses to cytokine activation and can inform strategic development of meaningful, standardized assays.
Collapse
Affiliation(s)
| | | | - Barry N. Ford
- Defence Research and Development Canada Suffield Research Centre, Casualty Management Section, Medicine Hat, AB, Canada
| | - Lorena R. Braid
- Aurora BioSolutions Inc., Medicine Hat, AB, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, BC, Canada
- *Correspondence: Lorena R. Braid, ;
| |
Collapse
|
48
|
Mesenchymal Stem Cell Therapy: A Potential Treatment Targeting Pathological Manifestations of Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4645021. [PMID: 35757508 PMCID: PMC9217616 DOI: 10.1155/2022/4645021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
Abstract
Traumatic brain injury (TBI) makes up a large proportion of acute brain injuries and is a major cause of disability globally. Its complicated etiology and pathogenesis mainly include primary injury and secondary injury over time, which can cause cognitive deficits, physical disabilities, mood changes, and impaired verbal communication. Recently, mesenchymal stromal cell- (MSC-) based therapy has shown significant therapeutic potential to target TBI-induced pathological processes, such as oxidative stress, neuroinflammation, apoptosis, and mitochondrial dysfunction. In this review, we discuss the main pathological processes of TBI and summarize the underlying mechanisms of MSC-based TBI treatment. We also discuss research progress in the field of MSC therapy in TBI as well as major shortcomings and the great potential shown.
Collapse
|
49
|
Human Placental Mesenchymal Stem Cells for the Treatment of ARDS in Rat. Stem Cells Int 2022; 2022:8418509. [PMID: 35756754 PMCID: PMC9226970 DOI: 10.1155/2022/8418509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is one of the main causes of high mortality in patients with coronavirus (COVID-19). In recent years, due to the coronavirus pandemic, the number of patients with ARDS has increased significantly. Unfortunately, until now, there are no effective treatments for ARDS caused by COVID-19. Many drugs are either ineffective or have a low effect. Currently, there have been reports of efficient use of mesenchymal stem cells (MSCs) for the treatment of ARDS caused by COVID-19. We investigated the influence of freeze-dried human placenta-derived mesenchymal stem cells (HPMSCs) in ARDS rat model. All animals have received intratracheal injection of 6 mg/kg of lipopolysaccharide (LPS). The rats were randomly divided into five groups: I: LPS, II: LPS+dexamethasone, III: LPS+HPMSCs, IV: HPMSC, and V: saline. ARDS observation time was short-term and amounted to 168 hours. The study has shown that HPMSCs are able to migrate and attach to damaged lung tissue, contributing to the resolution of pathology, restoration of function, and tissue repair in the alveolar space. Studies have also shown that the administration of HPMSCs in animals with ARDS model significantly reduced the levels of key cytokines such as IL-1β, IL-6, and TNF-α. Freeze-dried placental stem cell is a very promising biomaterial for the treatment of ARDS. The human placenta can be easily obtained because it is considered as a medical waste. At the same time, a huge number of MSCs can be obtained from the placental tissue, and there is no ethical controversy around their use. The freeze-dried MSCs from human placental tissue can be stored sterile at room temperature for a long time before use.
Collapse
|
50
|
Kuhn P, Bubel M, Jennewein M, Guthörl S, Pohlemann T, Oberringer M. Dose-dependent dominance: How cell densities design stromal cell functions during soft tissue healing. Cell Biochem Funct 2022; 40:439-450. [PMID: 35707856 DOI: 10.1002/cbf.3705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 11/06/2022]
Abstract
Regular soft tissue healing relies on the well-organized interaction of different stromal cell types with endothelial cells. However, spatiotemporal conditions might provoke high densities of one special stromal cell type, potentially leading to impaired healing. Detailed knowledge of the functions of rivaling stromal cell types aiming for tissue contraction and stabilization as well as vascular support is mandatory. By the application of an in vitro approach comprising the evaluation of cell proliferation, cell morphology, myofibroblastoid differentiation, and cytokine release, we verified a density-dependent modulation of these functions among juvenile and adult fibroblasts, pericytes, and adipose-derived stem cells during their interaction with microvascular endothelial cells in cocultures. Results indicate that juvenile fibroblasts rather support angiogenesis via paracrine regulation at the early stage of healing, a role potentially compromised in adult fibroblasts. In contrast, pericytes showed a more versatile character aiming at angiogenesis, vessel stabilization, and tissue contraction. Such a universal character was even more pronounced among adipose-derived stem cells. The explicit knowledge of the characteristic functions of stromal cell types is a prerequisite for the development of new analytical and therapeutic approaches for impaired soft tissue healing. The present study delivers new considerations concerning the roles of rivaling stromal cell types within a granulation tissue, pointing to extraordinary properties of pericytes and adipose-derived stem cells.
Collapse
Affiliation(s)
- Philipp Kuhn
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Monika Bubel
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Martina Jennewein
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Silke Guthörl
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Martin Oberringer
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|